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In general relativity, the big bang is a singularity.

A 4

General

relativity

Physics near these singularities is described by
guantum gravity.



To study cosmological singularities using holography
we heed to construct asymptotically anti-de Sitter
(AdS) solutions which evolve into (or from) a
singularity that extends all the way out to infinity.

Payoff: It maps the problem into a problem in
ordinary QFT.

(Earlier work by Hertog, G.H.; Craps, Rajaraman,
Sethi; Das, Michelson, Narayan, Trivedi;
Awad, Das, Nampuri, Narayan, Trived,i,...)



First holographic model of a

cosmological singularity
(Hertog and GH, hep-th/0406134, hep-th/0503071)

Consider gravity in AdS, coupled to a scalar with
potential V() having m? =-2. One example
coming from a truncation of N = 8 SUGRA is:

V(¢) = —2 — cosh v/2¢

Solutions must approach
dr?
ds® = —(r* + 1)dt* + - r2dQ)
S (r“+1) R r




In all asymptotically AdS solutions, the scalar field
falls off like

2
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If o =0 or 3 =0, no solutions with cosmological
singularities. Consider a new boundary condition
B = ka? (Hertog and Maeda). This is also invariant
under all asymptotic AdS symmetries.

Claim: For all nonzero k, there are solutions that
evolve from a big bang and into a big crunch.



Big crunch

Time symmetric

- initial data

“— Asymptotic AdS

This looks like Schwarzschild-AdS, but:
(1) Infinity is not complete.

(2) “Horizon” is just the lightcone of the origin.



CFT Description

This is the 2+1 theory on a stack of M2-branes
(Aharony, Bergman, Jafferis, and Maldacena, 2008). The
theory contains eight scalars. With 3=0 boundary
conditions, the bulk scalar ¢ is dual to the dimension

one Operator
O = Tr(¢p] — ¢3)

Our new boundary condition corresponds to adding
to the field theory action the term (Witten; Sever and

Shomer): ke
=~ | O
3 /



CFT is like a 3D field theory with potential

start here

This field theory is sick: @ rolls down the potential
and reaches infinity in finite time. This is the analog
of evolving to the singularity in the bulk.



Update

Maldacena (1012.0274) pointed out that if we
view the dual theory as living on de Sitter space,

then our gravity solutions exist with boundary
condition = const.

This corresponds to adding a single trace
operator O to the CFT on de Sitter. This is like a
mass term.

Field theory remains well defined!
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de Sitter space has constant positive curvature

N/

Infinite hyperboloid can be conformally
rescaled to a finite cylinder



Any renormalizable but not conformal deformation

of the QFT on dS; will be dual to a crunch
(Harlow and Susskind, 1012.5302).

Problem now is how to describe the region near
the singularity in the dual theory.

If you rescale back to static cylinder, the mass
deformation becomes time dependent and blows

up when the singularity hits the boundary
(Barbon and Rabinovici, 1102.3015).
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Outline

Introduce new example of cosmological
singularities in AdS

Describe the boundary observable and
evaluate it in cases of interest

Find key signature of the singularity

Summary and future directions



The gravity solution

Solutions to Einstein’s equation can be obtained by
starting with AdS.

1
ds® = — (Muvdx"dx” + dz?)
2

and replacing n , with any solution to 4D general
relativity. We will use the Kasner solution:

ds® = —dt* + t*Prdxy + t°P2dxs + t*P2dxs

ZpizlzzpzZ
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t2

e t? (—dt2 + t*Prdx? + t2P2dxs + t*P3drs + d,z?)
22

Letting t = e, the boundary metric becomes an
anisotropic version of de Sitter space

ds® = —dr? + ) e 2Py

Our bulk solution has a dilation symmetry
z— Az, t—= M, oz — AP

which acts on each surface of constant t/z.



t/z large

t/z=1

/ z=0
boundary
at infinity

t/z small

AVAVAN

t = 0 singularity



Observable: two-point function

In a quantum field theory, the two point function of
a scalar field of mass m can be calculated from a

path integral
(B(2) D (")) = / Da(\)e ™ HE]

where L is the length of the curve. When mis large,
one can use a WKB approximation. Curves that
extremize the length are geodesics.



In holography:

The two point function of an operator in the CFT
with large dimension A can be calculated using

spacelike geodesics in the bulk with endpoints on
the boundary:

(W] O (2) O (2) [)) = e~ Lres(ma)A

where L., is the regulated length of the geodesic.

= 0 O O

X3 <€ ° ° ° > Xl
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Bulk geodesics effectively travel in 3D spacetime

1
ds® = —(—dt® + t*Pda® + dz?)
<

Using x as a parameter along the geodesic, t(x)
satisfies

t(x)t" () = p[2t'(z)* — t(x)™]

At turning point, dt/dx = 0, so for p < 0, geodesics
bend toward the singularity and for p > 0 they
bend away.



boundary
at infinity
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p<O

p>0

t = 0 singularity



Simple example 1: Flat space

In pure AdS, the geodesics stay on a constant time
surface. With UV cut-off z = €, their length is

2
L=2In (ﬂ> = 21In(Lpay) — 210,

€

We regulate this by dropping the last term. So
(O(20)O(=0)) = Lo

as expected for a CFT.



2: Isotropic de Sitter

Bulk is again pure AdS written in the form

B H?t? (—dt2 + dx;dxt + d,22>

2
ds 77272

2
With Ht = In(Ht), the boundary metric is

ds® = —dr? + e "7 dx;dx’

Geodesics are the same, but cut-off is now 6 = &/H
and Ly, = 2x,/H, so effect of H cancels out.

200 H
L=2In (%—) = 2In Lygy —21Ino

€



So in de Sitter space:
(O(20)O(—m0)) = L, ;2

just like flat space. It is
independent of the Hubble constant.

Note: If we change t, the UV cut-off
& = g/Ht corresponds to a time

independent proper length cut-off in
the dual CFT.



Main example: p=-1/4

1
Recall:  ds* = —(—dt* +t'/?da® + d2°)
Z

Geodesic equation can be solved analytically using
w = t1/2 3s the parameter:

X(w) = %\/c + w(8c* — 4dew + 3w?)
Z(w) = g e(1 = w)[(3¢ — 1)(w + 1) — w?)]]

c fixes the boundary separation:
(1) =0, so Ly, = 2 X(1)

1/2



Fixing (real) L,q,, there are 5 (complex) values for c.

Ly o
\ 5 Solid line: real c

\ : Dashed lines:
\ ; complex c

The geodesic turns around when X =0, i.e., w = -C.
For Re(c) > 0, geodesic hits the singularity at w =0,
but these don’t contribute.



Fixing (real) L,q,, there are 5 (complex) values for c.

N Solid line: real ¢
: ('}? Dashed lines:
N complex ¢

o s QQ Re(c)

The geodesic turns around when X =0, i.e., w = -C.
For Re(c) > 0, geodesic hits the singularity at w =0,
but these don’t contribute.



boundary
at infinity
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For Re c < 0, the regulated length is:

64
Licg=1n —Ec(l +¢)(2¢ — 1)°

For c close to -1, Ly, = 8 (1+c)Y/2is small and

Lo =2In Ly, justasin pure AdS.

As c->0, L, again diverges. This
corresponds to Ly, -> Ly o500 - The bulk

geodesics turn around close to the
singularity and approach a null geodesic
lying entirely on the boundary.




This predicts a pole in the correlator at the
horizon size.
This pole is a key signature of the bulk
singularity in the dual field theory.

Maximum curvature along geodesic gets large as
geodesic approaches the boundary.

This pole is weaker than the one at short distances:
< OO > ~(Lygy, = Lhorizon)™ Vs < OO >~ 1L 2

as required by QFT.



Common question: What about quantum or
stringy corrections to the geometry near the
singularity?

Answer: We are looking for a signature of the
classical singularity in the large N strongly coupled
CFT. After we find it, we can ask what happens at
finite N or small coupling by studying the CFT.



p=-1/4is typical of p< O

One can solve the geodesic equations for
general p < 0 and show that there always exist
bulk geodesics which get close to the
singularity and approach a null geodesic on
the boundary.

All of these examples have a pole in the
correlator at the horizon scale.



Final result for the p - -1/4 correlator:

Re[e ]
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The solutions we have examined lead us to
conjecture that for general p, the large distance
behavior is:

2A

(O(20)O(—20)) = Ly, "

The fall-off of the 2pt function depends directly
on the rate of expansion in that direction.



Suggestive reformulation of this result:

Our dilation symmetry implies that the general
equal time correlator: < O(-x,, t,) O(x,, t,) >
is a function of only one variable: § = t,/x,/*?
For small values of ¢, the correlator is:

<OO>~ ¢

This is different from the short distance behavior.

This is probably due to particle creation: We have
a CFT on a time dependent background.



Possible connection with inflation

Turning our model upside down, we have a CFT on
an expanding (anisotropic) de Sitter space similar to
standard models of inflation.

Modes are in their ground state at subhorizon scales
and are highly excited at superhorizon scales.

Whenever you have particle creation in de Sitter,
there seems to be a big crunch in the bulk.



If we compactify one spatial
direction and put antiperiodic
boundary conditions on the
fermions there is a purely stringy
resolution of the singularity.



The mass of a string wound aroun

d a circle of radius
R (with antiperiodic fermions) has two contributions:

2
M?* = R4 12
LS LS
usual zero point
tension energy

So if R< L, these wound strings
tachyonic. Tachyons should not
particles traveling faster than lig

pecome
oe thought of as

Nt.



Tachyons just indicate an instability.

In ordinary field theory, if

V(9) = —m?¢3

¢ = 0 is unstable and ¢ rolls down the potential.
One says that “tachyons condense”.



Winding string tachyon condensation

Consider a circle with radius R that shrinks below the
string scale in a small region:

It has been shown that the outcome of this instability
is that the circle smoothly pinches off, changing the
topology of space (Silverstein et al., 2005).

) C




If we compactify a direction with p > 0 in our bulk
solution we get a Lorentzian cone. With antiperiodic
boundary conditions for fermions, winding strings
can become tachyonic before the curvature
becomes large. The subsequent evolution is no
longer given by supergravity, but rather by the

physics of tachyon condensation. (McGreevy and
Silverstein, 2005)

<T>



Summary

. We have constructed a holographic dual of a
cosmological singularity which is a CFT on an
anisotropic de Sitter spacetime.

. In some directions the 2pt function has a pole at
the horizon scale which seems to be a unique
signature of the singularity.

. The asymptotic behavior of the 2pt function
depends on the expansion rate in that direction.

. With certain boundary conditions the singularity
is resolved by tachyon condensation.



To Do:

. Understand better the dual CFT state at weak

coupling. Is the pole removed?

. Calculate expectation values of Wilson loops
(extremal 2-surfaces)

. Calculate entanglement entropy (extremal 3-
surfaces)

. What is the sign of tachyon condensation in the
dual CFT?



