
Supplement to Chapter 23:
The Derivation of the Quadrupole Formula

This supplement completes the derivation of the quadrupole formula (23.51) for
the power radiated in gravitational waves by a near-Newtonian system in the long
wavelength approximation. The necessary tools are already in hand. The propagat-
ing ripples in spacetime curvature far from the source are given in terms of the mass
quadrupole moment by (23.35)

h̄i j
�
t � r ��� 2Ïi j

�
t � r �
r � (1)

Monitored far from the source over a small range in angle, this spherical wave is
approximately plane. The energy flux of a linearized, plane gravitational wave with
frequency ω and amplitude a was given in (16.22) as

fGW � ω2a2

32π � (2)

(An example is the the wave propagating in the z-direction described by (16.2) with
f
�
t � z ��� asin �ω � t � z �	� .) The result (2) was derived in the supplement to Chapter

22: Stress-Energy Tensor for Short-Wavelength, Linearized Gravitational Waves.
The idea is to use (2) to find an expression for the flux implied by (1) in an arbitrary
direction lying along a unit vector ni and then integrate over all possible directions
to find the total power radiated.

We begin by noting from (16.2) that (2) can be expressed more generally as

a2 ��
 hTT
jk h jk

TT � � (3)

The sum over the two independent components of hi j
TT produces 2a2; the time av-

erage produces a factor of 1 
 2. The energy flux πi for a plane wave propagating in
the direction of a unit vector ni is then

πi�
GW � � ω2

32π
ni � h jk

TT hTT
jk � � (4)

The same result could be derived directly from the the T it�
GW � component of the

effective stress-energy tensor for linearized gravitational waves exhibited in the last
equation in the supplement to Chapter 22. We have only to plug (1) into (4) and
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do the angular integral summing over different directions ni to find the total power
radiated in gravitational waves.

If you have studied electromagnetism, this calculation will seem familiar (cf. Ta-
ble 23.1). To calculate the power radiated by an oscillating electric dipole �p,
for instance, one first evaluates the potentials far from the source �A � ˙�p � t � r � 
 r.
The energy flux is given in terms of these potentials by the Poynting vector �S �� �E � �B � 
 4π. Integrating �S ���n dA over all directions �n gives the total power radiated.

The only catch with carrying out this program is that the wave amplitudes in the
expression for the energy flux (4) are in transverse-traceless gauge for the direction
in which they are propagating. In particular, hTT

jk is transverse to the direction ni.

That is, it has zero components along ni

hTT
jk nk � 0 � (5)

The wave amplitude (1) is not generally in transverse-traceless gauge, but must be
put in this gauge to evaluate the energy flux.

That is a straightforward matter. As we learned in Section 21.5 , it is simply
necessary to set the non-transverse components of h̄i j to zero and subtract out the
trace. The transverse-traceless components remain unchanged. Thus the transverse-
traceless gauge for a wave propagating in the z-direction is given in terms of a
general perturbation by (21.70)

hTT
i j �

��
�

x y z

x 1
2 � h̄xx � h̄yy � h̄xy 0

y h̄xy
1
2 � h̄yy � h̄xx � 0

z 0 0 0

	�

� � (6)

Note that it doesn’t make any difference whether we use hi j or h̄i j on the right hand
side of (21.70). The difference cancels out.

With the result (6), the expression (4) for the effective energy flux, and the wave
amplitude for large r (1), we can evaluate the energy flux in the z-direction in terms
of the mass quadrupole moment. Noting that Ïi j � � ω2Ii j for a periodic source, we
find:

πz�
GW � � ω6

32πr2
� 2
�
Ixx � Iyy � 2 
 8I2

xy � � (7)

To find the flux in the y- or z-directions, just permute x � y, and z appropriately. But
to do the angular integrals we need the flux in a general direction ni.
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To find that first note that Ii j can be replaced by the reduced quadrupole moment
Ii j in (7) because the difference — 1 
 3δi jIk

k — cancels out. But Ii j has vanishing
trace

Ik
k � Ixx


 Iyy

 Izz � (8)

These facts can be used to rewrite (7) in the form

πz�
GW � � ω6

16πr2 � 2Ii jI
i j � 4IziI

i
z � I2

zz � � (9)

Write this out using (8), and check that it is the same as (7).
The expression (9) allows us to find the energy flux in any direction ni:

πi�
GW � ni � ω6

16πr2
� 2Ii jI

i j � 4 � Iiknk � � Ii � n� � � � Ii jn
in j � 2 � � (10)

When �n points in the z-direction, (10) reduces to (9). Now we can do the angular
integrals over the different directions to give the radiated power

dE
dt

��� r2dΩ �nπi�
GW � ni � (11)

There are two types of angular integral to do beyond the standard � dΩn̂ � 4π. They
are:

A i j � � dΩn̂nin j � (12a)

and

B i jk
� � � dΩn̂nin jnkn

�
� (12b)

In terms of these

dE
dt

� ω6

16π
� 8πIi jIi j � 4IikIi � Ak

� � Ii jIk
� B i jk

� � � (13)

One way to do these integrals is component by component using ni � � sinθcosφ � sinθsinφ � cosθ � .
There are 21 integrals to do. A faster way is to understand the form the answer will
necessarily take. It will not depend on the direction �n — that has been integrated
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over. It can only be constructed out of δi j’s in combinations that reflect the symme-
tries of the integrand. Thus,

A i j � Aδi j � (14a)

B i jk
� � B � δi jδk

� 
 δi
�
δ jk 
 δikδ j

� � (14b)

where A and B are numerical coefficients. Two integrals suffice to evaluate these.
The simplest way to proceed is to contract all indices in both (14) and (12). For
example, from (12a)

A i
i � � dΩ �n � 4π � (15)

But also from (14a)

A i
i � 3A � (16)

The result is A � 4π 
 3. Proceeding in this way we find

A i j � 4π
3

δi j � (17a)

B i jk
� � 4π

15
� δi jδk

� 
 δi
�
δ jk 
 δikδ j

� � � (17b)

Equations (17) can now be used to evaluate (13). The final form is evident. It
can only be proportional to Ii jIi j. It might involve I2 but that is zero from (8). In the
end, one finds

dE
dt

� ω6

5 � Ii jI
i j � � (18)

This is the quadrupole formula (23.51).
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