HST, super-BMS, Feynman Diagrams and Black Holes

Tom Banks (work with W.Fischler)

KITP Quantum Gravity, May 18, 2014

HST in Minkowski Space

- Multiple Quantum Systems Related by Equivalence of Density Matrices on Overlaps.

HST in Minkowski Space

- Multiple Quantum Systems Related by Equivalence of Density Matrices on Overlaps.
- Individual Trajectory Has Time Dependent Split $H_{\text {in }}(t)+H_{\text {out }}(t)$.

HST in Minkowski Space

- Multiple Quantum Systems Related by Equivalence of Density Matrices on Overlaps.
- Individual Trajectory Has Time Dependent Split $H_{\text {in }}(t)+H_{\text {out }}(t)$.
- Variables are fuzzification of super-BMS algebra on Null Infinity

HST in Minkowski Space

- Multiple Quantum Systems Related by Equivalence of Density Matrices on Overlaps.
- Individual Trajectory Has Time Dependent Split $H_{\text {in }}(t)+H_{\text {out }}(t)$.
- Variables are fuzzification of super-BMS algebra on Null Infinity
- Evolution Operator Maps Past BMS Onto Future BMS.

The Super BMS Algebra

$$
\begin{aligned}
- & {\left[Q_{\alpha}(P, m), \bar{Q}_{\beta}(Q, n)\right]_{+}=\gamma_{\alpha \beta}^{\mu} P_{\mu} \delta(P \cdot Q) Z_{m n} . P^{2}=Q^{2}=0, } \\
& \gamma_{\alpha \beta}^{\mu} P_{\mu} Q_{\beta}(P, n)=0 .
\end{aligned}
$$

The Super BMS Algebra

- $\left[Q_{\alpha}(P, m), \bar{Q}_{\beta}(Q, n)\right]_{+}=\gamma_{\alpha \beta}^{\mu} P_{\mu} \delta(P \cdot Q) Z_{m n} . P^{2}=Q^{2}=0$, $\gamma_{\alpha \beta}^{\mu} P_{\mu} Q_{\beta}(P, n)=0$.
- Scattering Representation

$$
\int Q_{\alpha} f^{\alpha}|\psi\rangle=0
$$

unless f vanishes outside finite number of spherical caps for $P>0$, and in annuli around those caps for $P=0$. Two different algebras for $\frac{P_{0}}{\left|P_{0}\right|}= \pm 1$.

The Super BMS Algebra

- $\left[Q_{\alpha}(P, m), \bar{Q}_{\beta}(Q, n)\right]_{+}=\gamma_{\alpha \beta}^{\mu} P_{\mu} \delta(P \cdot Q) Z_{m n} . P^{2}=Q^{2}=0$, $\gamma_{\alpha \beta}^{\mu} P_{\mu} Q_{\beta}(P, n)=0$.
- Scattering Representation

$$
\int Q_{\alpha} f^{\alpha}|\psi\rangle=0
$$

unless f vanishes outside finite number of spherical caps for $P>0$, and in annuli around those caps for $P=0$. Two different algebras for $\frac{P_{0}}{\left|P_{0}\right|}= \pm 1$.

- S-matrix maps them into each other $S Q^{-}=Q^{+} S$.

HST as Regularization of super-BMS

- Regularize conformal boundary by nested sequence of finite area diamonds.

HST as Regularization of super-BMS

- Regularize conformal boundary by nested sequence of finite area diamonds.
- Dirac eigenvalue cutoff n on holoscreen gives sphere of radius $n L_{p}$. UV/IR correspondence.

HST as Regularization of super-BMS

- Regularize conformal boundary by nested sequence of finite area diamonds.
- Dirac eigenvalue cutoff n on holoscreen gives sphere of radius $n L_{p}$. UV/IR correspondence.
- In dimensions, holoscreen spinor bundle with eigenvalue cutoff $n: \psi_{a}^{\left(k_{1} \ldots k_{d-2}\right)}$.

HST as Regularization of super-BMS

- Regularize conformal boundary by nested sequence of finite area diamonds.
- Dirac eigenvalue cutoff n on holoscreen gives sphere of radius $n L_{p}$. UV/IR correspondence.
- In dimensions, holoscreen spinor bundle with eigenvalue cutoff $n: \psi_{a}^{\left(k_{1} \ldots k_{d-2}\right)}$.
- $M_{k}^{m} \equiv \psi_{k l}^{a}{ }^{\dagger} \psi_{a}^{m l}$, I a d-3 anti-symmetric tensor index. When acting on scattering states: for $n=N \rightarrow \infty, M$ has blocks of size $1 \ll K_{i} \ll N$, plus one large block of size $N-\sum K_{i}$.

Willy Will Show, for $d=4$

- For fairly general Hamiltonians of the form
$H_{i n}(n)=\sum P_{0}^{i}+\frac{1}{n^{2(d-3)}} \operatorname{Tr} P(M)$, with P a polynomial of degree n^{d-4}.

Willy Will Show, for $d=4$

- For fairly general Hamiltonians of the form $H_{i n}(n)=\sum P_{0}^{i}+\frac{1}{n^{2(d-3)}} \operatorname{Tr} P(M)$, with P a polynomial of degree n^{d-4}.
- $P_{0}=\sum P_{0}^{i} \propto \sum K_{i}^{d-3}$ asymptotically conserved.

Willy Will Show, for $d=4$

- For fairly general Hamiltonians of the form $H_{i n}(n)=\sum P_{0}^{i}+\frac{1}{n^{2(d-3)}} \operatorname{Tr} P(M)$, with P a polynomial of degree n^{d-4}
- $P_{0}=\sum P_{0}^{i} \propto \sum K_{i}^{d-3}$ asymptotically conserved.
- A unitary S matrix for jets exists.

Willy Will Show, for $d=4$

- For fairly general Hamiltonians of the form $H_{i n}(n)=\sum P_{0}^{i}+\frac{1}{n^{2(d-3)}} \operatorname{Tr} P(M)$, with P a polynomial of degree n^{d-4}
- $P_{0}=\sum P_{0}^{i} \propto \sum K_{i}^{d-3}$ asymptotically conserved.
- A unitary S matrix for jets exists.
- Large distance eikonal scattering has scaling with energy and impact parameter of "Newton's Law".

Willy Will Show, for $d=4$

- For fairly general Hamiltonians of the form $H_{i n}(n)=\sum P_{0}^{i}+\frac{1}{n^{2(d-3)}} \operatorname{Tr} P(M)$, with P a polynomial of degree n^{d-4}
- $P_{0}=\sum P_{0}^{i} \propto \sum K_{i}^{d-3}$ asymptotically conserved.
- A unitary S matrix for jets exists.
- Large distance eikonal scattering has scaling with energy and impact parameter of "Newton's Law".
- Many amplitudes can be represented as space-time diagrams with localized vertices, as a consequence of consistency conditions for distant trajectories.

Black Holes

- Amplitudes in which all DOF in diamond with $n \gg 1$ become thermalized don't have diagramatic representation. Occurs with probability ~ 1 when $E \sim n^{d-3}$.

Black Holes

- Amplitudes in which all DOF in diamond with $n \gg 1$ become thermalized don't have diagramatic representation. Occurs with probability ~ 1 when $E \sim n^{d-3}$.
- Probability of emitting jets from such states is thermal with $T \sim n^{-1}$, so they behave like black holes.

The Gravitational S-matrix

- All of these models behave qualitatively like a model of QG, but most are not Lorentz invariant as K_{i} go to infinity. Enough parameters, plausibly, to tune for Lorentz invariance.

The Gravitational S-matrix

- All of these models behave qualitatively like a model of QG, but most are not Lorentz invariant as K_{i} go to infinity. Enough parameters, plausibly, to tune for Lorentz invariance.
- Particle interactions arise from mixing up of particles and horizon in small causal diamonds, and this is what leads to approximate locality and power counting of particle interactions - NOT integrating out "heavy" DOF.

The Gravitational S-matrix

- All of these models behave qualitatively like a model of QG, but most are not Lorentz invariant as K_{i} go to infinity. Enough parameters, plausibly, to tune for Lorentz invariance.
- Particle interactions arise from mixing up of particles and horizon in small causal diamonds, and this is what leads to approximate locality and power counting of particle interactions - NOT integrating out "heavy" DOF.
- Time dependence of Hamiltonian is crucial to the explanation of locality as well as the asymptotic decoupling of particles from horizon.

The Gravitational S-matrix

- All of these models behave qualitatively like a model of QG, but most are not Lorentz invariant as K_{i} go to infinity. Enough parameters, plausibly, to tune for Lorentz invariance.
- Particle interactions arise from mixing up of particles and horizon in small causal diamonds, and this is what leads to approximate locality and power counting of particle interactions - NOT integrating out "heavy" DOF.
- Time dependence of Hamiltonian is crucial to the explanation of locality as well as the asymptotic decoupling of particles from horizon.
- QUEFT is a good approximation only in regimes where particles are decoupled from the horizon.

If This is All True

- Profound Consequences for Cosmology of both the early and late universe, as well as the breaking of SUSY in particle physics, and the black hole information problem.

If This is All True

- Profound Consequences for Cosmology of both the early and late universe, as well as the breaking of SUSY in particle physics, and the black hole information problem.
- More than a decade of work shows that Willy and I can't do this on our own.

If This is All True

- Profound Consequences for Cosmology of both the early and late universe, as well as the breaking of SUSY in particle physics, and the black hole information problem.
- More than a decade of work shows that Willy and I can't do this on our own.
- Please Join In.

