
Errata for Instructor’s Solutions Manual for
Gravity, An Introduction to Einstein’s General
Relativity Versions 1.0 (first printing) and 1.1

Updated 11/20/2006

(Thanks to Ted Jacobson, John Friedman, Don Page, and Mario Serna who pro-
vided most of these.)

Problem 2.2:
Replace Solution with the following:

Gauss’ triangle was located near the surface of the Earth. The relevant radius in
the expression (2.1) is the distance of the triangle from thecenter of attraction. Eq
(2.1) gives the approximate size of the effect of the Earth whereR⊕ = 6378 km is
the radius of the Earth. However for Sun the relevant radius is the distance of the
triangle from the center of the Sun, which approximately thesize of the Earth’s
orbit r⊕ ≈ 1.4×108 km. Then, from (2.1) the ratio of the effect of the Sun to that
for the Earth can be written

(ratio)SuntoEarth∼

(

GM⊙

c2

)(

c2

GM⊕

)(

R⊕

r⊕

)3

.

For the EarthGM⊕/c2 = .443 cm and for the SunGM⊙/c2 = 1.48 km. For the
ratio we get

(ratio)SuntoEarth∼ 10−19 (!) .

The effect of the Sun is therefore much smaller than the effect of the Earth.

Problem 2.9:
In the 5th printing and later the solution has to be revised inan obvious way to
reflect the minor changes in the data in the problem.

Problem 4.4:
In the last equation it should be−3.4 instead of+3.4.

Problem 4.14:
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The solution given is when~V and~v are colinear. The general case is not too
difficult and will appear in the next version of this manual.

Problem 5.17:
In the fourth printing and onward the problem is replaced with the following
clearer statement and with the corresponding changes in notation in the solution:

[C] (Relativistic Beaming) A body emits photons of frequencyω∗ at equal rates in
all directions in its rest frame. A detector at rest in this frame a large distance away
(compared to the size of the body) receives photons at a rate per unit solid angle
(dN/dtdΩ)∗ [photons/(sec·sr)] that is independent of direction. In an inertial
frame(t ′,x′,y′,z′) in which an observer is at rest the body is moving with speedV
along thex′−axis.

1. Derive (5.75) relating a photon’s direction of propagation in the rest frame
to the direction of propagation in the observer’s frame.

2. Find the rate at with photons are received per unit solid angle dN/dt ′dΩ′ a
large distance away in the observer’s frame as a function of angleα′ from
thex′−axis. [Hint: Remember that the time interval between the reception
of two photons by a stationary observer is not the same as the time interval
between their emission if the source is moving.]

3. Find the luminosity per unit solid angledL′/dΩ′ [erg/(sec·sr)] a large dis-
tance away as a function of the angleα′ in the observer’s frame.

4. Discuss the beaming of number and energy in the observer’sframe as the
velocity of the source approaches the velocity of light.

Solution

1. Suppose a photon is emitted in the rest frame making an angle α with the
x-axis. The components of its four momentump in this frame are:

p = (p, pcosα, psinα,0) , p = ~ω∗ .
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In the observer’s frame the components ofp are:

pt ′ = γ(p+V pcosα) , (1)

px′ = γ(pcosα+V p) , (2)

py′ = psinα . (3)

The angleα′ made by the photon with thex′ axis is then

cosα′ =
px′

pt ′
=

cosα+V
1+V cosα

.

The inverse of this obtained by replacingV by −V is also useful:

cosα =
cosα′

−V
1−Vcosα′

. (4)

2. The number of photons emitted in in a timedt and solid angledΩ in the rest
frame must be the same as the number emitted in a corresponding interval
dt ′e and solid angledΩ′ in the frame in which the source is moving. We
use the notationdt ′e for the time interval between photons atemission to
reservedt ′ for the time interval between photons when they arereceived.
2πsinα′dα′dt ′(dN/dt ′edΩ′) is the number of photons emitted at angleα′

into an annulus of angular widthdα′ in time dt ′e. This must be the same
as the number emitted in the corresponding annulus in the rest frame —
2πsinαdαdt(dN/dtdΩ) in the corresponding timedt. The time intervalsdt
anddt ′e are connected by time dilation —dt ′e = γdt The connection between
angles (4) allows us to compute:

d(cosα)

d(cosα′)
=

1
γ2(1−V cosα′)2

The result is:
dN

dt ′edΩ′
=

(

dN
dtdΩ

)

1
[

γ
(

1−V cosα′
)]2 (5)

Now we connect the time interval for emissiondt ′e with the time interval
for receptiondt ′ — both in the same frame where the source is moving.
Suppose one photon is emitted at an angleα′ to the motion and travels
a distanced to reception. When the second photon is emitted a timedt ′e
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later the source has travelled a distanceVdt ′e in the direction of motion.
A little geometry shows that the distance this photon travels is shorter by
(Vdt ′e)cosα′ whend is large. Thus

dt ′ = dt ′e(1−V cosα′) (6)

Combining this result with (5) we find finally:

dN
dt ′dΩ′

=

(

dN
dtdΩ

)

1
[

γ
(

1−V cosα′
)]3 (7)

3. The energy of the photons emitted at angleα′ is, from the inverse of (5.73)
or from (1):

~ω∗ = E ′γ
(

1−V cosα′
)

Solving forE ′ and using the result of part (b) the luminosity per unit solid
angle is

dL′

dΩ′
(α′) = E ′(α′)

dN
dt ′dΩ′

(α′) =
(dL/dΩ)

[

γ
(

1−V cosα′
)]4

4. The ratio of luninosity in the forward to backward direction is

(dL′/dΩ′)(0)

(dL′/dΩ′)(π)
=

(

1+V
1−V

)4

(8)

which asV → 1 becomes very large, meaning most of the radiation is
beamed forward.

For a solution to the version of this problem in printings 1-3replace(dN/dtdΩ)∗
with f∗, dN/dt ′dΩ′ by f ′(α′), anddL′/dΩ′ by L′(α′).

Further comments: An easy way to remember this result is thatthe combination:

ω−3 dN
dtdΩ

is the same in both frames — an invariant.
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AsV ∼ 1, 1/(1−V ) ∼ 2γ2 and the forward/backward ratio (8) becomes∼ 256γ8.
Sinceγ ∼ 10 for some matter in active galactic nuclei jets the forward/backward
difference in luminosity can be very large.

Solution:

Solution to Problem 6.9:
In (2) change “5.2” to “5.3” and in (3) change “4.5” to “4.6”.

Solution to Problem 6.10:In the 5th printing the problem was revised so that
the radioactive species had anexponential decay time of 6.5 billion years like
238U implying obvious changes in the solution. In at the end of theproblem the
exponential decay time is erronously labeled the half-lifealthough the calculations
are o.k.

Solution to Problem 6.12:In the 5th printing this problem was modified slightly.
Replace the solution with the following:

There is one great circle through any two points on a sphere but it definestwo
curves of extremal distance connecting the two points. The shorter segment of the
great circle is the path of shortest distance between the twopoints. But the longer
segment around the other way is also an extremal curve. However, it provides
neither the longest or shortest distance when compared withother nearby paths.
To see that there is ashorter nearby path imagine the two points are on the equator
and slide the long segment up a bit toward the north pole (leftfigure below). It
gets shorter. To see that there is alonger nearby path, imagine a path which
wiggles a little up above the long segment and below it many many times (right
figure below). That will be a longer path. There is no longest path connecting the
two points. Imagine for example taking paths that start at one endpoint and circle
the globe 10 times, 1000 times, 10,000 times, etc before connecting to the other
endpoint. Those are a sequence of increasingly longer paths, and there is no limit
to how long they can be.
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Solution to Problem 6.14:
Replace with following which has more comments than the earlier solution:

To order 1/c2 accuracy the proper time along any of these curves is given by(6.25)
so

∆τ = P−
1
c2

Z P

0
dt

[

~V 2

2
−Φ

]

in an inertial frame in which the center of the Earth is approximately at rest.

1. For a circular orbit of periodP, Φ = −GM/R whereR is related toP by
Kepler’s lawP2 = (4π2/GM)R3. Further,V 2/R = GM/R2. The net result
for the above integral is

∆τ = P

(

1−
3
2

GM
Rc2

)

which can be entirely expressed in terms ofP andM using Kepler’s law.

2. For a stationary observer~V = 0

∆τ = P

(

1−
GM
Rc2

)

which is a longer proper time than a). Therefore, the circular orbit, although
an extremal curve, is not a curve oflongest proper time.
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3. There is zero elapsed proper time. A circular orbit is not acurve of shortest
proper time either.

There are many other extremal world lines connecting the twopoints. For in-
stance, there is the world line followed when a ball is thrownradially outwards
with the right velocity so that it falls back in timeP. More generally the ellipti-
cal orbits with the same periodP that pass through the radiusR will be alternate
extremal curves.

Comment: By calculating the second variation of the proper time the circular
orbit can be shown to have the longest proper time with respect to nearby world
lines connectingA andB but part (b) shows that the proper time is not the longest
when compared toany world line connecting the two points. The elliptical orbits
mentioned above with the same period and semi-major axes close toR will be
nearby the circular orbit. They are therefore extremal world lines connectingA
andB with shorter proper time. Conversely for any one of these elliptical orbits,
the circular one is a nearby world line withlonger proper time. There is always
nearby world line ofshorter proper time made up of small lightlike segments. The
elliptical orbits are therefore examples of saddle points,extremal but neither the
longest or shortest when compared with nearby world lines. The problem can be
extended along these lines.

Solution to Problem 7.5:
Change 1/(2x) to 2/x.

Solution to Problem 8.1:
Strictly speaking the caseA = 0 should be considered separately. It is a vertical
straight line.

Solution to Problem 9.11:
In the denominator the factor 2ℓ2(rmax−6M) should beℓ2(6M− rmax).

Solution to Problem 9.12:Replace (7.48) with (9.46).

Solution to Problem 9.12:
Delete version two. Its incorrect. In version one replace the equation and text
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after “Solving (5) and (6)” with:

V =

(

2M
R

1
1−R2/b2

)1/2

.

This is coincidently the same as the formula forV in Newtonian theory.

You can also derive the same relation forV by starting, not from (2), but from the
relation that at the turning pointV = uφ̂/ut̂ in the orthonormal basis associated
with the stationary observer.

Problem and Solution to 9.13:Replaceℓ = 4.6 with ℓ/M = 4.6. (Correct units.)

Problem and Solution to 9.21:The reference to “latitude” can confuse. Replace
with the following”

[E] Suppose a neutron star were luminous so that features on its surface could
be viewed with a telescope. The gravitational bending of light means that, not
only could the hemisphere facing us be seen, but also a part ofthe far hemisphere.
Explain why andestimate the angle measured from the line of sight on the far
side above which the surface could be seen. This would beπ/2 if there were no
bending, but less than that because of the bending. A typicalneutron star has a
mass of∼ M⊙ and a radius of∼ 10 km.

Solution:
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λ
λ

λ

δφ

RLine of
sight

The above figure shows the geometry relevant to the problem. The telescope
and observer are off to the far left along the line of sight. The solid line is the
trajectory of the light ray that leaves the surface almost tangent to it, but reaches
the observer because of light bending. The observer can see features on the part
of the surface surface bounding the unshaded part of the figure, and cannot see
features on the the part of the surface bounding the shaded part. The angleλ
defined in the problem, and dividing the seen from unseen parts, is shown together
with its connection to the deflection angleδφdef. For a neutron starM⊙/R ∼

(1.5km)/(10km) = .15. This is small enough that a reasonable estimate for the
angleλ can be obtained from (9.83) for the deflection angle and the geometry of
the above figure. Note that by symmetry light rays from the smallest λ visible on
the far side will be ones moving at constant azimuthal angle with respect to the
line of sight. Evidently 2λ + δφdef = π so λ = (π− δφdef)/2 = π/2− 2M/R ≈

1.3 radians≈ 73◦.

For a further problem try and figure out what such an image would look like.

Solution to Problem 11.4:Delete a factor of 2 from the final result.

Solution to Problem 12.4:
On p. 158 in two the two equations specifyingdt̃/dv the left hand sides should be
dt̃/dr not dt̃/dv. The text beginning “This information...” and the figure canbe
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replaced by the following improved versions

This information on slopes is enough to give the following(t̃,r) spacetime dia-
gram. Three radial light rays and some light cones are sketched qualitatively. The
size of the cones is abitrary. One light ray is atr = M, another escaping to infinity
is atr > M, and one confined inside the horizon is atr < M.

rM

t
~

Solution to Problem 12.8:Improved text and corrected figure:

V

U

r=0

observer

r=2M

An observer who falls into the black hole can in principle receive information
from any point in the shaded region between crossing the horizon atr = 2M and
destruction atr = 0. This is the region of points which can be connected to the
world line of the observer betweenr = 2M andr = 0 by null or timelike world
lines. (Not necessarily radial ones.) This includes information about events out-
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sider = 2M but not all of the region outsider = 2M.

Solution to Problem 12.13:Improved figure:

h
e
a
d

r

fe
e
t

2M

t
~

Replace the solution to (a) with the following, its a bit clearer.

The figure above shows an Eddington-Finkelstein diagram with schematic world
lines of the observer’s head and feet. At a givent̃ her feet are at a smaller radius
than her head because she is falling in feet first. Radial raysemitted originating at
her feet are shown. (These are segments of light rays illustrated in Figure 12.2.)

There is no instant when she is not receiving a light ray from her feet. She sees
them always. When her head crosses the horizon she sees her feet at the same
radius, because the horizon is generated by light rays.

When her head hits the singularity she still sees light from her feet that was emitted
earlier but is falling into the singularity as well. But, shenever sees her feet hit the
singularity because her head and feet meet the singularity at spacelike separated
points. When close to the singularity light rays from her feet fall into the singu-
larity before they intersect her world line, as the figure shows. (Some students
interpret this question to ask if she sees her feetwhen they hit the singularity. But
there is no invariant meaning to “when”. For some it is made clearer in a Kruskal
diagram.)
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Solution to Problem 12.14:In the second line of the expression forτ the sign
following e2 should be a+.

Solution to Problem 12.19:Improved figure:

star

shell

light ray

r

r = 2M

escaping
h

o
r
iz

o
n

r
 <

 2
M

Solution to Problem 13.5:Change 3×105yr to 4× 105yr, 3×10−16cm to 4×
10−16cm and 4×1012g to 5×1012g. This makes the solution consistent with the
statement of the problem.

Solution to Problem 13.7:Replace with the following simpler solution:

Let M0 denote the present mass of a black hole going to explode 1s after the
present time. From (13.19) we can find its mass by puttingt∗− t = 1s with the
result

M0 = 1.7×10−20cm= 2.3×108g.

If the black hole evaporates completely the energy emitted in the next second will
be M0c2 = 4.2× 1029erg. Therefore, the total energy per unit area received at
Earth in that 1s will beM0c2/(4πr2) wherer is the distance to the evaporating
black hole. In the same 1s the energy per unit area recived from a star with the
solar luminosityL⊙ a distance 10 pc away will be(L⊙ · (1sec))/(4π(10pc)2).
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These will be equal when
(

r
10pc

)

=
M0c2

L⊙ ·1s

Thusr is 0.007 of 10 pc or 2.2×1017cm or 1.5×104AU. The black hole would be
within the region called the “Oort cloud” containing the debris from the formation
of the solar system that supplies some of the comets.

Solution to Problem 18.6:In the final sentence replacet̃ = t0 with t̃ = t̃0.

Problem 18.25:In the 5th printing the problem was modified slightly as follows.
The solution here is for that, but is also a better solution tothe version that ap-
peared in earlier printings:

Problem:[C] Is there a value ofΩv that would allow the universe to bounce at a
small radius, but still reach a temperatureT ∼ 1010 K such that nucleosynthesis
could occur? AssumeΩr = 8×10−5 andΩm = .3.

Solution: For the temperature at the bounce to be greater than∼ 1010K, the value
of ã at the bounce ˜ab must be less than∼ 10−10 [cf. (18.26)]. For simplicity let
us suppose that the bounce occurs when the temperature is exactly 1010K corre-
sponding to a redshiftz of approximately 3×109 and an ˜ab ≈ 3×10−10.

A necessary condition for a bounce [cf. Fig 18.9] and (18.78)] is

1
2

Ωc = Ueff(ãb) = −
1
2

[

Ωvã2
b +

Ωm

ãb
+

Ωr

ã2
b

]

. (9)

UsingΩc = 1−Ωv −Ωm −Ωr from (18.76) this can be solved forΩv in terms of
the other cosmological parameters and ˜ab. The result is

Ωv =
1

1− ã2
b

[

1+Ωm

(

1
ãb

−1

)

+Ωr

(

1

ã2
b

−1

)]

. (10)

For the given values ofΩm andΩm andãb ≈ 3×10−10 this evaluates to

Ωv ∼ 1015 (!), (11)

the radiation term in (10) being the dominent one. (This value is wildly inconsis-
tent with current observations as we will see in Chapter 19, but let’s first see if it
even corresponds to a bounce.)
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While the condition (9) is necessary for a bounce, it is not sufficient. That is be-
cause, as Figure 18.9 makes clear, (9) is satisfied both by cosmological models
where ˜ab is a minimum of ˜a(t̃) (bounces) and where it is a maximum of the ex-
pansion. For a bounce solution, ˜ab lies above the value of the maximum ofUeff()̃.
Let’s check whether this is satisfied for (11).

At the time of the putative bounce whenT ∼ 1010K the matter can be neglected.
The maximum ofUeff(ã) occurs at

ãmax=

(

Ωr

Ωv

)
1
4

∼ 1012 (12)

for (11). This is vastly bigger than ˜ab ≈ 3×10−10. The maximum ofUeff(ã) is
above the value of ˜ab, not below it as would be required for a bounce.

We conclude that there isno value ofΩv that is that would lead to a bounce at a
temperature higher than 1010K.

Solution to Problem 15.10:Replace with the following (simpler, more closely
related to the discussion in the text):

There are a number of different ways of solving this problem.We give two.

1) We can follow the demonstration given in Section 15.3 thatthe surfacer = R is
a stationary null surface. Tangent vectorst in the surface have the general form

tα = (tt,0, tθ, tφ) . (13)

The surface is null if, at each point, a null tangent vectorℓ can be found along
with two orthogonal (toℓ and each other) spacelike tangent vectors. (See Section
7.9.) The conditionℓ · ℓ for a tangent vector reads

ℓ · ℓ =

(

1−
r2

R2

)

(ℓt)2+ r2(ℓθ)2+ r2sin2 θ(ℓφ)2 .

On r = R we see thatℓα = (1,0,0,0) is a null tangent vector, (indeed its the
unique one up to a multiplicative constant). Further,(0,0,1,0) and(0,0,0,1) are
two spacelike tangent vectors orthogonal to each other and to ℓ
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The null surface atr = R has the one-way property discussed in Section 7.9. Once
through it you cannot come back.

2) Its possible to worry about the above solution because thet coordinate is sin-
gular atr = R in much the same way that the Schwarzschildt coordinate is sin-
gular in the Schwarzschild metric. We can both demonstrate this and understand
the nature of ther = R three-surface by transforming to coordinates analogous
to Eddington-Finkelstein coordinates. Following (12.1) we transform fromt to a
new coordinateu defined by

t = u+F(r) (14)

where
dF
dr

=

(

1−
r2

R2

)−1

, F(r) =
R
2

log

(

R+ r
R− r

)

. (15)

Then the metric takes the form:

ds2 = −

(

1−
r2

R2

)

du2
−2dudr + r2(dθ2+sin2θdφ2) . (16)

In this non-singular form of the line element, its clear thatr = R is a null surface.
Furthermore, because of the choice of signs in (14), its an outgoing null surface
— fixed u meansr has to get larger ast gets larger. It therefore has the property
that once crossed its impossible to return. (See the discussion in Section 7.9.)

Comment: The given metric is one form of the metric of deSitter space which
is the maximally symmetric solution of Einstein’s equationwith a cosmological
constant. Another form, covering a different patch, is given by (18.1) and (18.39).
The surfacer = R is called the “deSitter horizon”.

Solution to Problem 15.13:Delete the sentence “C vanishes at .... null.’ Its mean-
ingless.
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