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HST in Minkowski Space

I Multiple Quantum Systems Related by Equivalence of Density
Matrices on Overlaps.

I Individual Trajectory Has Time Dependent Split
Hin(t) + Hout(t).

I Variables are fuzzification of super-BMS algebra on Null
Infinity

I Evolution Operator Maps Past BMS Onto Future BMS.
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The Super BMS Algebra

I [Qα(P,m), Q̄β(Q, n)]+ = γµαβPµδ(P · Q)Zmn. P
2 = Q2 = 0,

γµαβPµQβ(P, n) = 0.

I Scattering Representation∫
Qαf

α|ψ〉 = 0,

unless f vanishes outside finite number of spherical caps for
P > 0, and in annuli around those caps for P = 0. Two
different algebras for P0

|P0| = ±1.

I S-matrix maps them into each other SQ− = Q+S .
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HST as Regularization of super-BMS

I Regularize conformal boundary by nested sequence of finite
area diamonds.

I Dirac eigenvalue cutoff n on holoscreen gives sphere of radius
nLP . UV/IR correspondence.

I In d dimensions, holoscreen spinor bundle with eigenvalue

cutoff n : ψ
(k1...kd−2)
a .

I Mm
k ≡ ψ

a †
kI ψ

mI
a , I a d − 3 anti-symmetric tensor index. When

acting on scattering states: for n = N →∞, M has blocks of
size 1� Ki � N, plus one large block of size N −

∑
Ki .
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Willy Will Show, for d = 4

I For fairly general Hamiltonians of the form
Hin(n) =

∑
P i
0 + 1

n2(d−3)Tr P(M), with P a polynomial of

degree nd−4 .

I P0 =
∑

P i
0 ∝

∑
Kd−3
i asymptotically conserved.

I A unitary S matrix for jets exists.

I Large distance eikonal scattering has scaling with energy and
impact parameter of ”Newton’s Law”.

I Many amplitudes can be represented as space-time diagrams
with localized vertices, as a consequence of consistency
conditions for distant trajectories.
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Black Holes

I Amplitudes in which all DOF in diamond with n� 1 become
thermalized don’t have diagramatic representation. Occurs
with probability ∼ 1 when E ∼ nd−3.

I Probability of emitting jets from such states is thermal with
T ∼ n−1, so they behave like black holes.
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The Gravitational S-matrix

I All of these models behave qualitatively like a model of QG,
but most are not Lorentz invariant as Ki go to infinity.
Enough parameters, plausibly, to tune for Lorentz invariance.

I Particle interactions arise from mixing up of particles and
horizon in small causal diamonds, and this is what leads to
approximate locality and power counting of particle
interactions - NOT integrating out ”heavy” DOF.

I Time dependence of Hamiltonian is crucial to the explanation
of locality as well as the asymptotic decoupling of particles
from horizon.

I QUEFT is a good approximation only in regimes where
particles are decoupled from the horizon.
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If This is All True

I Profound Consequences for Cosmology of both the early and
late universe, as well as the breaking of SUSY in particle
physics, and the black hole information problem.

I More than a decade of work shows that Willy and I can’t do
this on our own.

I Please Join In.
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