Muon Neutrino and Antineutrino Oscillations at MINOS

Alexander Himmel Caltech for the MINOS Collaboration

UC Santa Barbara, January 26th 2011

Introduction

- What is MINOS?
- Neutrino Physics
 - Oscillation Basics
 - MINOS Physics
- The Experiment
 - NuMI neutrino beam
 - MINOS detectors
- The Analyses
 - Neutrinos
 - Antineutrinos
- The Results

Argonne · Athens · Benedictine · Brookhaven · Caltech · Cambridge · Campinas · Fermilab · Harvard · Holy Cross · IIT Indiana · Iowa State · Lebedev · Livermore Minnesota-Twin Cities · Minnesota-Duluth · Otterbein · Oxford Pittsburgh · Rutherford · Sao Paulo · South Carolina Stanford · Sussex · Texas A&M · Texas-Austin · Tufts · UCL Warsaw · William & Mary

What is MINOS?

- Three components:
 - NuMI high-intensity neutrino beam
 - Near Detector at Fermilab measures the initial beam composition and spectrum
 - Far Detector in Soudan, MN measures the oscillated spectrum
- Detectors are magnetized unique among oscillation experiments

Neutrino Physics

- Oscillation Basics
- MINOS Physics

Neutrino Oscillations

- Interact in weak eigenstates (e, μ, τ)
- Propagate in mass eigenstates (1, 2, 3)
- Because the neutrinos have different masses, as they propagate they pick up relative phases, changing their relative amplitudes
- End up with a different weak eigenstates than we started with

- Analogous to the quarks, neutrino mixing is parameterized with 3 angles and 1 complex phase
- With three active neutrinos there are two independent mass differences:

$$-\Delta m_{\rm sol}^2 \approx \Delta m_{21}^2 \approx 8.0 \times 10^{-5} \text{ eV}^2$$
$$-\Delta m_{\rm atm}^2 \approx \Delta m_{32}^2 \approx 2.4 \times 10^{-3} \text{ eV}^2$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta_{23})\sin^2\left(1.27\Delta m_{atm}^2 \frac{L}{E}\right)$$

Monte Carlo $sin^2 2\theta = 1.0, \Delta m^2 = 3.35 x 10^{-3} eV^2$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta_{23}) \sin^2\left(1.27\Delta m_{atm}^2 \frac{L}{E}\right)$$

Monte Carlo $sin^2 2\theta = 1.0$, $\Delta m^2 = 3.35 x 10^{-3} eV^2$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta_{23})\sin^2\left(1.27\Delta m_{atm}^2 \frac{L}{E}\right)$$

Monte Carlo $sin^2 2\theta = 1.0, \Delta m^2 = 3.35 x 10^{-3} eV^2$

- Measurements of $|\Delta m^2_{atm}|$ and $\sin^2(2\theta_{23})$ via v_{μ} disappearance
- Measurements of $|\Delta \overline{m}_{atm}^2|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_{μ} disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

- Measurements of $|\Delta m^2_{atm}|$ and $\sin^2(2\theta_{23})$ via v_{μ} disappearance
- Measurements of $|\Delta \overline{m}_{atm}^2|$ and $\sin^2(2\overline{\theta}_{23})$ via $\overline{\nu}_{\mu}$ disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

- Measurements of $|\Delta m^2_{atm}|$ and $\sin^2(2\theta_{23})$ via v_{μ} disappearance
- Measurements of $|\Delta \overline{m}_{atm}^2|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_{μ} disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_e$ oscillations via v_e appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

- Measurements of $|\Delta m^2_{atm}|$ and $\sin^2(2\theta_{23})$ via v_{μ} disappearance
- Measurements of $|\Delta \overline{m}_{atm}^2|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_{μ} disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

- Measurements of $|\Delta m^2_{atm}|$ and $\sin^2(2\theta_{23})$ via v_{μ} disappearance
- Measurements of $|\Delta \overline{m}_{atm}^2|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_{μ} disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

- Measurements of $|\Delta m^2_{atm}|$ and $\sin^2(2\theta_{23})$ via v_{μ} disappearance
- Measurements of $|\Delta \overline{m}_{atm}^2|$ and $\sin^2(2\overline{\theta}_{23})$ via \overline{v}_{μ} disappearance
- Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations via v_{e} appearance
- Search for sterile *v*, CPT/Lorentz violation
- Atmospheric neutrino and cosmic ray physics
- Study *v* interactions and cross sections in Near Detector

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \stackrel{?}{=} P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$$

- Antineutrino parameters are less precisely known.
 - No direct precision measurements
 - MINOS is the only oscillation experiment that can do eventby-event separation

• Differences may imply new physics in the neutrino sector manifested as a difference in the effective mass-splitting.

P. Adamson, et. al, Phys. Rev. Lett. 101:131802 (2008)
Y. Ashie, et. al., Phys. Rev. D 71:112005 (2005)
Y. Ashie, et. al., Phys. Rev. D 71:112005 (2005)
M.C. Gonzalez-Garcia & M. Maltoni, Phys. Rept. 460:1-129 (2008)

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \stackrel{?}{=} P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$$

- Antineutrino parameters are less precisely known.
 - No direct precision measurements
 - MINOS is the only oscillation experiment that can do event- v_2 by-event separation v_1

• Differences may imply new physics in the neutrino sector manifested as a difference in the effective mass-splitting.

The Experiment

- NuMI neutrino beam
- MINOS detectors

The NuMI Beam

- Magnetic horns can focus either sign
- Enhance the v_{μ} flux by focusing π^+ , K^+
- Adjustable peak energy

Neutrino Mode

Antineutrino Mode

Alex Himmel

21

- x1.3 lower π production
- x2.3 lower interaction cross-section

NuMI Beam Performance

- Cannot directly observe the neutrino
- Instead, observe the charged particles after a neutrino interacts with a nucleus in the detector

- 4 cm x 1 cm plastic scintillator strips
- Embedded wavelength-shifting fiber
- Scintillation light amplified by multi-anode PMTs Alex Himmel

MINOS Detectors

Strips in alternating directions allow 3D event reconstruction

MINOS Detectors

Far Detector

•

5,400 tons

700 m in depth

735 km from the target

The Analyses

- 1. Select neutrino/antineutrino events in the detectors
- 2. Measure their energies to produce Near and Far detector spectra
- 3. Use the Near Detector spectrum to predict the Far Detector spectrum independent of oscillations
- 4. Fit the Far Detector data to measure oscillations

- Basic selection
 - In-time with the spill
 - In the fiducial volume
 - At least 1 reconstructed track
- CC/NC separation using a kNN algorithm
 - Compare to Monte Carlo events
 - Fraction of signal in k most
 similar events is the discriminant

"kNN"

Selecting Charged Currents

- CC/NC separation using a³
 kNN algorithm
- 4-parameter comparison
 - Track length
 - Transverse energy profile
 - Energy deposited per plane
 - Energy fluctuations along the track

Selecting Charged Currents

- CC/NC separation using a kNN algorithm
- 4-parameter comparison
 - Track length
 - Transverse energy profile
 - Energy deposited per plane
 - Energy fluctuations along the track

Selecting Charged Currents

- CC/NC separation using a kNN algorithm
- 4-parameter comparison
 - Track length
 - Transverse energy profile
 - Energy deposited per plane
 - Energy fluctuations along the track

- Added a second selector that accepts lower energy tracks
 - Number of planes in the track
 - Energy deposition at the end of the track
 - Amount of scattering
- The final selection is a logical OR of these two cuts.
Like the Low-E selector, improves low-energy efficiency

• Majority of lowenergy positive events are really neutrinos

• The neutrino analysis

no longer uses a charge-sign cut

Neutrino Selection

are really neutrinos

MINOS Preliminary

• Increase sensitivity by improving efficiency (89% vs. 87%) at the expense of contamination (1.7% vs. 1.2%)

Alex Himmel

Selecting CC Antineutrinos

- Use the CC/NC Selector
 - Removes NC and high-y CC interactions
- Accept only events with positive reconstructed charge

Efficiency & Purity

High energy v_{μ} contamination does not affect the oscillation result

- 2. Measure their energies to produce Near and Far detector spectra
- 3. Use the Near Detector spectrum to predict the Far Detector spectrum independent of oscillations
- 4. Fit the Far Detector data to measure oscillations

Muon Energy

Contained Tracks

- Measure the track length in the detector
- Gives muon energy using *dE/dx*
- 4.6% resolution at 3 GeV

Exiting Tracks

- Measure the track curvature
- Proportional to charge/ momentum
- 11% resolution at 3 GeV

Hadronic Shower Energy

- Measure calorimetrically
 - Sum energy of all nontrack hits in the event
- Standard for all previous MINOS analyses

Hadronic Shower Energy

Neutrinos

- New for 2010 analysis
- Use a *k*NN algorithm
 - Calorimetry and topology
- Average true MC energy of *k* nearest neighbors
- 43% resolution for 1-1.5 GeV showers

Events

Original Energy New Estimator

44

Neutrino Near Detector Data 🔁

- Majority of data taken in Low **Energy Beam**
- High Energy Beam gives us more events above the oscillation dip

Near Detector Spectrum

Flux and cross-section uncertainties cancel when extrapolated from Near to Far detector.

- 1. Select neutrino/antineutrino events in the detectors
- 2. Measure their energies to produce Near and Far detector spectra
- 3. Use the Near Detector spectrum to predict the Far Detector spectrum independent of oscillations
- 4. Fit the Far Detector data to measure oscillations

- The Near Detector and Far Detector spectra are not identical.
 - Due to π/K decay kinematics, neutrino energy varies with angle.
 - Near Detector covers a wider solid angle
 - Effect is larger with higher energy π
 - Travel further and decay closer to the ND

Beam Matrix Extrapolation

- A beam matrix transports measured • Near Det. spectrum to the Far Det.
- Matrix encapsulates knowledge of ulletmeson decay kinematics and beamline geometry
- MC used to correct for energy smearing and acceptance

5 True E_v (GeV)

10

100

Գ

Monte Carlo

Alex Himmel

- 1. Select neutrino/antineutrino events in the detectors
- 2. Measure their energies to produce Near and Far detector spectra
- 3. Use the Near Detector spectrum to predict the Far Detector spectrum independent of oscillations
- 4. Fit the Far Detector data to measure oscillations

• Fit performed by minimizing a binned -log likelihood

$$-2\ln L(\vec{\alpha}) = 2\sum_{i} \left[p_i(\vec{\alpha}) - d_i + d_i \ln \frac{d_i}{p_i(\vec{\alpha})} \right] + \sum_{j}^{N \text{ syst}} \frac{\Delta \alpha_j^2}{\sigma_{\alpha_j}^2}$$

$$\vec{\alpha} = [\Delta m_{\mathrm{atm}}^2, \sin^2(2\theta_{23}), \alpha_1^{\mathrm{syst}}, \alpha_2^{\mathrm{syst}}, \ldots]$$

• For neutrinos, systematics are included as parameters in the fit with penalty terms in the likelihood

- Effect of uncertainties estimated by fitting systematically shifted MC
- Analysis is still statistically limited
- The 4 largest systematics are included in the fit.

• Fit performed by minimizing a binned -log likelihood

$$-2\ln L(\vec{\alpha}) = 2\sum_{i} \left[p_i(\vec{\alpha}) - d_i + d_i \ln \frac{d_i}{p_i(\vec{\alpha})} \right]$$
$$\vec{\alpha} = \left[\Delta \overline{m}_{atm}^2, \sin^2(2\overline{\theta}_{23}) \right]$$

- For antineutrinos, a Feldman-Cousins approach is used
 - Many fake experiments used create empirical χ^2 distributions as a function of the parameters
 - Systematics included in the fake experiments

Systematics

- Effect of uncertainties estimated by fitting systematically shifted MC
- Systematics are very small relative to the statistical
 uncertainty
 - NC Background
 - WS CC Background
 - Track energy
 - Relative normalisation
 - Relative hadronic energy FD
 - Relative hadronic energy ND
 - Overall hadronic energy
 - Beam
 - ---- Cross sections

The Results

Alex Himmel

Blind Analysis

- These results are obtained from blind analyses
 - Finalized before looking at the full Far Detector data
 - selection cuts
 - data samples
 - extrapolation techniques
 - fitting routines
 - systematic uncertainties
- No changes have been made after box opening

And so...on to the results!

→2,451 expected without oscillations
→1,986 observed events MINOS Far Detector + Far detector dataNo oscillations
<math display="block">MINOS Far Detector + Far detector dataNo oscillations<math display="block">MINOS Far Detector + Far detector data<math display="block">MINOS Far Detector + Far detector data

→2,451 expected without oscillations

→1,986 observed events

Oscillations fit the data well – 66% of fake experiments have a worse χ^2

- Can see the characteristic dip of oscillations.
- Disfavor in a statistics-only fit:
 - Pure decay[†] at $> 6\sigma$
 - Pure decoherence[‡] at $> 8\sigma$

†G.L. Fogli *et al.*, PRD 67:093006 (2003) ‡V. Barger *et al.*,PRL 82:2640 (1999)

Alex Himmel

Far Detector Data

→155 expected without oscillations

→ 97 observed events

155 expected without oscillations
97 observed events

→ 155 expected without oscillations
→ 97 observed events
No-oscillations hypothesis is disfavored at 6.3 σ

Antineutrino Contour

$$\Delta \overline{m}_{atm}^{2} = 3.36_{-0.40}^{+0.45} \times 10^{-3} \text{ eV}^{2}$$
$$\sin^{2}(2\overline{\theta}_{23}) = 0.86 \pm 0.11$$

Dot-dash line is a fit to all non-MINOS data

M.C. Gonzalez-Garcia and M. Maltoni Phys. Rept. 460, 2008

Alex Himmel

-0.5

0

MINOS data

Best oscillation fit

5

 $\Delta \overline{m}^2 = 2.35 \times 10^{-3} eV^2$, $sin^2(2\overline{\theta}) = 1$

Dashed line shows the antineutrino prediction at the neutrino best fit point.

50

MINOS Preliminary

20

10

Reco. Energy (GeV)

30

40

10

5

50

40

30

20

10

Reco. Energy (GeV)

With More Antineutrinos...

- NuMI has begun accumulating another ~2x10²⁰ POT of antineutrino running.
 - More than double the dataset
 - Can reduce Δm^2 error by more than 30%

Conclusions

- MINOS has the most precise measurement of $|\Delta m^2_{atm}|$
- MINOS has the first direct, precision measurement $|\Delta \overline{m}^2_{atm}|$

$$\left|\Delta m_{\text{atm}}^2\right| = 2.35_{-0.08}^{+0.11} \times 10^{-3} \text{ eV}^2$$

 $\sin^2(2\theta_{23}) > 0.91 \text{ (at } 90\%)$

$$\left| \Delta \overline{m}_{\text{atm}}^2 \right| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{ eV}^2$$

 $\sin^2(2\overline{\theta}_{23}) = 0.86 \pm 0.11$

- Measured with double the neutrino data and a dedicated antineutrino run
- With more antineutrino beam we can rapidly improve the precision on the antineutrino oscillation parameters

Acknowledgements

- On behalf of the MINOS Collaboration, I would like to express our gratitude to the many Fermilab groups who provided technical expertise and support in the design, construction, installation and operation of the experiment
- We also wish to thank the crew at the Soudan Underground Laboratory for keeping the Far Detector running so well
- We also gratefully acknowledge financial support from DOE, STFC(UK), NSF and thank the University of Minnesota and the Minnesota DNR for hosting us

PUNDAL DE LA CONTRACTION

Helium in the Decay Pipe

- At the beginning of Run III, helium was added to the decay pipe to prevent failure of the upstream window.
 - Our previous flux simulation could not model the helium using GFLUKA as part of GEANT3
 - Replaced it with a new flux simulation that is all FLUKA which accurately predicts the effects of helium.

Target Degradation

- Began during Run II and continued through Run III
- The exact mechanism of the decay is not known
- Missing fins at the shower max in the target model the energydependent effect
- Target to undergo post-mortem later this year
- Cancels between the two detector

Far Detector Data

• Data shows the expected distributions of hadronic energy fraction for both neutrinos and antineutrinos

Feldman-Cousins

- Each point is the $\Delta \chi^2$ that encompasses 90% of fake experiments
 - A perfectly Gaussian surface would be 4.7 everywhere.

Antineutrino Contour

Atmospheric Neutrinos

 $\left|\Delta m^2\right| - \left|\overline{\Delta m^2}\right| = 0.4^{+2.5}_{-1.2} \times 10^{-3} \text{eV}^2$

The Neutrino Analysis

Since our previous measurement...

- P. Adamson, et. al, Phys. Rev. Lett. 101:131802 (2008)
- Additional data
 - 3.4×10²⁰ to 7.2×10²⁰ protons-on-target
- Analysis Improvements

- Updated simulation and reconstruction
- New selection improves lowenergy efficiency
- New shower energy estimator
 30% better low-energy resolution
- No charge sign cut
 - Reclaim mis-identified neutrino events at low energy
- Split data set into resolution bins
 - Increased statistical power

Analysis Improvements

- Updated simulation and reconstruction
- New selection improves lowenergy efficiency
- New shower energy estimator
 30% better low-energy resolution
- No charge sign cut
 - Reclaim mis-identified neutrino events at low energy
- Split data set into resolution bins
 - Increased statistical power

Reconstructed/true shower energy

Split data set into resolution bins

Increased statistical power

reconstruction

•

- Separate high-resolution and low-resolution events
 - High-resolution events give the most information about the oscillation dip
- Use the MC to parameterize resolution as a function of track and shower energy
- 6 bins 5 resolution quantiles, and 1 for positives

$$\frac{\sigma_{\text{trk}}}{E} = \frac{5.1\%}{\sqrt{E}} \oplus 6.9\%$$

$$\frac{\sigma_{\text{shw}}}{E} = \frac{40.4\%}{\sqrt{E}} \oplus 8.6\% \oplus \frac{275\text{MeV}}{E}$$

$$\sigma_{\text{evt}} = \sigma_{\text{trk}} \oplus \sigma_{\text{shw}}$$

Resolution Binning MINOS Preliminary

- 10^{2} •Separate high-resolution and low-resolution events
- 0.3- High-resolution events give the most information about the oscillation dip
- J_{total} / Reconstructed Energy 0.2 Use the MC to parameterize solution as a function of track and ^oshower energy
 - 0 6 8 10

Far Detector MC

0.5

6 bins^{Recon}Structed Entroy Gev quantiles, and 1 for positives

Best 20%

MINOS Preliminary

Neutrino Spectrum

Reconstructed Neutrino Energy (GeV)

Neutral Currents

Sterile Neutrino Search

Sterile Neutrinos

- Measurements of the Z⁰ width at LEP limit the number of active neutrinos to 3
- A 4th neutrino cannot couple to the Z⁰
 - Cannot participate in weak interactions
 - Hence is must be "sterile"
- Signature is a deficit in all active flavors
 - Neutral current interaction rate is independent of neutrino flavor
 - Look for a deficit in neutral currents at the Far Detector

Selecting Neutral Currents

- Now CC (track) events are the background
 - Want to eliminate events with long tracks.
- Selection
 - Whole event must be short
 - < 47 planes
 - And either:
 - No reconstructed track
 - Track extends less than 6 planes out of the shower

Extrapolation

- The Near and Far Detector spectra are not identical
- Again, we use the MC to account for these differences
- Far/Near ratio relates to the two detector spectra
 - Insufficient energy resolution for a beam matrix

$$FD_i^{pred} = \frac{FD_i^{MC}}{ND_i^{MC}} ND_i^{Data}$$

i refers to Energy bin

E_{reco} (GeV)

- Expected: 757 events
- Observe: **802** events
- No deficit of NC events

$$R = \frac{N_{\text{Data}} - N_{\text{BG}}}{N_{\text{NC Signal}}} \pm (stat) \pm (syst)$$

 $= 1.09 \pm 0.06 \pm 0.05$ (no v_{e}) $= 1.01 \pm 0.06 \pm 0.05 \ (\theta_{13} = 11.5^{\circ})$

becoming sterile neutrinos

Electron Neutrinos

Search for θ_{13}

v_e Appearance

$$\begin{split} P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) &\approx \sin^{2}(2\theta_{13}) \sin^{2}(\theta_{23}) \sin^{2}\left(1.27\Delta m_{31}^{2}\frac{L}{E}\right) + \\ &\sin^{2}(2\theta_{12}) \cos^{2}(\theta_{23}) \sin^{2}\left(1.27\Delta m_{21}^{2}\frac{L}{E}\right) + \\ &\sin(2\theta_{13}) \sin(2\theta_{23}) \sin(2\theta_{12}) \sin\left(1.27\Delta m_{31}^{2}\frac{L}{E}\right) \sin\left(1.27\Delta m_{21}^{2}\frac{L}{E}\right) \cos\left(1.27\Delta m_{32}^{2}\frac{L}{E} \pm \delta_{CP}\right) \end{split}$$

- If $\theta_{13} \neq 0$ a few percent of the disappearing v_{μ} 's could be become v_e 's
- The appearance probability also depends on the complex phase δ_{CP} and the **mass hierarchy** (via matter effects, not shown above)

- Preselection
 - Require good beam and in-time fiducial events
 - Cut events with long tracks (CC v_{μ})
 - Cut events above 8 GeV where no oscillation signal is expected

- Preselection
 - Require good beam and in-time fiducial events
 - Cut events with long tracks (CC v_{μ})
 - Cut events above 8 GeV where no oscillation signal is expected
- Selection
 - Distinguish a compact EM shower from a diffuse hadronic shower
 - Construct variables that parameterize shower shape
 - Use an Artificial Neural Network (ANN) based on 11 parameters
 Alex Himmel

- Preselection
 - Require good beam and in-time fiducial events
 - Cut events with long tracks (CC v_{μ})
 - Cut events above 8 GeV where no oscillation signal is expected
- Selection
 - Distinguish a compact EM shower from a diffuse hadronic shower
 - Construct variables that parameterize shower shape
 - Use an Artificial Neural Network (ANN) based on 11 parameters
 Alex Himmel

- Preselection
 - Require good beam and in-time fiducial events
 - Cut events with long tracks (CC v_{μ})
 - Cut events above 8 GeV where no oscillation signal is expected
- Selection
 - Distinguish a compact EM shower from a diffuse hadronic shower
 - Construct variables that parameterize shower shape
 - Use an Artificial Neural Network (ANN) based on 11 parameters
 Alex Himmel

- Preselection
 - Require good beam and in-time fiducial events
 - Cut events with long tracks (CC v_{μ}) ਦੂ 3000
 - Cut events above 8 GeV where no does 2000 oscillation signal is expected
- Selection
 - Distinguish a compact EM shower from a diffuse hadronic shower
 - Construct variables that parameterize shower shape
 - Use an Artificial Neural Network (ANN) based on 11 parameters
 Alex Himmel

Extrapolation

- Near Detector consists of 3 background components:
 - Neutral Currents
 - Charged Current v_{μ}
 - Beam v_e 's
- Each component extrapolates differently to the Far Detector
 - As with NC analysis, Far/Near is used

ND Decomposition

- Changing horn focusing changes the balance of the three components
- Fit three different focusing configurations
 - Low Energy (standard)
 - Horn Off
 - High Energy

Extrapolation

• Apply decomposition to the Near Detector data

Step 3

Extrapolation

- Apply decomposition to the Near Detector data
- Extrapolate each component to get a Far Detector prediction

Step 3

Extrapolation

Step 3

- Apply decomposition to the Near Detector data
- Extrapolate each component to get a Far Detector prediction

Systematics

- Systematic uncertainty on the prediction from:
 - Near decomposition
 - Near and far detector differences
 - Cross-section and interaction models
- Uncertainty still dominated by statistics
 - 5% syst, 15% stat

Systematics

- Systematic uncertainty on the prediction from:
 - Near decomposition
 - Near and far detector differences
 - Cross-section and interaction models
- Uncertainty still dominated by statistics
 - 5% syst, 15% stat

• Expect: $49.1 \pm 7.0 \text{ (stat.)} \pm 2.7 \text{ (syst.)}$

- Expect: $49.1 \pm 7.0 \text{ (stat.)} \pm 2.7 \text{ (syst.)}$
- Observe: 54 events, a 0.7σ excess

v_e Appearance Results

for
$$\delta_{CP} = 0$$
, $\sin^2(2\theta_{23}) = 1$,
 $\left|\Delta m_{32}^2\right| = 2.43 \times 10^{-3} \text{ eV}^2$

 $\sin^2(2\theta_{13}) < 0.12$ normal hierarchy $\sin^2(2\theta_{13}) < 0.20$ inverted hierarchy at 90% C.L.

A new analysis is coming next year with improved sensitivity

- More data
- Significantly better background rejection

