
Hooke’s Law

Let’s imagine that we are studying a particle moving in one dimension, subject
to a conservative force with a corresponding potential energy function U (x).
We’ll assume that the potential energy function is totally arbitrary, aside from
one key fact: the potential has a local minimum at a point x∗ (there may or
may not be other minima). This is sketched in Figure 1. Additionally, let’s
consider the case that the particle has a total energy E = K + U which is only
slightly larger than U (x∗). If the particle moves in the vicinity of the point x∗,
then based on the ideas we discussed in the previous lecture, we know that the
particle can not travel very far from this point - the particle is constrained to
move only in regions such that U (x) < E. This is indicated by the red line in
the figure. Does the fact that the particle only moves within a small region help
us simplify the details of this problem at all? It turns out that the answer is
yes, and that the simplification is quite dramatic indeed.

Figure 1: A potential energy function, with a local minimum at the point x = x∗.

To see why this is the case, let’s make one further assumption about the
potential energy function - it is reasonably smooth enough that we can Taylor
expand it around the point x∗,

U (x) =

∞∑
n=0

Un (x− x∗)n = U0 + U1 (x− x∗) + U2 (x− x∗)2 + ... (1)

This assumption should be valid for virtually any physically realistic system.
Because the particle only moves within a small region surrounding the point x∗,
our Taylor series approximation of the potential only needs to be reasonably
accurate within this small region. So long as this is the case, we can replace
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the full potential energy function with a Taylor series approximation containing
only a small number of terms, and any calculations we perform regarding the
particle’s motion should be approximately correct. This is because the particle
only explores the region of space where the difference between the two functions
is negligible. Figure 2 illustrates this basic idea.

Figure 2: A hypothetical Taylor expansion of our potential energy function,
centered around the point x = x∗, is shown in green. While a Taylor expansion
with a finite number of terms will typically deviate badly from the true function
at values of x far away from x∗, so long as the agreement is good in the region
in which the particle moves, any calculations performed using the approximate
function will still yield accurate answers.

What exactly are the terms in this Taylor expansion? Well, the first term is
simply the constant value

U0 = U (x∗) . (2)

However, we know from the previous lecture that we can shift our potential
energy function by a constant without altering any of the actual physics of the
problem. So, without any loss of generality, let’s simply assume that

U0 = U (x∗) = 0, (3)

that is, we’ll set the zero of the potential energy to be at the point x = x∗.
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The next term in the expansion is simply given by the first derivative, eval-
uated at the point around which we are expanding,

U1 = U ′ (x∗) . (4)

However, the point x = x∗ corresponds to a potential minimum, and we know
from calculus that the derivative of a function must vanish at a minimum. Thus,
we must have

U1 = 0. (5)

The third term is given by

U2 =
1

2
U ′′ (x∗) , (6)

which involves the second derivative. In general, there is no reason for this term
to be zero. In some special cases, say for example a potential energy described
by U (x) = x4, the second derivative could vanish at the potential minimum.
But, for a totally arbitrary potential energy function, it will typically be the
case that

U2 =
1

2
U ′′ (x∗) ≡

1

2
k > 0, (7)

where K is some positive constant (positive because we have a minimum, and
not a maximum).

If we assume that the region around x∗ which the particle explores is suffi-
ciently small, then it will be a reasonably good approximation to only expand
the potential to second order. In this case, based on the results we have found,
our potential energy function will be approximately

U (x) ≈ 1

2
k (x− x∗)2 . (8)

Thus, almost any particle which is moving in the vicinity of a potential minimum
can effectively be described by a potential energy function of this form. But this
potential energy should be familiar to you as nothing other than the potential
energy of a spring! If we write the expression for the force on the particle, we
find

F = −dU
dx

= −k (x− x∗) , (9)

which is nothing other than Hooke’s Law.
Hooke’s Law is often presented as some sort of “fundamental” law of springs

when it is introduced in freshman mechanics, but we can see here that it is noth-
ing other than Taylor’s theorem in disguise. Almost any oscillating mechanical
system will behave like a vibrating spring, so long as the oscillations are small
enough. For this reason, the vibrating spring, or simple harmonic oscillator
(SHO) as it is often called, is one of the most important mechanical systems in
all of physics. Because of this, the SHO will be the primary focus of our study
for the next few lectures.

3



Simple Harmonic Motion

The equation of motion for the simple harmonic oscillator is given, as usual, by
Newton’s second law,

F = ma⇒ mẍ = −k (x− x∗) . (10)

If we make the change of variables,

y = x− x∗, (11)

which is just a shift by a constant, then our differential equation simply becomes

ÿ = −K
m
y = −ω2y, (12)

where
ω ≡

√
k/m (13)

is the angular frequency of the harmonic oscillator. This differential equation
tells us that the second derivative of the position is the same as the position
itself, aside from an overall negative constant. Of course, from our calculus
class, we’re all familiar with two functions that satisfy this property, sine and
cosine,

y1 (t) = cos (ωt) ; y2 (t) = sin (ωt) . (14)

Are there any other solutions to this equation?
To answer this, let’s first rewrite our differential equation as

ÿ + ω2y = Ly = 0, (15)

where

L =
d2

dt2
+ ω2 (16)

is a linear operator acting on the space of functions of time. We say it is an
operator, because it takes a function y, “operates” on it, and then returns the
function

Ly = ÿ + ω2y. (17)

It is “linear” because it satisfies the property of linearity, which is to say that
for any two functions f and g,

L (f + g) = Lf + Lg, (18)

and for any constant number α,

L (αf) = αLf. (19)

In particular, we say that this linear operator is a second-order differential
operator, since it is an operator that involves a derivative, and the highest
order of derivative which appears is second order. We also say that it is a
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homogeneous equation, which simply means that the right side of the equation
is zero.

Now, a theorem from linear algebra tells us that for a differential equation
which can be written as

Ly = 0, (20)

where L is a linear, nth-order differential operator, there are precisely n linearly
independent solutions to the differential equation. Linear independence means
that none of the n solutions can be written as a simple linear combination of the
other ones. The most general solution to the differential equation is then given
as a linear combination of these n “basis” solutions. In our case, it is clear that
neither sine nor cosine can be written as a simple multiple of the other, and so
these two solution are linearly independent. Because our differential equation is
second order, this exhausts the list of linearly independent solutions. Therefore,
the most general possible solution to our differential equation is

y (t) = A cos (ωt) +B sin (ωt) , (21)

or, changing variables back to x,

x (t) = x∗ +A cos (ωt) +B sin (ωt) . (22)

As we can see, the particle oscillates sinusoidally around the equilibrium
point x∗, as we are all probably familiar with. In order to fix the constants A
and B, we must impose a set of initial conditions. For simplicity, we’ll assume
the initial time is t0 = 0. If we define the initial position to be

x0 ≡ x (t = t0 = 0) , (23)

then
x0 = x∗ +A cos (0) +B sin (0) = x∗ +A⇒ A = x0 − x∗. (24)

Differentiating the position as a function of time, we find the velocity to be

v (t) = −ωA sin (ωt) + ωB cos (ωt) , (25)

so that
v0 ≡ v (t = 0) = −ωA sin (0) + ωB cos (0)⇒ B = v0/ω. (26)

Thus, our final expression for the most general motion of a harmonic oscillator
is

∆x (t) = ∆x0 cos (ωt) +
v0
ω

sin (ωt) , (27)

where
∆x (t) ≡ x (t)− x∗ (28)

A slightly more compact expression for the position can be found by defining

C =
√
A2 +B2 =

√
∆x20 + v20/ω

2, (29)
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and writing

∆x (t) = C

(
∆x0
C

cos (ωt) +
v0
ωC

sin (ωt)

)
. (30)

Now, because (
∆x0
C

)2

+
( v0
ωC

)2
=

∆x20 + v20/ω
2

∆x20 + v20/ω
2

= 1, (31)

we can define an angle δ such that

cos δ =
∆x0
C

; sin δ =
v0
ωC

; δ = arctan

(
v0

ω∆x0

)
. (32)

The position now takes the form

∆x (t) = C [cos δ cos (ωt) + sin δ sin (ωt)] . (33)

Using a standard trigonometric identity, this expression can finally be rewritten
as

∆x (t) = C cos (ωt− δ) . (34)

Differentiating, we see that the velocity is given by

v (t) = −Cω sin (ωt− δ) . (35)

In this form, we can see that no matter what the initial position and velocity of
the particle are, the motion is always a sine wave, with some overall amplitude
and phase shift. The period of oscillation is

T = 2π/ω = 2π
√
m/k, (36)

a result which we found previously from energy considerations.
Speaking of energy, with our explicit expressions for the position and velocity,

we can now see that the potential energy as a function of time is given according
to

U (t) =
1

2
k∆x2 =

1

2
kC2 cos2 (ωt− δ) , (37)

while the Kinetic energy is given by

K (t) =
1

2
mv2 =

1

2
mω2C2 sin2 (ωt− δ) =

1

2
kC2 sin2 (ωt− δ) (38)

Thus, the total energy is

E = K + U =
1

2
kC2

(
sin2 (ωt− δ) + cos2 (ωt− δ)

)
=

1

2
kC2, (39)

or,

E =
1

2
k
(
∆x20 + v20/ω

2
)

=
1

2

(
k∆x20 +mv20

)
, (40)

which is a constant, exactly as it should be. In fact, in this form, it is manifestly
obvious that the total energy is simply the sum of the initial kinetic energy and
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the initial potential energy. With this result, we can see that the maximum
displacement of the spring is defined by

1

2
k∆x2M =

1

2

(
k∆x20 +mv20

)
⇒ ∆xM = ±

√
∆x20 + v20/ω

2, (41)

since this is the condition that all of the energy in the system has been converted
to potential energy. Similarly, the maximum velocity that the particle obtains
during its motion is defined by

1

2
mv2M =

1

2

(
k∆x20 +mv20

)
⇒ vM = ±

√
ω2∆x20 + v20 (42)

since this corresponds to all of the energy in the system being converted into
kinetic energy.

Damped Harmonic Motion

The results of the previous section tell us pretty much everything we could ever
want to know about simple harmonic motion. As we’ve seen, almost any object
which is oscillating around a potential minimum will exhibit simple harmonic
motion, so long as the amplitude of its oscillation is small enough. However,
we can generalize this problem a little bit - let’s assume that in addition to a
conservative force, there is also a drag force acting on the particle. As we’ve
mentioned before, there are many different forms that a drag force can take,
depending on the particular physical system. However, we’ll focus again on the
simplest possible case, linear drag. This means that in addition to being subject
to the potential energy of the conservative force, there is some additional force

Fd = −bẋ, (43)

where b is some constant parameter. This expression is a reasonable approx-
imation for small objects moving very slowly through a fluid, and is also the
simplest case to consider from a mathematical standpoint.

In the presence of this additional force, the full differential equation for the
particle’s position is now given by

F = ma⇒ mẍ = −k (x− x∗)− bẋ. (44)

Again changing variables to
y = x− x∗, (45)

our differential equation becomes, after a little rearrangement,

ÿ + 2βẏ + ω2y = Lβy = 0, (46)

where
β ≡ b/2m, (47)
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and

Lβ ≡
d2

dt2
+ 2β

d

dt
+ ω2 (48)

is again a linear, second-order differential operator (the factor of two in the
definition of β will simplify some of the results later). This system is known as
the damped harmonic oscillator.

What are the solutions to this differential equation? It will still be true
that there are two linearly independent basis solutions, although they will be
different from the un-damped solutions. In the presence of drag, we should
expect that the particle will not oscillate forever. In fact, from our previous
discussion of air resistance, we might expect an exponential decay behaviour
instead, although it is not immediately clear to us what exact form the solution
should take. Because of this, we will make an educated guess for the form of
the solution,

yg (t) = eαt, (49)

where α is some constant number we don’t know (yet). If we plug this educated
guess into our differential equation, we find(

d2

dt2
+ 2β

d

dt
+ ω2

)
eαt = α2eαt + 2βαeαt + ω2eαt = 0. (50)

Now, we will have a solution to our differential equation so long as we can satisfy
the above constraint. If we cancel the exponential factors, then the constraint
we need to solve is

α2 + 2βα+ ω2 = 0. (51)

This is simply a quadratic equation for α, which has the two solutions

α± = −β ±
√
β2 − ω2. (52)

When β > ω, we have two real solutions for α, and thus two exponentially
decaying solutions to our differential equation,

y± (t) = e−βte±
√
β2−ω2t. (53)

Notice that both α+ and α− are negative numbers, and so indeed, both of these
solutions decay exponentially. The most general solution to our equation is thus

y (t) = e−βt
[
C+e

+
√
β2−ω2t + C−e

−
√
β2−ω2t

]
, (54)

or, in terms of the original coordinate x,

x (t) = x∗ + e−βt
[
C+e

+
√
β2−ω2t + C−e

−
√
β2−ω2t

]
, (55)

where C+ and C− are determined by initial conditions. In fact, it is a straight-
forward exercise to verify that

C± =
v0 − α∓ (x0 − x∗)
± (α+ − α−)

=
v0 +

(
β ±

√
β2 − ω2

)
(x0 − x∗)

±2
√
β2 − ω2

. (56)
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Damping Regimes

The case in which β > ω is known as the over-damped, or strongly damped,
regime of the oscillator. In this case, the damping due to drag is so strong that
there is no longer any hint of oscillatory behaviour - the oscillator’s position
decays exponentially to the point x∗, the equilibrium position of the spring. In
contrast, when β < ω, in the regime typically referred to as weak damping, or
under-damping, our expressions

α± = −β ±
√
β2 − ω2 (57)

no longer have real solutions. This is not surprising, since below a certain
threshold value of β, we would expect that the effects of air-resistance become
less important, and the particle should still display some oscillating motion. In
this case, the motion of the particle should not simply be a decaying exponential.
Faced with this fact, it may seem as though we need to come up with a new
educated guess for the solution to our differential equation.

However, this is in fact not the case, due to a result we are all probably
familiar with, Euler’s formula. Euler’s formula famously states that

eix = cosx+ i sinx (58)

for any x. Not only is the exponential of a complex number a well-defined
mathematical object, but it is in fact equal to a simple trigonometric function
(in the homework you’ll explore the proof of Euler’s formula). How exactly
does this help us? Well, let’s imagine that instead of just real values for y (t), I
consider the possibility of solutions which are more general, complex numbers,

y (t) = yR (t) + iyI (t) , (59)

with a real and imaginary part. If I plug this into my differential equation, I
find that (

ÿR + 2β ˙yR + ω2yR
)

+ i
(
ÿI + 2βẏI + ω2yI

)
= 0, (60)

since the number i is simply a constant. Now, since two complex numbers
are equal if and only if their real and imaginary parts are equal, this equation
implies that

ÿR + 2β ˙yR + ω2yR = 0 ; ÿI + 2βẏI + ω2yI = 0. (61)

Thus, it makes sense to consider a more general complex solution to our dif-
ferential equation, and the real and imaginary parts will both satisfy the same
differential equation independently. In light of this sort of thinking, we can
reinterpret our previous two solutions as corresponding to complex solutions,

α± = −β ±
√
β2 − ω2 = −β ± i

√
ω2 − β2, (62)

which yields

y± (t) = e−βte±i
√
ω2−β2t. (63)
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Using Euler’s formula, we can rewrite this as

y± (t) = e−βt
[
cos
(√

ω2 − β2t
)
± i sin

(√
ω2 − β2t

)]
. (64)

In particular, let’s focus on the solution with the + sign. In this form, it
becomes clear that what we have found by using this technique is a solution
which is already a complex linear combination of

y1 (t) = e−βt cos
(√

ω2 − β2t
)

(65)

as the real part, and

y2 (t) = e−βt sin
(√

ω2 − β2t
)

(66)

as the imaginary part. However, remember that the real and imaginary parts
of y both satisfy the same differential equation. Therefore, we see now that
y1 is one possible solution to this equation, and y2 is another possible solution.
Because they are clearly linearly independent, they must in fact be the two basis
solutions we are looking for. Thus, the most general solution for the real part
is,

yR (t) = e−βt
[
AR cos

(√
ω2 − β2t

)
+BR sin

(√
ω2 − β2t

)]
, (67)

or, in a more compact form

yR (t) = e−βt [AR cos (Ωt) +BR sin (Ωt)] , (68)

where
Ω =

√
ω2 − β2. (69)

Similarly, the most general solution for the imaginary part is

yI (t) = e−βt [AI cos (Ωt) +BI sin (Ωt)] . (70)

Of course, in our system we are studying, there is no imaginary component of
the particle’s position, and so we should simply have

yI (t) = 0 (71)

for all time. You should convince yourself that if we set the initial conditions of
the imaginary part to be

yI (0) = vI (0) = 0, (72)

then the only solution for the imaginary part is zero for all time. Therefore, if
there is no imaginary component at time t = 0, this will stay the case for all
time (as it must). So even though we allowed the possibility of a more general,
complex solution to our differential equation, it was really only a mathematical
trick for easily finding the motion of the real part. So at this point, we will
simply drop the real and imaginary subscripts on our solutions, and consider
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only real solutions, now that we have succeeded in finding the two solutions we
were looking for. However, this general approach of simplifying a problem by
allowing the possibility of complex numbers is a technique that will come up
over and over again in your physics courses, especially if you take a course on
complex analysis.

Writing our solution in terms of the original x coordinate, we find that

x (t) = x∗ + e−βt [A cos (Ωt) +B sin (Ωt)] , (73)

for some constants A and B which are determined by initial conditions. In
particular, a short calculation shows that

A = x0 − x∗ ; B =
v0 − β (x0 − x∗)

Ω
. (74)

We see now that in this under-damped case, there is still oscillatory behaviour
around the equilibrium point x∗. However, the frequency of this oscillation has
been decreased, since

Ω =
√
ω2 − β2 < ω. (75)

This seems intuitive, since we might expect the effects of drag to “slow down”
the particle. Additionally, these oscillations now have an exponentially decaying
amplitude - both the sine and cosine terms are weighted by an overall exponen-
tial. This overall exponential factor provides a sort of “envelope” underneath
which the oscillatory behaviour happens. Figure 3 shows in more detail what
such a motion would look like. The blue curve indicates the motion of the
damped oscillator, while the yellow curve shows the overall exponential factor
determining the decay of the oscillations. In particular, the characteristic time
for the decay of the oscillation amplitude is given by

τ = 1/β = 2m/b, (76)

which has a form similar to the case of projectile motion with air resistance.
You should verify for yourself that plugging β = 0 into this solution yields the
usual result for oscillation without any damping force.

Exploring this solution a little more, we can ask about the total energy of
the damped oscillator. As before, we can rewrite our solution slightly, so that
it reads

x (t) = x∗ + Ce−βt cos (Ωt− δ) , (77)

where, as before

C =
√
A2 +B2 ; δ = arctan (B/A) . (78)

Taking a derivative, the velocity is

v (t) = −Ce−βt [β cos (Ωt− δ) + Ω sin (Ωt− δ)] (79)

With these expressions, it is easy to see that the potential energy is

U (t) =
1

2
k (x− x∗)2 =

1

2
kC2e−2βt cos2 (Ωt− δ) . (80)
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Figure 3: The motion of the damped harmonic oscillator, shown in blue, in the
case that β = 1, Ω = 5, x∗ = 0, A = 1, and B = 0. Notice that the overall
amplitude of the oscillations decays exponentially, given by an overall factor
that is indicated by the yellow curve.

while the kinetic energy is

K (t) =
1

2
mv2 =

1

2
mC2e−2βt

[
β2 cos2 (Ωt− δ) + Ω2 sin2 (Ωt− δ) + 2βΩ cos (Ωt− δ) sin (Ωt− δ)

]
.

(81)
If we use a trigonometric identity, the kinetic energy can be simplified to

K (t) =
1

2
mC2e−2βt

[
β2 cos2 (Ωt− δ) + Ω2 sin2 (Ωt− δ) + βΩ sin (2Ωt− 2δ)

]
.

(82)
Adding together the kinetic and potential energies, and performing some alge-
bra, we find the total energy to be

E (t) =
1

2
mC2e−2βt

[
ω2 + β2

{
cos2 (Ωt− δ)− sin2 (Ωt− δ)

}
+ βΩ sin (2Ωt− 2δ)

]
.

(83)
Using another trigonometric identity, this becomes

E (t) =
1

2
mC2e−2βt

[
ω2 + β2 cos (2Ωt− 2δ) + βΩ sin (2Ωt− 2δ)

]
. (84)

When β 6= 0, we can see that the energy is a function of time - it is not a
constant. As we would expect, the presence of a non-conservative force results
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in a lack of energy conservation. In fact, we can explicitly compute

dE

dt
= −βmC2e−2βt

[
ω2 +

(
β2 − Ω2

)
cos (2Ωt− 2δ) + 2βΩ sin (2Ωt− 2δ)

]
.

(85)
With a little bit of algebra and a trigonometric identity, this can be rewritten
as

dE

dt
= −βmω2C2e−2βt [1 + cos (2Ωt− 2δ − φ)] < 0, (86)

where

φ ≡ arctan

(
2βΩ

β2 − Ω2

)
. (87)

We can see from the explicit factor of β out front that in the case where there is
no drag, the rate of change of the energy is zero, as it should be. Notice that the
derivative of the energy is always negative. The energy transfer due to drag is
a one-way street - energy is lost to air resistance, and never comes back. This
is true in general for dissipative systems. Also, notice that the rate of energy
loss is not a constant - energy is lost more quickly at certain points in time. In
fact, we would typically expect the energy loss to be largest when the velocity
is at a maximum. Figure 4 shows that this is indeed the case. You’ll explore
this fact more quantitatively in the homework.
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Figure 4: The velocity of the damped harmonic oscillator, shown in blue, in the
case that β = 1, m = 1, Ω = 5, A = 1, and B = 0. The rate at which energy is
being lost to dissipation is shown by the yellow curve. Notice that the energy
loss is the greatest when the particle has the largest velocity.
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Having thoroughly analysed the cases of weak damping and strong damping,
there is one more case which we must consider. In the event that our damping
parameter is precisely equal to the frequency of undamped oscillations,

β = ω, (88)

which is known as critical damping, our solution technique yields the result

α± = −β ±
√
β2 − ω2 = −β. (89)

Thus, our method only yields one solution, given by

y1 (t) = e−βt. (90)

However, we know that our differential equation should have two linearly inde-
pendent solutions. It is not clear what form this second solution should take.
However, it is reasonable to assume that it probably also has some exponen-
tially decaying behaviour - we just don’t know what the function multiplying
the exponential is. So, let’s quantify this state of affairs by writing our guess
for the second solution as

y2 (t) = f (t) e−βt, (91)

where f (t) is some function we don’t know.
However, assuming this guess is correct, we can learn something about f (t)

by plugging this guess into our original differential equation. Using the chain
rule, we have

ẏ2 (t) = [f ′ (t)− βf (t)] e−βt, (92)

along with
ÿ2 (t) =

[
f ′′ (t)− 2βf ′ (t) + β2f (t)

]
e−βt, (93)

and so inserting our guess into our differential equation yields

ÿ2 + 2βẏ2 + β2y = f ′′ (t) e−βt = 0. (94)

Cancelling the exponential factor, this simply yields

f ′′ (t) = 0. (95)

This (incredibly simple) differential equation has the general solution

f (t) = A+Bt, (96)

and so the most general solution to this critically damped oscillator is

y2 (t) = (A+Bt) e−βt, (97)

where A and B are to be determined by initial conditions. Once again, an
educated guess about the long-time behaviour of the system helped us arrive
at the correct solution to the differential equation. Of course, the nice thing
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about solving differential equations is that it is usually quite easy to verify that
a proposed solution satisfies the equation, and we also know exactly how many
solutions we need to find. Thus, we can be as non-rigorous and cavalier as we
want when finding (read: guessing) a solution, so long as we check afterwards
that it does indeed satisfy the differential equation.

To understand why this damping case is known as critical damping, we can
compare the characteristic time for the various values of β. For small values of
β, we know we have the weakly damped solution

x (t) = x∗ + e−βt [A cos (Ωt) +B sin (Ωt)] , (98)

with an oscillation amplitude that decays according to the characteristic time

τβ<ω = 1/β. (99)

For the critically damped case, we can see that the overall exponential decay
factor takes the same form, and so the characteristic time in this case is also
given by 1/β. For the strongly damped case, our solution takes the form

x (t) = x∗ + e−βt
[
C+e

+
√
β2−ω2t + C−e

−
√
β2−ω2t

]
. (100)

The second exponential factor is the one which decays the most quickly, and so
at large times, the first term is what dominates the time evolution. Thus, the
characteristic time in this case is given by

τβ>ω =
1

β −
√
β2 − ω2

. (101)

A plot of the characteristic time is shown in Figure 5. We can see that the
characteristic time for decay decreases up until the case of critical damping at
β = ω, at which point it begins to increase again. Thus, perhaps somewhat
counter intuitively, increasing the drag parameter beyond the critical value ac-
tually increases the amount of time it takes for the oscillator to return to its
equilibrium position. This fact is an important consideration in designing phys-
ical systems which we want to return to their starting positions as quickly as
possible (for example, shock absorbers in a car).

These results we have derived here constitute a fairly thorough analysis of
the (damped) harmonic oscillator. In the coming lectures we’ll understand how
these results change as we add a variety of complicating factors to our system.
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Figure 5: The characteristic time as a function of the damping parameter β, for
the case ω = 1. Notice that the characteristic time decreases up until the point
of critical damping at β = ω.
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