
Supplment to Chapter 24:
Energy Levels of a Free Particle in a Box

Section 24.1’s derivation of the equation of state of a gas of free, spin-1/2 fermions
assumed some elementary and standard facts about the energy levels of single quan-
tum mechanical particle confined to a box. For completeness, we review those facts
here, although they can be found in any standard quantum mechanics text.

We consider a single particle of massmmoving freely in one-dimension(x) and
confined to a box which extends fromx = 0 to x = L . The quantum state of such
a particle is described by a wave functionΨ(x). The Schr̈odinger equation for the
allowed values of the energyE is

ĤΨ =
p̂2

2m
=− h̄2

2m
d2Ψ
dx2 = EΨ (1)

where a hat denotes an operator. As a convenience we definep by

E ≡ p2

2m
. (2)

The quantityp can be thought of as the magnitude of the momentum. Then (2) can
be written in the form

p̂2Ψ(x) =−h̄2d2Ψ(x)
dx2 = p2Ψ(x) (3)

The most general solution of (3) is

Ψ(x) = Asin(px/h̄)+Bcos(px/h̄) (4)

whereA andB are constants. If the particle is confined to the box then the wave
function must vanish outside it. Continuity ofΨ at the walls atx = 0 andx = L
implies the boundary conditions:

Ψ(0) = Ψ(L) = 0 . (5)

These requireB = 0 in (4) and the discrete values ofp

pk ≡
kπh̄
L

, k = 1,2, · · · . (6)
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(The valuek = 0 corresponds toΨ = 0 everywhere.) This is (24.2). The corre-
sponding discrete energy levels are given by (2) as

Ek =
1

2m

(
kπh̄
L

)2

≡
p2

k

2m
, k = 1,2, · · · (7)

This is (24.1).
The energy levels of afree relativistic fermion can be understood in much the

same way.Interactingrelativistic particles can be created and destroyed — a pro-
cess which is most efficiently described in terms of quantum field theory. But it
is possible to think of afree relativistic particle like a non-relativistic one with the
Hamiltonian

Ĥ = [(mc2)2 +(p̂c)2]1/2 . (8)

Here,p̂ =−ih̄(d/dx) is the usual momentum operator. (Momentum is the infinites-
imal generator of displacements inx and a displacement is a displacement no matter
what the kinematics.) If you are worried about what the square root of an operator
means, think of specifyinĝH by its matrix elements in a basis of definite momen-
tum states. The content of (8) is that the diagonal elements are[(mc2)2 + (pc)2]1/2

Once specified in one basis the operator is defined in all.
The Schrodinger equation̂HΨ = EΨ for the energy eigenvaluesE leads to

Ĥ2Ψ = [(mc2)2 +(p̂c)2]Ψ = E2Ψ . (9)

But if we define a quantityp by

E ≡ [(mc2)2 +(pc)2]1/2 , (10)

then (9) becomes

p̂2Ψ(x) =−h̄2d2Ψ(x)
dx2 = p2Ψ(x) . (11)

This is just the same as (3) and all of its consequences follow in particular (6). The
allowed energy levels for a relativistic particle in a box are given by

Ek = [(mc2)2 +(pkc)2]1/2 k = 1,2· · · . (12)
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