Measures and Eternal Inflation

Semi-classical picture of eternal inflation

Diverse regions w/ different properties.

2 questions:

1) How do we "map" this out?

2) How do we locate our universe and make predictions.

Making a Map

\[P_p(x) \]: prob. to find an object p w/ properties \(x \).

Different objects p specify different maps, yielding different info.
For example:

How is volume distributed?

How many bubbles of each type are there?

How /which vacua are accessed on a single worldline?

How many transitions of a given type are there?

$p = \text{unit volume}$ Linde, Garriga others....

$p = \text{bubbles}$ Garriga, Vilenkin, others....

$p = \text{segment of a worldline}$ Bousso

$p = \text{transitions}$ Aguirre, Bath Johnson

In semi-classical picture: all maps are good

Quantum: Are all maps created equally?

Does the global description break down?

Do we understand how initial conditions work when necessary?
Making Predictions

\[P_x (x) \propto p_p (x) \wedge p_{ix} (x) \]

\[\wedge p_{ix} (x) \] connects map (prior) to what a randomly chosen object \(x \) sees.

Now, not all maps are useful.

1) The objects \(p \) must be appropriate for making anthropic predictions.

2) May need to specify initial conditions or gauge (w/ justification for doing so...)

3) Lots of infinities - how are they regulated?

4) Do they provide enough information to answer questions of interest?
Info. about vacua alone is insufficient!

Cosmological observables are history-dependent, so need a measure over histories.

Example:

A→B yields many e-folds

C→B yields few e-folds

Define a measure that counts transitions of a given type - along a worldline or globally.

- Can sum over all transitions into each vacuum to recover vacuum counting.

This measure may be more closely related to $\wedge_{x,p}(X)$ than one that counts vacua:

Entropy production or galaxy formation may be history-dependent.
Predictions:

Cosmological Constant

Priors determined by transition rates + other high-scale properties of the potential.

\[\Rightarrow \text{No correlations systematically favoring particular } \Lambda. \]

Prior flat over anthropic window.

\((i f \text{ enough low-c.e. vacua...}) \)

of inflationary e-Folds

Transition-counting yields:

\[\frac{P(c\rightarrow B)}{P(A\rightarrow B)} = e^{S_{E} - S_{CB}} \]

\(\ll \text{ or } \gg \)

Strong correlations between # of e-Folds and instanton action.

Wide anthropic window \((N_e > 59-60) \)

\[\Rightarrow \text{ Prior may dominate predictions!} \]
Do we actually live in a universe undergoing eternal inflation?

Possible test - Bubbles certainly collided with ours. Can we see them?

Perhaps, if a number of criteria are met:

1) Compatibility - At least 1 collision type admits our cosmology in its future light cone.

- Maybe possible if colliding bubble has a larger \(\Lambda \)

\[\text{wall is expelled} \]
2) Probability - should be likely for us to observe collisions:

2 ways to see lots of collisions:

- go far from origin on const. density slice
 This is where most of the 3-volume is - we should expect to be here!

- wait a long time
 But, you only see a collision if $H_T < H_F \chi^{1/2}$
3) Observability - inflation should not dilute collision products away.

- Need a small # of eFolds (related to measure problem above)

What would the collisions look like?

Collisions can in principle affect discs of angular scale ψ

2-sphere surrounding observer portion of the wall in past LC the "Sky"

\[
\frac{dn}{d\psi \phi} \propto \Theta
\]

Bounded by values of H_I, H_F, \lambda unless H_F ≠ 0

Isotropic

Diverges like C^3 \psi

Anisotropic w/collisions in direction of wall

Late-time Collisions

Early-time Collisions