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Geometry of AdS,

Globally, AdS can be conformally rescaled to fit
inside a cylinder.
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Geometry of AdS,

Globally, AdS can be conformally rescaled to fit
inside a cylinder. Poincare coordinates cover
only one part of this cylinder:

AdSy:  ds® = H[—dt* + dr? + r?d¢* + dz?]

Global AdS j

< Poincare patch




The problem

Consider D = 4 Einstein-Maxwell with A < 0.

Fix the metric and vector potential on the
AdS boundary to be

ds® = —dt* + dr* + r?d¢*, A= p(r)dt

Find the zero temperature solutions. Simple

solutions known for pu =0 (AdS) and p = const
(planar RN AdS). We will demand p->0 as r -> oo,
(Related work by Blake, Donos, and Tong, 1412.2003.)



Gauge/gravity duality

String theory on spacetimes that asymptotically
approach anti-de Sitter (AdS) x compact space, is
equivalent to an ordinary gauge theory.

The asymptotic (small z) region is dual to UV physics
in the gauge theory, while large z (near the Poincare
horizon) is dual to IR physics.



Motivation

In applications of holography to condensed
matter, i represents the chemical potential.
Our gravity solution describes the effects of a
single charged defect at a quantum critical point.

Questions:

1) What is the induced charge density?

2) Is the IR behavior modified?

3) Are there universal quantities which are
independent of the shape of the impurity?



Scaling argument

Adding a chemical potential corresponds to
adding to the CFT action:
[ o utryo(r

charge density

If u(r) = a/rP asymptotically, then dimension of
aisl-p.So

3 > 1 isirrelevant <« Start with this
3 =1 is marginal

B3 <1isrelevant




Linear example

Start with pure AdS and p = 0:

ds? = 5 [—dt* + dr? + r?d¢? + dz?]

Solve Maxwell’s equation with (1) = (r2+22)3/2

a(z+¥)
2+ (2 +0)7]

Solutionis Ay (r, z) = ;



The induced charge density is found by expanding
the solutioninz: A, =p(r) - z p(r) + O(z?)

Expanding our linearized solution we find:

a(r?—207
p(r) — 47T€((7°2‘|‘€2)2/2

Note:

1) p>0forsmallr but p <0 forlarger. In fact, the
total charge vanishes!
2) p falls off like 1/r3

Claim: These properties hold for all u(r) -> a/r®
with B > 2 both for linearized and exact solutions.




p ~ 1/r3even when  falls off faster:

It p= dﬂ/dé — (rzjgf)wz

Then p=dp/dé and p~ “

A lrs

~ a
S0 P~ 4mh2r3

~

Q=0foralll = Q=0

Can continue to take more derivatives with
same result.



The (numerical) solutions

We are looking for static, axisymmetric Einstein-
Maxwell solutions. Have to solve coupled

nonlinear PDE’s for 6 functions of two variables.
Ansatz: A=A, dt and

ds® = —G1dt* + Go(dz + Gzdr)? + Gudr® + Gsdo?

Boundary conditions are: smooth extremal
horizon, asymptotically AdS (with flat boundary
metric), and A, = p(r) at infinity.

(Solutions found by J. Santos and B. Way)



We considered 4 different profiles for p(r)
(with B > 2)

125 (T) — 3/9
w1
a
K, (T) — 2 4
(7z +1)
.2
His (T) =ae 2
2
ar
2P (T) — A



15t Set of Results (for B > 2)

The solutions all have a standard Poincare
horizon (cf Hickling, Lucietti, and Wiseman, 1408.3417)

Charge density p ~ 1/r3(in all cases)
Total charge Q=0 (in all cases)
Solutions only exist fora<a,_,_,
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4 R as a function
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Simple argument forp ~ 1/r3

Suppose u = ad(T)

® has dimension 2 so a has dimension -1.
Linear response: p is proportional to a,
But p has dimension 2 so p ~ a/r3.



Simple argument for Q =0

Suppose we start with pu =0 and slowly increase
it: p=af(t)/rf. Current conservation implies

g al(t
D;j" = —0p ~ k%

So total charge satisfies

@: lim r%dgbjrw lim k@:()

dt 7 — 00 r— 00 r

Since Q = 0 initially, it stays zero.



What abouta>a__, ?

Solutions do exist if you allow for a static,
spherical, extremal BH hovering above the
Poincare horizon.

To explore this possibility, look for static orbits of

q = m test particles (cf Anninos et al 1309.0146).
Extremize

5 — / V=g Xa X — A,X%| dr
Static orbits correspond to local extrema of

V=v—gu— 4



The local minimum must occur along the axis of

rotational symmetry. We find: (V,,,=0ata=a.)
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Hovering black hole solutions have
been constructed numerically

7 = o0

horizon

infinity

Properties
Still have standard
Poincare horizon in IR
Near horizon geometry
is exactly RN AdS
Ag, ->0asa->a.and
grows monotonically as
amplitude increases
BH bigger than the AdS
radius have been found




Where does the flux go?

It can’t go to the Poincare
horizon or infinity. It must
leak out the sides.

=0 Q=0 in global
coordinates



Growth of BH with amplitude is universal!




The behavior near a. is

0.8

0.6

S04

0.2

0.0

This is similar to extreme RN AdS: S = m(p?-1)/3

100 1.05 1.10 1.15 1.20

linear: S=c(a—a.) +...

ala,

but the slope is different.



The special case: pu~ 1/r

Suppose p(r) = a/r everywhere. The boundary
condition A = p(r) dt is invariant under scaling
symmetry (r, t) -> A (r, t).

In fact, SO(2,1) x SO(2) subgroup of full SO(3,2)
conformal symmetry is preserved.

To make this manifest, rescale the boundary

metric: 2 o
—at
—dt2+dr2+r2d¢2:r2< i +d¢2>
/rl




First write AdS, with SO(2,1) x SO(2) symmetry:
ds?* = 5 [—dt* + dr? + r?d¢? + dz?]

Introduce polar coordinates for the r, z plane, with
§ =sin © and inverse radius n. Thenr =¢§/n and

1 dn?  de?
2 _ 2 142 2142
ds_(l—.SQ) —ndt —|—?—|‘1_€2—|—§d¢
ch 0
(\. §=1

22 = (1- &€%)/n® so the AdS,
Poincare horizon is the
same as the AdS, horizon.

AXxis
'\
1
o




Next consider the magnetically charged hyperbolic
black hole:

ds® = p* | —f(p)dt® +

dp’ 2. o, A
+n°dx” + —-
p*f(p) n?

where

flp)=1-1/p* =2M/p® + ¢*/p*, As=aq
Analytically continuet=i¢,x=it, g=ia.
Fix M so period of ¢ is 2rt. Then p.. . <p and
dn? dp?
ds® = p? | —n?dt* + + + do®|, A;=a
s A0 f(p)de ¢ = an

This is the exact bulk solution for p(r) = a/r.




What is the charge density?

The charge density vanishes over most of the
boundary. However there is a contribution from
the asymptotic region of AdS, In the original
Poincare coordinates, this is concentrated at r = 0.

0.6

The solution describes a
point charge. (Total
charge is now nonzero.)
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A new extremal horizon

The Poincare horizon of AdS, (n = 0) defines a new
extremal horizon, extending out to infinity.

Its area is infinite, but one can define a regulated
area by subtracting the area of the Poincare horizon
without the defect.



Entropy of the defect




More general marginal p(r)

We constructed solutions with

MM (T) — 1/2

Mo (7“) — a 5

_|_
(F+1)" P+
both with and without black holes. In all

cases, the horizon geometry agrees with the
point charge.



Scalar curvature of horizon geometry
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Red line is
analytic solution
from point
charge. Blue dots
are numerical
data for M1 with
a=.2



The charge density is now a smooth function, and
again falls off like 1/r3.

The total charge is determined by the coefficient
of the 1/r fall off of u. It agrees with the point
charge solution with the same fall-off.

This is required since the total charge on the IR
horizon must agree with the charge at infinity.



Discussion

What are the consequences of hovering black
holes in the dual theory?

There are a large number of approximately
degenerate states localized around the defect.
Analogy: QM in 2+1 dim

A signal sent toward the defect will be largely
unaffected if its energy is very high or low. But at
intermediate energies it will thermalize with the
degenerate states.



The universal growth of hovering black holes is
reminiscent of Choptuik scaling but:

1) We are considering static T = 0 ground states
not dynamical collapse.

2) Our universality extends to large BH not just
small ones.



We have focused on T = 0 solutions, but T >0
solutions with nonextremal hovering black holes
should exist as well.

There should exist a finite T phase transition in
which the topology of the horizon changes:

At high T, the horizon should be connected. As
you lower T, a bubble appears around r =0. At a
critical T_, the horizon should pinch off and below
T. there will be a hovering black hole.

(Santos, Way, GH, in progress)



Embedding diagram of the
horizon at T near T,

Form a “black
mushroom”




Another extension of this work:

Rather than a single defect, we could
consider an array of defects. As you
increase the amplitude, one expects to
form an array of hovering black holes.
(This might be related to many body
localization in the dual theory.)




Possible violation of cosmic
censorship in 4D?

Suppose we fix the radial profile of p(r) and slowly
increase the amplitude. Bulk solution can’t form
hovering black hole since there is no charged
matter.

At the critical amplitude, static solution becomes
singular. Can one get arbitrarily close to this
singular solution? (Santos, Way, GH, in progress)



Summary

If u(r) = a/r® asymptotically with B > 2,
p~1/r3 (for1<B<2,onehasp~u(r)/r).
Q=0 in both cases.

If B =1, the total charge is nonzero and there
is @ new extremal horizon.

In both cases, there are hovering black holes
for large enough u(r).

These black holes grow in a universal way
independent of the details of u(r).



