
Supplement to Chapter 22:
Stress-Energy Tensor for Short-Wavelength,
Linearized Gravitational Waves

In this supplement we return to justify the expression (16.22) for the energy flux
in a short-wavelength linearized gravitational wave. In the process we will also a
derive an effective stress-energy tensor for such waves.

As discussed in Section 16.5, the equivalence principle prohibits any notion of
the density of gravitational energy at a point. However, when spacetime can be
characterized as a small ripple in curvature propagating in a smooth background
geometry, then there is anapproximatenotion of energy density of the gravitational
wave. This energy density is not exactly local. It is an average energy density over
spacetime volumes whose dimensions are larger than the wavelength of the wave.
We will now derive this expression.

When we solved the Einstein equation for the linearized gravitational wave in
Chapter 16, we did not worry about the energy in the wave producing additional
spacetime curvature. That was a consistent approximation because we were solving
the Einstein equation to first (linear) order in the amplitude of the wave. We expect
the energy density in the wave to besecondorder in the amplitude of the wave as
(16.21) illustrates. The energy density in the wave could be consistently neglected
at linear order, but the stress-energy in those waves becomes a source of curvature
in the next order of approximation. By writing out the vacuum Einstein equation
in this next order of approximation we will be able to identify the effective stress-
energy of linearized gravitational waves.

Einstein’s equation for the metricgαβ(x) in the absence of other sources is

Rαβ(g) = 0 (1)

to any order of approximation. (In this notationRαβ(g) means that the components
of Rαβ depend on all 10 metric componentsg00(x), g01(x), · · · .) Write the metric as

gαβ(x) = γαβ(x)+hαβ(x) (2)

whereγαβ is a smoothbackground metric(B) andhαβ represents a small amplitude
propagating ripple of curvature whose wavelengthλ is much smaller than the scale
R on which background metric varies significantly. The idea is thatγαβ will be
close to flat, but slightly curved due to the energy in the gravitational wave.

1



Expand the Einstein equation (1) in powers of the amplitude of the wave, ob-
taining

Rαβ = R(B)
αβ (γ)+R(1)

αβ(γ,h)+R(2)
αβ(γ,h)+ · · ·= 0 . (3)

Here,R(B)
αβ is the smooth background curvature independent ofhαβ, R(1)

αβ is linear in

hαβ, andR(2)
αβ is quadratic inhαβ. We will not need the higher order terms.

If the background metric is curved only by the energy in the waves, that cur-
vature cannot be linear inhαβ; the energy is quadratic. Therefore, although the
background and quadratic term may be comparable in (3), the linear part must van-
ish by itself

R(1)
αβ(γ,h) = 0 . (4)

This is a linear wave equation for the gravitational wave. The smaller the amplitude
of the wave, the less curved the background metricγαβ, and the closer (4) comes to
the linear wave equation in flat space derived in Chapter 16.

Short-wavelength waves vary rapidly on the scales thatγαβ varies; that’s what’s
meant byshort-wavelength. The remainder of equation (3) can therefore hold only
in an average sense. Averaging it over a spacetime volume with sides larger than a
wavelength and denoting such an average by〈·〉 we obtain

R(B)
αβ (γ) =−

〈
R(2)

αβ(γ,h)
〉
. (5)

Equation (5) shows how quadratic terms in the amplitude of the gravitational wave
generate spacetime curvature. We have thus identified the effective stress-energy of
linearized gravitational waves. By writing (5) in the form of an Einstein equation
for the background curvature

R(B)
αβ (γ) = 8π

(
T(GW)

αβ − 1
2

γαβT(GW)
)

(6)

we make the identification explicit. The the effective gravitational wave stress-
energy is

T(GW)
αβ =− 1

8π

[〈
R(2)

αβ

〉
− 1

2
γαβ

〈
R(2)

〉]
. (7)
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Energy Flux in a Plane Wave

The effective short-wavelength gravitational wave stress-energy (7) is the origin of
the expression (16.22) for the energy flux in a plane linearized gravitational wave to
lowest order in its amplitude. To see this let’s evaluate (7) for the plane wave (16.2).
This metric represents a+ polarized plane wave propagating in the flat spacetime
in the z−direction. To make contact with the expression (16.22) for the energy
flux we assume the wave has a definite frequencyω and amplitudea as in so that
f (t−z) = asin[ω(t−z)]. The energy flux is the componentTtz

(GW) [cf. (22.19)]. We

now evaluate this to the leading order ina which isa2.
To calculateTtz

(GW) to quadratic order in the amplitudea it is enough to evaluate
(7) with γαβ = ηαβ. The resulting stress-energy causesγαβ to deviate fromηαβ by
an amount proportional toa2 which could be found by solving (6). But including
that correction toγαβ would not affect the valueTtz

(GW) to quadratic order ina2,
because (7) is already quadratic inhαβ

To evaluate (7) with (16.22) note that the Ricci curvature is given in terms of
the Christoffel symbols by (21.32), the Christoffel symbols are given in terms of

the metric by (20.53), and the metric is given by (16.2). To calculateR(2)
tz , we

need only calculateRtz to the second order in the amplitude of the wavehαβ with
γαβ = ηαβ as described above. This is a straightforward if tedious enterprise. We
summarize just enough of the intermediate steps in the calculation ofTtz

(GW) to lead
the reader through it for the case of the wave (16.2) with frequencyω. That wave
hαβ has no components except in the transversex- andy-directions. This is enough
to showΓα

tz = Γα
tt = Γα

zz= 0. That simplifies the form ofRtz. The only other novelty
here is that the calculation of the Christoffel symbol to second order inhαβ involves
knowing the first order change in the inverse metricgαβ. However, the basic relation
gαγgαβ = δα

γ is enough to establish that to first order inhαβ

gαβ
(1) =−hαβ (8)

where the indices onhαβ are raised withηαβ. Putting all this together, one finds:

Rtz =
1
4

∂hi j

∂t

∂hi j

∂z
+

1
2

hi j ∂2hi j

∂t∂z
. (9)

Putting in the form of the wave (16.2), averaging over a period, and raising indices
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usingηαβ, one finds

Ttz
(GW) =

ω2

32π
〈
hi j h

i j 〉 , (10a)

=
ω2a2

32π
. (10b)

In arriving at these expressions use was made of the fact that the average of both
sin2(ωt) and cos2(ωt) over a period is 1/2 and that there are two, equal magnitude
metric components in TT-gauge for a gravitational wave. Thus we derive the ex-
pression (16.22) for the energy flux in a linearized gravitational plane wave with
definite frequency and+ or− polarization.

The General Stress Energy

The same methods that were used to evaluateTtz
(GW) can be used to evaluate all the

components ofT(GW)
αβ from (7). The calculations are equally straightforward, just a

little more tedious. (For the details see, for instance, Misner, Thorne, and Wheeler
1973.) Assuming a flat backgroundγαβ = ηαβ and usual rectangular coordinates
(t,x,y,z), the complete result is

T(GW)
αβ =

1
32π

〈
∂αhTT

i j ∂β hi j
TT

〉
(11)

where the wave components are assumed to be in transverse traceless gauge. This
is called theIsaacsonstress-energy tensor. It is easy to check that (11) reproduces
(10b) for a wave of the form (16.2). Eqs (11) and (6) demonstrate that gravitational
waves carry energy and are themselves a source of curvature. That reflects the
non-linear nature of the Einstein equation.
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