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Introduction
•  What is MINOS? 
•  Neutrino Physics 

–  Oscillation Basics 
–  MINOS Physics 

•  The Experiment 
–  NuMI neutrino beam 
–  MINOS detectors 

•  The Analyses 
–  Neutrinos 
–  Antineutrinos 

•  The Results 
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What is MINOS?
•  Three components: 

–  NuMI high-intensity neutrino beam 
–  Near Detector at Fermilab measures 

the initial beam composition and 
spectrum 

–  Far Detector in Soudan, MN measures 
the oscillated spectrum 

•  Detectors are magnetized – unique among 
oscillation experiments 

3


10 km

12 km
735 km

Fermilab Soudan



Neutrino Physics

– Oscillation Basics
– MINOS Physics
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Neutrino Oscillations
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1ν

3ν

2ν

•  Interact in weak eigenstates (e, µ, τ)  
•  Propagate in mass eigenstates (1, 2, 3) 
•  Because the neutrinos have different masses, as they propagate they 

pick up relative phases, changing their relative amplitudes 
•  End up with a different weak eigenstates than we started with 

10 km

12 km
735 km

Fermilab Soudan

µν = 
1ν

3ν

2ν eν

τνµν= 



Neutrino Masses and Mixing

•  Analogous to the quarks, neutrino mixing 
is parameterized with 3 angles and 1 
complex phase 

•  With three active neutrinos there are two 
independent mass differences:  
–    
–    
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Measuring Oscillations
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Measuring Oscillations
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Measuring Oscillations
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•  Measurements of |Δm2
atm| and sin2(2θ23) via 

νµ disappearance 

•  Measurements of |Δm2
atm| and sin2(2θ23) via 

νµ disappearance 

•  Search for sub-dominant νµ  νe oscillations 
via νe appearance 

•  Search for sterile ν, CPT/Lorentz violation 

•  Atmospheric neutrino and cosmic ray physics 

•  Study ν interactions and cross sections in 
Near Detector 
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MINOS Physics
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Why study νµ and νµ? 

•  Antineutrino parameters 
are less precisely known. 
–  No direct precision  

measurements 
–  MINOS is the only oscillation 

experiment that can do event- 
by-event separation 

•  Differences may imply new physics in the neutrino sector 
manifested as a difference in the effective mass-splitting. 
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P "µ #  "µ( ) = P " µ #  " µ( )? 

P. Adamson, et. al, Phys. Rev. Lett. 101:131802 (2008) 
Y. Ashie, et. al., Phys. Rev. D 71:112005 (2005) 
Y. Ashie, et. al., Phys. Rev. D 71:112005 (2005) 
M.C. Gonzalez-Garcia & M. Maltoni, Phys. Rept. 460:1-129 (2008) 



Why study νµ and νµ? 
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The Experiment

–  NuMI neutrino beam
– MINOS detectors
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The NuMI Beam

π- 

π+ 120 GeV 
protons 
from MI

Focusing Horns

2 m 

675 m

νµ 

νµ/νµ 

15 m 30 mAlex Himmel 19


•  120 GeV protons incident on a thick, 
segmented graphite target 

•  Magnetic horns can focus either sign 

•  Enhance the νµ flux by focusing π+, K+ 

•  Adjustable peak energy 

Low Energy
Medium Energy
High Energy

Decay PipeTarget
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120 GeV 
protons 
from MI

Focusing Horns

2 m 

675 m15 m 30 m
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Monte Carlo
Neutrino mode 
Horns focus π+, K+ 
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Neutrino Mode
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15 m 30 mAlex Himmel 21


120 GeV 
protons 
from MI

Monte Carlo
Neutrino mode 
Horns focus π+, K+ 

! 

"µ = 91.7%
" µ = 7.0%

"e +" e =1.3%

Monte Carlo
Antineutrino mode 
Horns focus π-, K- 

! 

" µ = 39.9%
"µ = 58.1%

"e +" e = 2.0%

νµ/νµ 

Antineutrino Mode



•  x1.3 lower π- production 
•  x2.3 lower interaction cross-section 
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Eur. Phys. J. C 49 897 (2007) Phys. Rev. D 81 072002 (2010) 

Antineutrino Cross-section
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Detecting Neutrinos

•  Cannot directly observe the neutrino 
•  Instead, observe the charged particles after a neutrino 

interacts with a nucleus in the detector 
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Detecting charged particles

  REFLECTIVE SEAL

  TiO2 LOADED POLYSTYRENE CAP

41mm

  CLEAR POLYSTYRENE
  SCINTILLATOR

 WLS FIBER

UP TO 8m

10mm

MINOS SCINTILLATOR STRIP

! 4.1 cm×1 cm plastic scintillator strips
! TiO2 coating and embedded wavelength-shifting fibre
! Scintillation light detected by multi-anode PMTs

C. Backhouse (Oxford) MINOS November 23, 2010 10 / 46

Detecting Charged Particles

•  4 cm x 1 cm plastic scintillator strips 

•  Embedded wavelength-shifting fiber 

•  Scintillation light amplified by multi-anode PMTs 
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MINOS Detectors

B 
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1 in thick Steel 

Strips in alternating 
directions allow 3D 
event reconstruction 

1.3 T toroidal 
magnetic field can 
distinguish neutrinos 
and antineutrinos 

1 cm thick, 4.1 cm wide 
Plastic Scintillator 

Read out on 
wavelength-shifting 
fibre to multi-anode 

PMTs 



MINOS 
Detectors

Near Detector 
•  980 tons 
•  100 m depth 
•  1 km from the target 

Far Detector 
•  5,400 tons 
•  700 m in depth 
•  735 km from the target 
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MINOS Events
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νµ CC Event NC Event νµ CC Event 

Coil Coil 

µ- µ+ 

Simulated Events 

ν  



The Analyses
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Oscillation Analysis in Brief
1.  Select neutrino/antineutrino events in the detectors 

2.  Measure their energies to produce Near and Far 
detector spectra 

3.  Use the Near Detector spectrum to predict the Far 
Detector spectrum independent of oscillations  

4.  Fit the Far Detector data to measure oscillations 
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Selecting Charged Currents

•  Basic selection 
–  In-time with the spill 
–  In the fiducial volume 
–  At least 1 reconstructed track 

•  CC/NC separation using a 
kNN algorithm 

–  Compare to Monte Carlo events 
–  Fraction of signal in k most 

similar events is the discriminant 
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k-Nearest Neighbors


“kNN”

Charged current selector

! Combine information using a k-Nearest-Neighbour algorithm

! For each event to be classified: find 80 closest Monte Carlo events

! PID value is the fraction of these neighbours that are charged current

Input variable 1
0 2 4 6 8 10

In
pu

t v
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bl
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2

0

2

4

6

8

10

C. Backhouse (Oxford) MINOS November 23, 2010 24 / 46



Alex Himmel 33
Muon scintillator planes

0 50 100

 P
oT

16
Ev

en
ts

 / 
10

0

2

4

6

8 MINOS Preliminary
Low Energy Beam

Data
MC expectation
NC background

Selecting Charged Currents

•  CC/NC separation using a 
kNN algorithm 

•  4-parameter comparison 
–  Track length 
–  Transverse energy profile 
–  Energy deposited per plane 
–  Energy fluctuations along the 

track 

Simulated Events 

CC NC



•  CC/NC separation using a 
kNN algorithm 

•  4-parameter comparison 
–  Track length 
–  Transverse energy profile 
–  Energy deposited per plane 
–  Energy fluctuations along the 

track 
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•  CC/NC separation using a 
kNN algorithm 

•  4-parameter comparison 
–  Track length 
–  Transverse energy profile 
–  Energy deposited per plane 
–  Energy fluctuations along the 

track 
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Selecting Charged Currents

Mean energy deposited per strip (MIPs)
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Neutrino Selection

•  Added a second selector that accepts lower energy tracks 
–  Number of planes in the track 
–  Energy deposition at the end of the track 
–  Amount of scattering 

•  The final selection is a logical OR of these two cuts. 
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Main Selector Low-E Selector

Accept Accept



Neutrino Selection
•  The neutrino analysis 

no longer uses a 
charge-sign cut 

•  Majority of low-
energy positive events 
are really neutrinos 

•  Like the Low-E 
selector, improves 
low-energy efficiency 
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Positives are 
30% neutrinos 



Neutrino Selection
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•  Increase sensitivity by improving efficiency (89% vs. 87%) 
at the expense of contamination (1.7% vs. 1.2%) 

Monte Carlo 



•  Use the CC/NC Selector 
–  Removes NC and high-y CC interactions 

•  Accept only events with positive reconstructed charge 
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AcceptAccept

Main Selector

Selecting CC Antineutrinos



High energy νµ contamination does not  
affect the oscillation result 
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Signal Bkgd. 

0-6 GeV 106 1.9

6-20 GeV 38 4.3

> 20 GeV 8 3.0Monte Carlo 

Efficiency & Purity



Oscillation Analysis in Brief
1.  Select neutrino/antineutrino events in the detectors 

2.  Measure their energies to produce Near and Far 
detector spectra 

3.  Use the Near Detector spectrum to predict the Far 
Detector spectrum independent of oscillations  

4.  Fit the Far Detector data to measure oscillations 
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Muon Energy
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Exiting Tracks
•  Measure the track 

curvature 
•  Proportional to charge/

momentum 
•  11% resolution at 3 GeV 

Contained Tracks
•  Measure the track length 

in the detector 
•  Gives muon energy using 

dE/dx 
•  4.6% resolution at 3 GeV 
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•  Measure calorimetrically 
–  Sum energy of all non-

track hits in the event 
•  Standard for all previous 

MINOS analyses 

Hadronic Shower Energy



Hadronic Shower Energy
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Neutrinos
•  New for 2010 analysis 
•  Use a kNN algorithm 

–  Calorimetry and topology 
•  Average true MC energy 

of k nearest neighbors 
•  43% resolution for  

1-1.5 GeV showers 

Original Energy 
New Estimator 

Monte Carlo 

M
IN

O
S

 P
relim

inary 



Neutrino Near Detector Data
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•  Majority of data 
taken in Low  
Energy Beam 

•  High Energy Beam 
gives us more 
events above the 
oscillation dip 
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Flux and cross-section uncertainties  
cancel when extrapolated  
from Near to Far detector. 

Near Detector Spectrum



Oscillation Analysis in Brief
1.  Select neutrino/antineutrino events in the detectors 

2.  Measure their energies to produce Near and Far 
detector spectra 

3.  Use the Near Detector spectrum to predict the Far 
Detector spectrum independent of oscillations  

4.  Fit the Far Detector data to measure oscillations 
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•  The Near Detector and Far Detector 
spectra are not identical. 
–  Due to π/K decay kinematics, neutrino 

energy varies with angle.  
–  Near Detector covers a wider solid angle 
–  Effect is larger with higher energy π  

•  Travel further and decay closer to the ND 
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•  A beam matrix transports measured 
Near Det. spectrum to the Far Det. 

•  Matrix encapsulates knowledge of 
meson decay kinematics and beamline 
geometry 

•  MC used to correct for energy smearing 
and acceptance 

Alex Himmel

M
onte C

arlo 
Beam Matrix Extrapolation



Oscillation Analysis in Brief
1.  Select neutrino/antineutrino events in the detectors 

2.  Measure their energies to produce Near and Far 
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Fitting for Oscillations
•  Fit performed by minimizing a binned -log likelihood 

•  For neutrinos, systematics are included as parameters in 
the fit with penalty terms in the likelihood 
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Neutrino Systematics
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•  Effect of uncertainties estimated 
by fitting systematically shifted 
MC 

•  Analysis is still statistically limited 

•  The 4 largest systematics are 
included in the fit. 

Monte Carlo 



•  Fit performed by minimizing a binned -log likelihood 

•  For antineutrinos, a Feldman-Cousins approach is used 
–  Many fake experiments used create empirical χ2 distributions 

as a function of the parameters 
–  Systematics included in the fake experiments 
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Fitting for Oscillations



Alex Himmel 54


•  Effect of uncertainties 
estimated by fitting 
systematically shifted MC 

•  Systematics are very small 
relative to the statistical 
uncertainty 

Monte Carlo 

Systematics



The Results
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Blind Analysis
•  These results are obtained from blind analyses 

–  Finalized before looking at the full Far Detector data 
•  selection cuts 
•  data samples 
•  extrapolation techniques 
•  fitting routines 
•  systematic uncertainties 

•  No changes have been made after box opening 

And so…on to the results! 
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Far Detector Neutrino Data

 2,451 expected 
without oscillations 

 1,986 observed events 
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Far Detector Neutrino Data
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 2,451 expected 
without oscillations 

 1,986 observed events 

Oscillations fit the data 
well – 66% of fake 
experiments have a 
worse χ2  



Far Detector Neutrino Data

•  Can see the characteristic dip of oscillations. 
•  Disfavor in a statistics-only fit: 

–  Pure decay† at   > 6σ 
–  Pure decoherence‡ at  > 8σ 
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†G.L. Fogli et al., PRD 67:093006 (2003) 
‡V. Barger et al.,PRL 82:2640 (1999) 



Neutrino Contour

Alex Himmel 60


! 

"matm
2 = 2.35#0.08

+0.11 $10#3  eV2

sin2 2%23( ) =1

sin2 2%23( ) > 0.91 (90% C.L.)



Neutrino Contour
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†Super-Kamiokande Collaboration (preliminary) 

† 

! 

"matm
2 = 2.35#0.08

+0.11 $10#3  eV2

sin2 2%23( ) =1

sin2 2%23( ) > 0.91 (90% C.L.)



 155 expected 
without oscillations 

è 97 observed events 
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•  Good data/mc agreement in  
charge/momentum 

•  Antineutrinos focused inwards 

•  Neutrinos defocused outwards 
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è 155 expected without oscillations 
è 97 observed events 
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è 155 expected without oscillations 
  97 observed events 
No-oscillations hypothesis is disfavored at 6.3σ 
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Dot-dash line is a fit to 
all non-MINOS data 
M.C. Gonzalez-Garcia and M.  
Maltoni Phys. Rept. 460, 2008 
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! 

"m atm
2 = 3.36#0.40

+0.45 $10#3  eV2

sin2 2% 23( ) = 0.86 ± 0.11

Antineutrino Contour



•  Dashed line shows the antineutrino prediction at the 
neutrino best fit point.  
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Neutrinos and Antineutrinos
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•  NuMI has begun accumulating another ~2x1020 POT of 
antineutrino running. 
–  More than double the dataset 
–  Can reduce Δm2 error by more than 30% 
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With More Antineutrinos…



Conclusions
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•  MINOS has the most precise measurement of |Δm2
atm|  

•  MINOS has the first direct, precision measurement |Δm2
atm| 

•  Measured with double the neutrino data and a dedicated 
antineutrino run 

•  With more antineutrino beam we can rapidly improve the 
precision on the antineutrino oscillation parameters 

! 

"m atm
2 = 3.36#0.40

+0.45 $10#3  eV2

sin2 2% 23( ) = 0.86 ± 0.11

! 

"matm
2 = 2.35#0.08

+0.11 $10#3  eV2

sin2 2%23( ) > 0.91 (at 90%)
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Peak vs. Tail

Target Focusing Horns

2 m 

675 m15 m 30 mAlex Himmel 72


•  νµ’s from high-pt π-’s 
–  Focused by horns 

•  νµ’s from low-pt π+’s 
–  Pass through horn 

center 

120 GeV 
protons 
from MI

Decay Pipe

Monte Carlo 
Focused 

Monte Carlo 
Unfocused 

π+ 

π- νµ 

νµ 



Neutrino mode 
Horns focus π+, K+ 

! 

"µ = 91.7%
" µ = 7.0%

"e +" e =1.3%

Monte Carlo!
Antineutrino mode 
Horns focus π-, K- 

! 

" µ = 39.9%
"µ = 58.1%

"e +" e = 2.0%

Peak vs. Tail
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•  νµ’s from low-pt π-’s 
–  Focused by horns 

•  νµ’s from high-pt π+’s 
–  Pass through horn 

center 

Monte Carlo 
Focused 

Monte Carlo 
Unfocused 

Monte Carlo!



Helium in the Decay Pipe
•  At the beginning of Run III, helium was added to the decay pipe 

to prevent failure of the upstream window. 
–  Our previous flux simulation could not model the helium using GFLUKA 

as part of GEANT3 

–  Replaced it with a new flux simulation that is all FLUKA which 
accurately predicts the effects of helium. 
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Target Degradation
•  Began during Run II and continued through Run III 
•  The exact mechanism of the decay is not known 
•  Missing fins at the shower max in the target model the energy-

dependent effect 
•  Target to undergo post-mortem later this year  
•  Cancels between the two detector 
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•  Data shows the expected distributions of hadronic 
energy fraction for both neutrinos and antineutrinos 
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Far Detector Data



Feldman-Cousins
•  Each point is the Δχ2 

that encompasses 90% 
of fake experiments 
–  A perfectly Gaussian 

surface would be 4.7 
everywhere. 
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Better than Gaussian
Physical boundary gives 

extra information 
 

Worse than Gaussian
Degeneracy with fast 

oscillations 
 



Antineutrino Contour
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! 

"m atm
2 = 3.36#0.40

+0.45 $10#3  eV2

sin2 2% 23( ) = 0.86 ± 0.11



Antineutrino Contour
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! 

"m atm
2 = 3.36#0.40

+0.45 $10#3  eV2

sin2 2% 23( ) = 0.86 ± 0.11



Atmospheric Neutrinos

80

R
! /!
data / R

! /!
MC = 1.04"0.10

+0.11 ± 0.10

#m2 " #m2 = 0.4"1.2
+2.5 $10"3eV2
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The Neutrino Analysis

Since our previous measurement… 
–  P. Adamson, et. al, Phys. Rev. Lett. 101:131802 (2008) 

•  Additional data 
–  3.4×1020 to 7.2×1020 protons-on-target 

•  Analysis Improvements 
81
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Analysis Improvements
•  Updated simulation and 

reconstruction 

•  New selection improves low-
energy efficiency 

•  New shower energy estimator  
–  30% better low-energy resolution 

•  No charge sign cut 
–  Reclaim mis-identified neutrino 

events at low energy 

•  Split data set into resolution bins 
–  Increased statistical power 
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Analysis Improvements
•  Updated simulation and 

reconstruction 

•  New selection improves low-
energy efficiency 

•  New shower energy estimator  
–  30% better low-energy resolution 

•  No charge sign cut 
–  Reclaim mis-identified neutrino 

events at low energy 

•  Split data set into resolution bins 
–  Increased statistical power 
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Analysis Improvements

84
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~30%  better 
resolution 

below 2 GeV 

•  Updated simulation and 
reconstruction 

•  New selection improves low-
energy efficiency 

•  New shower energy estimator  
–  30% better low-energy resolution 

•  No charge sign cut 
–  Reclaim mis-identified neutrino 

events at low energy 

•  Split data set into resolution bins 
–  Increased statistical power 



Analysis Improvements
•  Updated simulation and 

reconstruction 

•  New selection improves low-
energy efficiency 

•  New shower energy estimator  
–  30% better low-energy resolution 

•  No charge sign cut 
–  Reclaim mis-identified neutrino 

events at low energy 

•  Split data set into resolution bins 
–  Increased statistical power 
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Positives are 
30% neutrinos 



Resolution Binning
•  Separate high-resolution and low-resolution events 

–  High-resolution events give the most information about the oscillation dip 

•  Use the MC to parameterize resolution as a function of track and 
shower energy 

•  6 bins – 5 resolution quantiles, and 1 for positives 
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Resolution binning

! Another improvement for this analysis

! Parameterize energy resolution as a function of track and shower
energies

Reconstructed Energy (GeV)
0 2 4 6 8 10

Re
so

lu
tio

n 
(G

eV
)

0.0

0.5

1.0

1.5

2.0
MINOS Preliminary

Shower Energy Resolution
Track Energy Resolution
(measured from range)

σtrk

E
=

5.1%√
E

⊕ 6.9%

σshw

E
=

40.4%√
E

⊕ 8.6% ⊕
275MeV

E

σevt = σtrk ⊕ σshw
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Resolution Binning
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Resolution binning

Reconstructed Energy (GeV)
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Far Detector MC MINOS Preliminary

! Divide events into 5 resolution
quantiles

! Best resolved events give most
information about oscillation dip

! Statistical power of worst events
still included
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•  Separate high-resolution and low-resolution events 
–  High-resolution events give the most information about the oscillation dip 

•  Use the MC to parameterize resolution as a function of track and 
shower energy 

•  6 bins – 5 resolution quantiles, and 1 for positives 



Analysis Improvements
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Change in Systematics
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Monte Carlo 

2008 2010 



Neutrino Spectrum
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Neutrino Contour by Run
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MINOS  
Preliminary 



Neutral Currents

Sterile Neutrino Search
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Sterile Neutrinos
•  Measurements of the Z0 width at 

LEP limit the number of active 
neutrinos to 3 

•  A 4th neutrino cannot couple to 
the Z0  
–  Cannot participate in weak 

interactions 
–  Hence is must be “sterile” 

•  Signature is a deficit in all active 
flavors 
–  Neutral current interaction rate is 

independent of neutrino flavor 
–  Look for a deficit in neutral 

currents at the Far Detector 
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Selecting Neutral Currents
• Now CC (track) events are the 

background 
– Want to eliminate events with 

long tracks. 

•  Selection 
– Whole event must be short  

•  < 47 planes 
– And either: 

•  No reconstructed track 
•  Track extends less than 6 

planes out of the shower 
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Accept 

Accept 

Step 1



Extrapolation
•  The Near and Far Detector 

spectra are not identical 

•  Again, we use the MC to 
account for these differences 

•  Far/Near ratio relates to the 
two detector spectra 
–  Insufficient energy resolution 

for a beam matrix 
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! 

E" #
0.43E$

1+ %$
2&"

2

π 

νµ 

Near
Detector

Far
Det.

! 

FDi
pred =

FDi
MC

NDi
MC NDi

Data

i refers to Energy bin

Step 2

Step 3



Sterile Neutrino Results

•  Expected:  757 events 
•  Observe:  802 events 
•  No deficit of NC events 
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! 

R =
NData " NBG

NNC Signal

± (stat) ± (syst)

=1.09 ± 0.06 ± 0.05 (no #e )
=1.01± 0.06 ± 0.05 ($13 =11.5! )

Step 4



Sterile Neutrino Results

•  Expected:  757 events 
•  Observe:  802 events 
•  No deficit of NC events 
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fs !
P"µ#"s

1$ P"µ#"µ

< 0.22 (0.40) at 90% C.L.
no (with) νe appearance  

fs is the fraction of disappearing neutrinos that are 
becoming sterile neutrinos 

Step 4



Electron Neutrinos

Search for θ13
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νe Appearance

•  If θ13 ≠ 0 a few percent of the disappearing νµ’s could be become νe’s 

•  The appearance probability also depends on the complex phase δCP 
and the mass hierarchy (via matter effects, not shown above) 
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Selecting Electron Neutrinos
•  Preselection 

– Require good beam and in-time 
fiducial events 

– Cut events with long tracks (CC νµ) 

– Cut events above 8 GeV where no 
oscillation signal is expected 
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Step 1



Selecting Electron Neutrinos
•  Preselection 

– Require good beam and in-time 
fiducial events 

– Cut events with long tracks (CC νµ) 

– Cut events above 8 GeV where no 
oscillation signal is expected 

•  Selection 
– Distinguish a compact EM shower 

from a diffuse hadronic shower 

– Construct variables that 
parameterize shower shape 

– Use an Artificial Neural Network 
(ANN) based on 11 parameters 
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Ereco  = 8.0 GeV 

Ereco  = 7.8 GeV 

NC interaction [background]

νe CC interaction [signal]



Selecting Electron Neutrinos
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•  Preselection 
– Require good beam and in-time 

fiducial events 

– Cut events with long tracks (CC νµ) 

– Cut events above 8 GeV where no 
oscillation signal is expected 

•  Selection 
– Distinguish a compact EM shower 

from a diffuse hadronic shower 

– Construct variables that 
parameterize shower shape 

– Use an Artificial Neural Network 
(ANN) based on 11 parameters a, b 



Selecting Electron Neutrinos
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•  Preselection 
– Require good beam and in-time 

fiducial events 

– Cut events with long tracks (CC νµ) 

– Cut events above 8 GeV where no 
oscillation signal is expected 

•  Selection 
– Distinguish a compact EM shower 

from a diffuse hadronic shower 

– Construct variables that 
parameterize shower shape 

– Use an Artificial Neural Network 
(ANN) based on 11 parameters 



νe  
selected 
region 

•  Data 
⎯  MC 

BG Region 

Selecting Electron Neutrinos
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•  Preselection 
– Require good beam and in-time 

fiducial events 

– Cut events with long tracks (CC νµ) 

– Cut events above 8 GeV where no 
oscillation signal is expected 

•  Selection 
– Distinguish a compact EM shower 

from a diffuse hadronic shower 

– Construct variables that 
parameterize shower shape 

– Use an Artificial Neural Network 
(ANN) based on 11 parameters 



Extrapolation
•  Near Detector consists of 3 background 

components: 
–  Neutral Currents 
–  Charged Current νµ 
–  Beam νe’s 

•  Each component extrapolates differently to the 
Far Detector 
–  As with NC analysis, Far/Near is used 
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Step 2



ND Decomposition
•  Changing horn focusing changes the 

balance of the three components 

•  Fit three different focusing 
configurations 
–  Low Energy (standard) 
–  Horn Off 
–  High Energy 
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Turn off
focusing
horns



Extrapolation
•  Apply decomposition to the Near Detector data 
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Step 3



Extrapolation
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•  Apply decomposition to the Near Detector data 
•  Extrapolate each component to get a Far Detector prediction 

Step 3



Extrapolation
•  Apply decomposition to the Near Detector data 
•  Extrapolate each component to get a Far Detector prediction 
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Step 3



Systematics
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•  Systematic uncertainty on the prediction from: 
–  Near decomposition 
–  Near and far detector differences 
–  Cross-section and interaction models 

•  Uncertainty still dominated by statistics 
–  5% syst, 15% stat 



Systematics
•  Systematic uncertainty on the prediction from: 

–  Near decomposition 
–  Near and far detector differences 
–  Cross-section and interaction models 

•  Uncertainty still dominated by statistics 
–  5% syst, 15% stat 
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νe Appearance Results

•  Expect:  49.1 ± 7.0 (stat.) ± 2.7 (syst.) 
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Step 4



νe Appearance Results

•  Expect:  49.1 ± 7.0 (stat.) ± 2.7 (syst.) 
•  Observe:  54 events, a 0.7σ excess 
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Step 4



νe Appearance Results
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for !CP = 0, sin2 2"23( ) = 1,

#m32
2 = 2.43$10%3 eV2

sin2 (2"13) < 0.12 normal hierarchy
sin2 (2"13) < 0.20 inverted hierarchy
at 90% C.L.

A new analysis is coming next 
year with improved sensitivity 
•  More data 
•  Significantly better 

background rejection 


