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The Question:

In a complicated landscape containing many dS (Λ > 0), AdS
(Λ < 0) and flat (Λ = 0) vacua, what is the measure associated to
each vacuum?

I Do you count the Number of or the Volume occupied by a
given vacuum?

I Is the measure time-slice (i.e. diffeomorphism) invariant?

I Is the measure independent of initial conditions?

Strategy: motivated by Holography and Complementarity,
construct a measure only from quantities visible to a single
time-like observer.



The Setup:

Dynamics on the landscape is complicated. Different vacua will
expand (or contract) at different rates, and can transition among
one another.

If the typical decay time of an inflating vacuum is long compared
to its Hubble time, this leads to eternal inflation:

I As the inflating vacuum expands, small bubbles of other vacua
are continually nucleated, ”populating” the landscape.

I At late times this leads to an infinite number of bubbles,
distributed over all length scales.

=⇒ an Inflationary Fractal.



The Measure:

Consider a time-like observer who ends up in a bubble of flat
space, called the reference bubble.

This bubble will collide with an infinite number of other bubbles of
all different types.

I So the landscape is observable. Our observer can look in his
past light cone and count the number of vacua colliding with
his own bubble.

I He will see the same fractal structure of bubbles distributed
over all scales – an imprint of the inflationary fractal on the
night sky.

In a certain approximation this measure reduces to a co-moving
measure of Vilenkin et al. But, as we will see, many of the details
differ.



The Inflationary Fractal
Consider an inflating false vacuum F that can tunnel into two flat
vacua A or B.
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The dimensionless decay rate is

εF→A ∼ H−4
F e−(SE (Instanton)−SE (dS))



Causal Structure
Both types of bubbles are continually nucleated, forming a fractal
structure on I+ (Guth & Weinberg):

Almost all geodesic observers end up in a flat A or B bubble.

Dim(inflating set) ∼ 3−
(

4π

3

)
ε +O(ε2)



A typical slice of co-moving volume:

Each flat bubble collides with an infinite number of other flat
bubbles, forming a cluster containing an infinite number of
connected flat bubbles.

For small ε, the bubbles do not percolate. There are an infinite
number of disconnected clusters, each of which contains an infinite
number of bubbles.



Global Measure I

There are an infinite number of bubbles. To define a measure, we
need to regulate this infinity.

If we count bubbles nucleated before a particular time tcut (i.e.
smaller than a particular proper volume Vcut) the answer depends
on the choice of time slice.

Instead, impose a cutoff on co-moving volume rather than proper
volume (Garriga, Schwartz-Perlov, Vilenkin & Winitzki).

This gives answers which are reparameterization invariant. This is
because the co-moving volume occupied by a bubble goes to a
constant on I+ rather than diverging.



Global Measure II

The co-moving volumes f = (fa, fi ) (a = 1, ...,NdS , i = 1, ...,Nflat)
obey linear rate equations

ḟ = M · f, f(t) ∼ f0 + se−qt + ....

where f0 is any zero eigenvector (f 0
a = 0) and s is the first

non-trivial eigenvector.

Since f0 is not unique, a co-moving volume weighted measure
depends on initial conditions.

However, the Number of vacua larger than given comoving volume

Ni (t) ∼
∑

a

H3
a εa→ie

(3−q)tsb + ...

is determined uniquely by the transition matrix M.



Single-Observer Measure

Consider only the information accessible to the timelike observer in
our reference bubble.

The reference observer can assemble statistics on all the bubbles in
his cluster. These statistics are (sometimes) representative of the
global fractal statistics.

The worldline time of the census taker provides a natural cutoff on
the number of bubbles.

This is a cutoff on co-moving size, rather than proper size. So this
measure is naturally related to the co-moving global measure.



Derivation I

In the thin wall approximation we can calculate this measure
explicitly, by developing rate equations on the boundary S2 of the
reference bubble:

These are identical to the comoving rate equations.



Derivation II

Actually, we need rate equations on the edge of a cluster, not just
on the sphere:

This gives deviations of O(ε2).



An Example

For potentials with multiple flat and dS vacua, such as
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the measure favors the progeny of long lived, small Λ vacua:

pA >> pB .



Thick Domain Walls

When the domain walls are not thin, the reference observer’s
statistics aren’t necessarily representative of the global statistics.

For example, if a domain wall between two vacua goes through a
region of moduli space where the potential is very flat
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then the domain wall will inflate.

An observer in one of these vacua will never see a vacuum of the
other type in his past light cone =⇒ final state dependence.



AdS Vacua

So far, we’ve ignored AdS (Λ < 0) vacua, which crunch. These
singularities may collide with our reference bubbles and destroy the
census taker.

When T = |Λ| AdS-crunch singularities are hidden behind horizons
(Freivogel, Horowitz and Shenker). They are no worse that the
spacelike singularities of a black hole.

So our census taker, in addition to seeing a distribution of flat
bubbles colliding with his own, will see a pattern of black spots on
the night sky – horizons hiding AdS singularities.

When T > |Λ| the domain walls accelerate away from the census
taker, and are unobservable.



dS Reference Bubble

What if the reference bubble A is de Sitter?

The observer can only make a finite number of observations:

I after a few e-foldings, collisions with other bubbles will be
causally inaccessible.

The observer counts vacua which are nucleated sufficiently soon
after the nucleation of the reference bubble:

ε−1
F→B << H−1

A .

If H−1
A is shorter than all decay times, he observes no vacua except

his own.

In this limit, our measure seems to reduce to the single observer
measure of Bousso.



Conclusions

I A measure based on the observables of a single reference
observer is diffeomorphism invariant and independent of initial
conditions.

I Roughly equivalent to a co-moving volume measure, but
details differ once interesting features of moduli potential are
accounted for.

I In particular, it appears to have some final state dependence.

I Can such measures can lead to phenomenologically viable
predictions?

I How should we fold in observer considerations?


