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Covariant Entropy Bound

In an arbitrary spacetime, choose an arbitrary two-
dimensional surface B of area A. Pick any light-sheet of B.
Then S ≤ A/4G~, where S is the entropy on the light-sheet.

RB 1999
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Out of the 4 orthogonal directions, usually at least 2 will initially
be nonexpanding.



Generalized Covariant Entropy Bound
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If the light-sheet is terminated at finite cross-sectional area
A′, then the covariant bound can be strengthened:

S ≤ A− A′

4G~

Flanagan, Marolf & Wald, 1999
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How is the entropy defined?

The above definition is not fully satisfactory:
I Quantum systems are not sharply localized. Under what

conditions can we consider a matter system to “fit” on L?

I The vacuum, restricted to L, contributes a (divergent)
entropy. What is the justification for ignoring this piece?
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How is the entropy defined?

I In cosmology and for large well-separated systems, these
subtleties do not present a serious obstruction.

I However, the GCEB is nontrivial even in the perturbative
regime, where matter has small backreaction on the
geometry. For example, a single wavepacket has
S ∼ O(1), ∆A ∼ O(1).

I Fortunately, in the G~→ 0 limit, a sharp definition of S is
possible.

I In the context of spatial regions, this definition was
introduced by Casini (2008), building on work of Marolf,
Minic, and Ross (2003).
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Casini Entropy

Consider two field theory states in Minkowski space: the
vacuum, |0〉, and some excited state ρglobal. In the absence of
gravity, G = 0, the geometry is identical in all matter states, and
one can restrict both states to a subregion V :

ρ ≡ tr−V ρglobal

ρ0 ≡ tr−V |0〉〈0|

Due to vacuum entanglement entropy, the van Neumann
entropy of each density operator diverges like A/ε2, where A is
the boundary area of V , and ε is a cutoff. However, the
difference is finite as ε→ 0:

∆S ≡ S(ρ)− S(ρ0) .

Marolf, Minic & Ross 2003, Casini 2008



Properties of the Casini Entropy

I For excitations that are well localized to the interior of V ,
one has ∆S ≈ S(ρglobal)

I For an incoherent superposition of n light species, then ∆S
does not diverge logarithmically with n, even though
S(ρglobal) does.
→ No Species Problem

I The observer-dependence is physically appropriate: an
observer with access only to V is unable to discriminate an
arbitrary number of species due to thermal effects.
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Assumptions

I will present a perturbative proof of the GCEB for free fields.
RB, Casini, Fisher, Maldacena 2011

The proof builds on work of H. Casini (2008) and of A. Wall
(2010, 2011)

Despite the limited regime, the proof is interesting for the
following reasons:

I It does not require any explicit assumptions of a relation
between entropy and energy, nor classical energy
conditions on matter such as the NEC.

I It relies sensitively on the nonexpansion condition, which
must be enforced even if the NEC is violated.



Relative Entropy

Given any two states, the (asymmetric!) relative entropy

S(ρ|ρ0) = −tr ρ log ρ0 − S(ρ)

satisfies positivity and monotonicity. That is, under further
restrictions of ρ and ρ0 to a subalgebra (e.g., a subset of V ), the
relative entropy is nonincreasing.

Lindblad 1975



Modular Hamiltonian

Definition: Let ρ0 be the vacuum state, restricted to some
region V . Then the modular Hamiltonian, K , is defined up to a
constant by

ρ0 ≡
e−K

tr e−K .

The modular energy is defined as

∆K ≡ tr Kρ− tr Kρ0 (1)



A Central Result

Positivity of the relative entropy implies immediately that

∆S ≤ ∆K .

This is useful because ∆K can be related to
I the area increase of a causal horizon Wall 2011
I the perturbative area difference of an “optimized”

light-sheet RB, Casini, Fisher, Maldacena 2011



GSL for Rindler Space

The modular Hamiltonian on the Rindler horizon
(x+ = x + t > 0) is given by

K =
2π
~

∫
d2x⊥

∫ ∞
0

dx+ x+ T++ ,

where T++ = Tabkakb and ka is the affine tangent vector to the
horizon. Bisognano, Wichmann 1975



GSL for Rindler Space

By integrating the Raychaudhuri equation

− dθ
dx+

=
1
2
θ2 + σabσ

ab + 8πGTabkakb

once, at leading order in G one finds the expansion along the
Rindler horizon:

θ(x+) = 8πG
∫ ∞

x+

T++dx̂+



GSL for Rindler Space

Integrating a second time and using

A(x+) = A(∞) exp
∫ ∞

x+

dx̂+θ(x̂+)

one finds that the Rindler horizon grows in area from x+ = 0 to
x+ =∞ by

∆A = 8πG
∫

d2x⊥
∫ ∞

0
dx+ x+ T++ .



GSL for Rindler Space

Hence one finds

∆S ≤ ∆K =
2π
~

∆A
8πG

=
∆A
4G~

and thus, the Generalized Second Law of Thermodynamics for
the Rindler horizon. Wall 2010

This and all subsequent results obtain at leading order in G
(weak backreaction).
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GSL for Rindler Space

I This result applies to the process where all of the entropy
in the wedge passes through the Rindler horizon.

I By exploiting monotonicity, it can be generalized to the
GSL for a sequence of horizon slices (nested Rindler
wedges). Wall 2010



GSL for Causal Horizons

I By quantizing directly on the light-front, one can further
generalize this to arbitrary horizon slices, of arbitrary
causal horizons (black hole, de Sitter) Wall 2011

I This exploits the “Ultralocality” of the operator algebra on
the null hypersurface: A(H) =

∏
i A(Hi) .

I Justified so far only for free fields. (Assume for now.)



Finite regions

I In finite volumes, the modular Hamiltonian K is generally
nonlocal.

I However, again one finds that null hypersurfaces have
special properties: K simplifies dramatically.

I In addition to ultralocality, a special conformal symmetry
along each generator was noted (though not needed) by
Wall (2011).

I We may obtain the modular Hamiltonian for a finite
light-sheet by application of an inversion, x+ → 1/x+, to
the Rindler Hamiltonian on x+ ∈ (1,∞).



Finite regions

We obtain

K =
2π
~

∫
d2x⊥

∫ 1

0
dx+ x+(1− x+) T++ .

If T++ ≥ 0 (null energy condition holds), then since
(1− x+) < 1 we would have ∆K ≤ ∆A/4G~, and the GCEB
would follow from positivity of the relative entropy.

But it is easy to find quantum states for which T++ < 0. In fact,
explicit examples can be found for which ∆S > ∆A/4G~, if the
initial expansion vanishes (θ0 = 0).
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Initial expansion and negative energy
I If the null energy condition holds, initially vanishing

expansion is the “toughest” choice for testing the GCEB.
I However, if the NEC is violated, then θ0 = 0 does not

guarantee that the nonexpansion condition holds
everywhere.

I To have a valid light-sheet, we must require that

0 ≥ θ(x+) = θ0 + 8πG
∫ 1

x+

dx̂+ T++(x̂+) ,

holds for all x+ ∈ [0,1].
I This can be accomplished in any state.
I But the light-sheet may have to contract initially:

θ0 ∼ O(G~) < 0 .



Nonzero Initial Expansion Enhances Area Loss

The area loss from x+ = 0 to x+ = 1 is now given by

∆A
A

= −
∫ 1

0
dx+θ(x+) = −θ0 + 8πG

∫ 1

0
dx+(1− x+)T++ .

at leading order in G.

One can eliminate θ0 using the nonexpansion condition: let
f (x+) be any positive function, such that F (1) = 1, where
F (x+) =

∫ x+

0 dx̂+f (x̂+). By nonexpansion, we have
0 ≥

∫ 1
0 fθdx+, and thus

θ0 ≤ 8πG
∫

dx+[1− F (x+)]T++ .
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Proof of the GCEB

With the specific choice f (x+) = 2− 2x+ we find that the area
difference is bounded from below by the modular Hamiltonian:

∆A
4G~

≥ A× 2π
~

∫ 1

0
dx+ x+(1− x+) T++ = ∆K .

The positivity of the relative entropy implies ∆S ≤ ∆K , so the
generalized covariant bound follows.



Comments

I Demanding nonexpansion on entire light-sheet is crucial.
(As opposed to, e.g., demanding only initial nonexpansion
plus some averaged version of the NEC.)

I No classical energy conditions or assumptions restricting
entropy in terms of energy density were needed.

I Existence of vacuum on each null generator (which goes
into the definition of the modular Hamiltonian) apparently
captures all the necessary restrictions.
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Generalizations

I Monotonicity can be shown: As the size of the null interval
is increased, ∆S −∆A/4G~ is nondecreasing.

I The same result follows from any local and concave
modular Hamiltonian with the correct Rindler limit.



Interacting Theories

I At linear order in the departure from the vacuum, one has
∆S = ∆K .

I This fixes the modular Hamiltonian if one can compute ∆S.
I For theories with a bulk dual, one can compute the

modular Hamiltonian by vacuum tomography
Blanco, Casini, Hung, Myers 2013

I In the null limit, one finds that the modular Hamiltonian
again takes a local form, and that it is concave.

I However we also seem to find that ∆S = ∆K for all states.
I Stay tuned.
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