
 1 Copyright © 2011 by ASME 

 
Proceedings of the ASME 2011 World Conference on Innovative Virtual Reality 

WINVR2011 
June 27-29, 2011, Milan, Italy 

WINVR2011-5575 

DEVELOPING THE PLANCK MISSION SIMULATION AS A MULTI-PLATFORM 

IMMERSIVE APPLICATION 
 

 

Gerald A. Dekker Jr. 
John Moreland 

Purdue University Calumet, CIVS 
Hammond, Indiana, USA 

 

Jatila van der Veen 
University of California at Santa Barbara 

Santa Barbara, California, USA 

 

 

 

ABSTRACT 
Planck is an international mission led by the European 

Space Agency with significant contribution by NASA, 

designed to measure the anisotropy of the Cosmic Microwave 

Background (CMB), the oldest radiation of the universe, with 

the greatest accuracy and precision of any such CMB 

experiment to date. The present work was completed as part of 

the Planck Education and Public Outreach (E/PO) effort to 

communicate the results of Planck science to the public. The 

Planck Mission Simulation is a multiplatform, interactive 

visualization of the mission, from launch to orbital insertion to 

data gathering operations. The simulation was developed for a 

number of hardware and software configurations. Originally 

designed for a multi-screen virtual reality system, the scope of 

project grew to include other systems, including 3D kiosk 

displays, stereoscopic televisions, and domed-roomed systems. 

Implementation factors, technical details, and lessons learned 

from deployment on various platforms are discussed. 

 

INTRODUCTION 
 

The Planck Mission and Cosmic Microwave 
Background 
  Launched on May 14, 2009, the international Planck 

Mission is currently in its second year of mapping the 

microwave sky in nine frequency channels (30 to 857 GHz), 

with a temperature sensitivity of a few microKelvin and spatial 

resolution as fine as 5 arc minutes. The main scientific 

objective of Planck is to measure the spatial anisotropies of the 

temperature of the Cosmic Microwave Background (CMB), 

with an accuracy set by fundamental astrophysical limits. 

Planck will extract essentially all the information contained in 

the CMB temperature anisotropies, with which to constrain 

models of how the universe originated and evolved. Planck will 

also measure to high accuracy the polarization of the CMB, 

which encodes not only a wealth of cosmological information, 

but also provides a unique probe of the thermal history of the 

Universe during the time when the first stars and galaxies 

formed. In addition, the Planck All-Sky surveys will produce a 

wealth of information on the properties of extragalactic sources 

and on the dust and gas in our own Galaxy [1]. 

  Planck is the third generation of satellite to map the 

CMB, after CoBE (launched in 1989) and WMAP (launched in 

2000). Planck is an international mission, led by the European 

Space Agency with significant contributions from NASA, 

designed to improve our understanding of the origin and 

evolution of the universe. According to our current 

understanding, the universe began some 13.7 billion years ago 

in an unimaginably hot, dense, compact state, from which it 

suddenly expanded after an unknown period of dormancy. 

Within the first unimaginably short time span (on the order of 

10-30 seconds), the universe underwent a tremendous 

stretching, called inflation, which stretched the universe by 

some 40 orders of magnitude. Due to the inherent quantum 

uncertainties on small scales, this period of inflation ended at 

slightly different times throughout the infant universe, 

producing small fluctuations or inhomogeneities in the matter-

radiation field. As the universe continued to expand and cool, 

going through a series of phases of particle production, it 

became a fluid of tightly coupled matter and radiation. Dark 

matter, which does not interact electromagnetically, condensed 

out first, collecting in pockets due to its mutual gravitational 

attraction. As clumps of dark matter aggregated, they would 

have induced gravity-driven acoustic oscillations in the matter-

radiation fluid, much like stones dropping into a pond induce 



 2 Copyright © 2011 by ASME 

waves in the water. These acoustic waves propagated through 

the expanding universe, interfering with each other, until 

around 380,000 years after the so-called Big Bang, when the 

universe became cool enough for matter and radiation to 

decouple, and light could travel freely for the first time. The 

microKelvin fluctuations in the CMB that we measure today 

reveal the variations in the light that scattered off the acoustic 

waves in the early universe for the last time. Just as an acoustic 

power spectrum of a musical instrument gives information 

about the instrument itself from the fundamental and higher 

harmonics, similarly the spatial power spectrum of the CMB 

gives us a picture of the fundamental and higher harmonics of 

the primordial acoustic waves of the infant universe at the time 

when the universe first became transparent.  

 

  Prior to 380,000 years, the universe was opaque to 

electromagnetic radiation. Thus, the CMB is the oldest light we 

can observe, and holds clues as to the origin, properties, and 

ultimate fate of the universe. The next few years should prove 

to be quite exciting, as the data from Planck are expected 

provide answers to many of the fundamental questions about 

the universe, such as: Why is it that only around 4% of all 

observable matter and energy in the universe is baryonic – 

made up of protons, neutrons, and electrons – while 96% is in 

some dark form that we have not been able to measure directly? 

Was the initial expansion isotropic, apart from Gaussian 

fluctuations, or was there a primordial anisotropy? What is the 

actual geometry of the universe, which may be apparent in a 

repeating pattern in the CMB anisotropy? Planck’s ability to 

quantify the polarization of the CMB photons is expected to 

reveal the presence of gravitational radiation in the early 

universe which will test fundamental physical models beyond 

the Standard Model of particles and interactions.  

 

Educating the Public about the Real Science behind 
Cosmology 
  The science results that are anticipated from the 

Planck Mission are crucial to our search to answer questions in 

fundamental physics today.  The counterpart to the Large 

Hadron Collider (LHC), which is attempting to recreate 

energies that are expected to have existed in the early history of 

the universe, Planck is providing the window into the 

primordial universe.  The results of Planck may change our 

understanding of fundamental physics, thus it is important to 

educate the public about this mission. 

  Both NASA and the European Space Agency are 

working on a variety of products to educate the public about 

the science behind Planck. NASA’s Science Mission 

Directorate funds educational projects which support the 

science goals of all the missions, as well as the goals of 

NASA’s Office of Education. These goals are to strengthen 

science and technology education in the US, raise public 

awareness about the value of the various science missions, and 

contribute to the future science and technology workforce in 

the US through educational opportunities for students, teachers, 

and the public.  The American collaborators on the Planck 

Mission, funded by NASA, are developing a range of products 

for informal education which are designed to teach the public 

about the science goals of Planck and the technology behind 

the mission, as well as products for community college 

astronomy courses to improve understanding of cosmology for 

both instructors and students.  The Planck Mission Simulation 

is designed to increase public awareness of the Planck Mission 

and technology through an interactive 3D application. 

PROBLEM AND MOTIVATION 

Why visualization for E/PO? 
  With the advent of modern 3D and immersive 

visualization technology, it is possible to give people a virtual 

experience of concepts in astronomy that went into the 

implementation of the Planck Mission, and the technology of 

the satellite which is expected to yield such spectacular results. 

Through creating an immersive virtual solar system, the Planck 

Mission Simulation allows users to visualize distances in the 

solar system, the relationship of Planck to the Earth and Moon, 

and see Planck in orbit around the second Lagrange point, or 

L2, in the gravitational field of the Earth-Sun system.   

The Planck Mission Simulation is one of two projects that 

comprise the Planck Visualization Project. The Planck Mission 

Simulation, developed at Purdue University Calumet, is 

designed to give students, teachers, and the public an overall 

familiarity with the satellite in space. The other project – The 

Music of the CMB, developed at the University of California, 

Santa Barbara – utilizes the technique of sonification of the 

power spectrum of the CMB anisotropy to allow users to 

examine the fundamental and higher harmonics of the power 

spectrum, and explore different hypothetical model universes 

which would produce different power spectra, and hence 

different sounds [2], [3]. 

 

 

METHODOLOGY 
 

Diverse System Deployment Overview 
 Methods for the systematic design of immersive 

environments including elements such as navigation and 

interaction techniques have been established in the past [4]. 

While initially the Planck Mission Simulation was developed 

as an immersive system project, it grew in scope, growing to 

become capable of being run on many presentation 



 3 Copyright © 2011 by ASME 

configurations; each deployment tailored to a specific system 

and platform. The process by which the Planck application 

became so diverse was a combination of coincidence and 

planning. From the onset of the project, the Planck Mission 

Simulation program has had the capability to run on multiple 

operating systems: namely, Microsoft Windows and UNIX 

variants. Only after the conceptual basis of the project itself 

had matured did the need for a Cross Platform/Multiple 

Systems (CPMS) application become apparent, and so became 

a primary project concern. 

 Initially designed to run on the cross-platform 

visualization software package VR Juggler [5], the problem of 

porting to multiple operating systems had already been partially 

solved even before the issue had become a project goal. At the 

same time, an unofficial version of the application using the 

open source GLFW tool library [6] had been implemented to 

make testing possible outside of a full-scale VR system 

deployment. The GLFW library was also cross platform; this 

unofficial GLFW version of the Planck Mission Simulation 

became the core basis by which the application was deployed 

on small kiosk and portable systems. As the project progressed, 

with CPMS functionality in mind, special care was then taken 

to insure that any new software dependencies (such as image, 

sound, and video libraries) were capable of running on UNIX 

variants as well as Microsoft Windows. To simplify the 

concerns of code portability, all of the Planck Application’s 

fundamental software modules were written in C, which was 

known to be the most portable low-level programming 

language. 

 The Planck Mission Simulation Project has been 

deployed in two major variants: a phase I and a phase II 

release. Characteristics of the phase I release included: a 

mission visualization scenario, pre-recorded demonstrations via 

control state capture, and a menu system driven by hardware 

mapped control buttons. In addition to functionality allowing 

the user to follow along and interact with the Planck satellite 

during its mission, phase I also implemented features of the 

solar system to enhance and add additional possible learning 

components as in previous VR astronomy projects [7, 8]. The 

phase II release was a near complete redesign of phase I. 

Important differences included: improved models and 

navigation for the mission visualization, interactive exploration 

of satellite instrumentation, direct video/audio capture, 

expanded stereoscopic vision functions (GLFW based), and 

soft controls with pop-up panels in lieu of hardware buttons. 

 

Deployment using VR Juggler 
 The VR Juggler Suite is a sophisticated software 

package for the creation of virtual reality systems. As it is the 

primary package run at the Purdue Calumet CIVS facilities, VR 

Juggler compatibility became the primary focus of the initial 

deployment efforts. The VR Juggler Suite exhibits many 

desirable qualities; however, it cannot be said that it is without 

significant problems. 

 The VR Juggler project has always emphasized that 

the software suite is cross platform [9]: this is certainly true. 

Unfortunately, the VR Juggler project has progressed from pre-

built binary releases to a ―source code only‖ model. Experience 

has shown that significant build dependency requirements 

combined with poor documentation often means that building 

the VR Juggler Suite on a new platform could be a significant 

undertaking. Consequently, it was determined that VR Juggler 

should only be used on systems where an older pre-built binary 

release or a valid repository installation package exists. 

Additionally, configuration of a VR Juggler installation to 

match the display and control hardware is non-trivial, and 

further complicated by incomplete and out-dated 

documentation. 

 VR Juggler is a software layer: it offers abstraction of 

cross-platform functions such as display initialization, thread 

management, audio playback, and access to control devices. 

The Planck Visualization application made good use of the 

control and display device abstraction functionality, but 

avoided use of any of the additional abstraction methods. The 

reason for this: it was more efficient to incorporate audio and 

thread management functions on a lower level within the core 

Planck application code, as any use of a non-standard 

abstraction function needed to be changed for each additional 

front-end toolkit.  

Concerns of Deployment using GLFW 
 GLFW is a multi-platform toolkit designed to facilitate 

development of OpenGL applications [10]. In many respects, it 

is equivalent to a modern version of the classic Open GL 

Utility Toolkit (GLUT) developed by Mark J. Kilgard while 

employed at SGI [11]. In addition to Open GL context 

management, GLFW provides platform abstraction functions, 

such as thread management, precision timers, and OpenGL 

extension loading. Usage of abstraction methods beyond basic 

display and control management was avoided by the Planck 

application for the reasons mentioned prior: because of non-

standard functionality issues. 

 As GLFW is essentially just an OpenGL context 

management layer, provisions for stereoscopic vision were 

implemented by manipulating the OpenGL viewing frustum: 

creating two independent views and shifting/warping these 

views. To support various stereoscopic viewing technologies, 

multiple viewports (side-by-side), frame buffer color masks 

(anaglyph), and stencils (interlaced) were used to complete the 

stereoscopic illusion. Options for hardware quad-buffered 

stereo were also included for devices capable of utilizing this 

mode of operation. As the GLFW deployment was primarily 

for budget constrained deployments (such as commodity 



 4 Copyright © 2011 by ASME 

workstation based kiosks), no provision for head tracking 

devices was implemented.  

 Unlike the VR Juggler deployment, no sophisticated 

control device was presupposed. Control of the application was 

typically accomplished using a standard desktop mouse and 

keyboard; this is not to say that other control devices could not 

be accommodated (indeed, a game controller device was used 

successfully in a deployment).Use of a keyboard/mouse control 

arrangement proved to the correct choice for the GLFW based 

deployment: it was the often the only factor reliably consistent 

amongst the deployment platforms. 

Table 1:  EVALUATION OF THIRD PARTY LIBRARIES AND TOOLS FOR USE IN THE SIMULATION. 
 

Criteria 
(All Categories) 

Category Role Library/Tool Comments Used 

 
Must be free of 
charge. 
 
Must be readily 
available and/or 
easily built on target 
platforms. 
 
As dynamic library: 
undecorated function 
names (C-style 
interface). 
 
Must be 
documented. 
 
Professionalism in 
implementation. 
 
Focus/compactness: 
should not include 
features which are 
unneeded or 
unrelated to primary 
role. 
 

Graphics System 
Interface 

VR Juggler 
[5] 

Prerequisite, not evaluated 
against criteria list. 

Yes 

System 
Interface 

GLFW [5] Preferred for its similarity to the 
GLUT [8] API. 

Yes 

Audio System 
Interface 

Open AL [12] No other libraries considered. Yes 

Codec Ogg Vorbis 
[13] 

Initial compressed format used. Yes 

Codec Mpg123 [14] Preferred compressed format 
(mp3), API similar to Ogg 
Vorbis [10] . 

Yes 

Codec FFmpeg [15] Significant external 
dependencies, violates 
compactness criteria. 

No 

Image Decompressio
n 

FreeImage 
[16] 

Superior ratings in all criteria 
categories. 

Yes 

Decompressio
n 

DevIL [17] Library name unsuitable for 
funded/publically released 
project. 

No 

Video Encoder Revel [18] Simplified Xvidcore [16] 
interface; minor modifications 
necessary for recompilation. 

Yes 

Encoder Xvidcore [19] Direct usage of library 
somewhat complicated; would 
require re-implementation of 
Revel [15] features. 

Yes 

Font Renderer GLF [20] Primary font renderer for 
Phase I only. Limited font 
selection; poor small point size 
appearance. 

Yes 

Renderer FreeType2 
[21] 

Excellent library, simpler 
solution found.  

No 

Processor BMFont [22] TrueType font to texture 
image/definition conversion 
tool. Excellent bitmap font 
solution. 

Yes 

 



 5 Copyright © 2011 by ASME 

 

Porting to Different Operating Systems 
 There are numerous pitfalls associated with porting 

code to differing operating systems: writing code which using 

standard libraries eliminates many of these issues. However, a 

number of important programming functions differ amongst 

operating systems; namely, dynamic library loading, 

thread/process management, and timing functions. Additionally, 

any non-standard libraries chosen for usage must be capable of 

being built on the operating system of interest. 

 The Planck Mission Simulation makes extensive use 

of pure runtime library loading. To accommodate operating 

system differences, conditional compilation with abstraction 

functions were used to map the correct function calls (e.g. for 

POSIX: dlopen, dlclose, dlsym; on Windows: LoadLibrary, 

GetProcessAddress, FreeLibrary). Dynamic library loading 

enabled the Planck application to shed unavailable functionality 

gracefully, yet still operate in a meaningful way. For instance, if 

the audio library (Open AL [12]) was not available on a system, 

a dynamic linkage using a static export library would cause the 

application to fail on a system level. However, since pure 

dynamic loading was used, the absence of the library could be 

handled in the program code, and the audio functionality 

disabled without a general failure. Figure 1 depicts the isolation 

of library dependencies from core application functionality. The 

ability to selectively shed libraries dramatically decreased the 

time needed to deploy to a new system, though such a system 

would run with reduced program functionality. Related to this, 

Open GL extensions were loaded by using a method abstracted 

OS 
Abstractions

Dynamic 
Library Loader

System Interface Agent
GLFW* or VR Juggler

Control  Abstraction

* Indicates  Dynamically
Loaded Library

Display Abstraction

Scene Manager

Main Menu

Planck Launch

Planck Instruments

Credits

2D  
Scene Graph

and UI Widgets

Graphic 
Utilities

3D Collision 
Detection 
System

Texture 
Mapped Font

Assembler

FreeImage*

Audio 
Utilities

Open AL* Ogg Vorbis* Mpg123*

Font Texture File Font Metrics File

Solar System
Simulator

Planck 
Simulator

Trajectory File

Video 
Recorder

Revel* XvidCoreAVI File

Scenes

Model 
and 

Image Files

Sound Files

Collision Zone
Files

 
 

Figure 1: ISOLATION OF LIBRARY DEPENDENCIES THROUGH USE OF DYNAMIC LOADING. 
 
 



 6 Copyright © 2011 by ASME 

for each platform (i.e. glXGetProcAddressARB versus 

wglGetProcAddress). 

 Also using conditional compilation and abstraction 

were the thread management functions; appropriate POSIX and 

Microsoft Windows routines were called to start and stop the 

all worker threads.  The video recording portion of the Planck 

application employed a background thread for compressing and 

encoding video and audio into a standard Audio Video 

Interleave (AVI) file using Xvid [16] compression. Further, all 

audio effects (background music, etc.) were played using Open 

AL [9] streamed buffers maintained by worker threads. The 

advantage of thread-based streamed audio was two-fold: no 

apparent file load time lags, and dramatically reduced memory 

usage. Assuredly, concurrent programming utilizing threads 

improved overall program performance substantially; however, 

programming complexity increased in a non-trivial way due to 

provisions for thread resource release—especially in the case of 

unexpected user-induced program termination. 

 The intricacies of employing third-party libraries on 

various operating systems are perhaps the single greatest 

frustration in creating non-trivial applications. Table 1 presents 

criteria and choices made in library selection for the project. 

Where viable, it was found expedient to implement the desired 

functionality within the Planck application rather than rely on a 

third-party source. File loaders for simple uncompressed image 

and audio formats were directly incorporated into the Planck 

application code, with additional options for compressed 

formats (e.g. MPEG3 audio, JPEG textures) available if the 

required library was found on the system. By simply replacing 

crucial image and audio data with uncompressed equivalents, 

rapid deployment on a platform for which the compression 

libraries had not yet been built was possible. Additionally, the 

Planck application employed a built-in Wavefront OBJ model 

file format loader [23]: this ensured that models could be 

loaded and displayed for all systems which the application 

could itself be compiled on. 

User Interface Design 
 Phase I of the Planck Mission Visualization 

incorporated button mapping of hardware devices (IS-900 

wand, keyboard, and joystick) in conjunction with a screen 

cursor to facilitate user interactions [24]. This proved 

somewhat problematic, as the button mappings were numerous 

and somewhat complex. Based on user reactions, the Phase II 

release of the project refined the control interface to consist 

primarily of pop-up menus with labeled soft buttons. Not only 

did this facilitate greater system portability though reduced 

hardware requirements, it advertised functionality to the user. 

As nearly all program functionality is discoverable via 

navigation of the menus structure, users became aware of 

program options which had previously been overlooked. To 

facilitate ease of use, the control interface utilized item focus 

highlighting and sticky value detents on sliding controls for 

common value configurations. 

           
  

 Figure 2: ACTIVE ZONE DESIGN TOOL PANEL                 Figure 3: VIDEO/AUDIO CAPTURE CONTROL MENU. 
 BEING USED WITHIN THE APPLICATION. 



 7 Copyright © 2011 by ASME 

 Some of the new functionality incorporated into Phase 

II of the project (the interactive instrumentation explorer) 

required that some means exist to conveniently define active 

areas of the interactive model. The use of proximity to trigger 

the display of information has been shown to be effective in 

certain cases [25]. Proximity triggers were design in Phase II 

such that as users flew through certain areas within the Planck 

instrumentation, relevant graphics and information were then 

displayed. Since the shapes of various instrumentation was 

typically complex, a method needed to be devised to accurately 

define the appropriate proximity triggers.  As illustrated in 

Figure 2, the improved menu system was used with great effect 

to implement a tool panel which allowed creation and 

reviewing of active areas of the model to be used as proximity 

triggers. Active areas were defined as connected areas of 

spherical collision zones laid out by directly navigating the 

model space. Collision sphere zone size was adjustable from a 

control on the interface panel. Once an area was effectively 

mapped, the zone definition could be saved to a text file, where 

descriptive text could be added along with associations of 

thumbnail images and narrative sound files.  

 As Phase II of the project included real-time video and 

audio capabilities, it was necessary to implement a control 

panel interface for the encoder operations. Shown in Figure 3, 

control buttons and sliders on the panel allowed selection of 

various recording parameters, including video output size and 

frame rate. An active text display was also included on the 

control panel to display video capture status and statistics.  

 

ACTUAL SYSTEM DEPLOYMENT RESULTS AND 
OBSERVATIONS 
 As presented in Table 2, the Planck Mission 

Simulation has been tested and successfully deployed on a wide 

range of systems. Generally, hardware constraints were found 

to be the prime limiting factor, although the applications 

requirements are surprisingly modest. The Phase I release 

application was verified to run acceptably well at 1024x768 

resolution on a machine running FreeBSD having an Intel 1 

Ghz Pentium III processor and a Nvidia Geforce MX 420 video 

card. Phase II is more demanding, but has been run on a 

Windows XP system with circa 2002 hardware (AthlonXP 

2000, Nvidia Geforce4 Ti 4200) at reasonable frame rates. 

These results are in alignment with the project goals, as low 

hardware requirements make use of the application accessible 

to a wider audience. 

 
CONCLUSION AND FUTURE WORK 

Table 2: SAMPLE OF SYSTEM DEPLOYMENTS 

 

System Operating System Hardware 
Capabilitie

s 

Application 
Versions 

3D 
Technology 

Notes 

Two-screen VR 
system 

Windows XP, 
Fedora, Windows7 

High end 
workstation 

Phase I, II Infitec 
Passive 

IS900 tracker, VR 
Juggler 

Large-scale 
dome system 

Ubuntu High end 
workstation 

Phase I Active 
Stereo 

GLFW, hardware 
mode; joystick controls 

Hyundai 3D 
monitor  

Windows Vista Moderate Phase I,II Circular 
Polarization, 
Passive 

GLFW, interlaced 
mode 

Generic Intel 
Laptop 

Windows XP Low end Phase I Anaglyph GLFW, anaglyph 
mode. Low frame rate 

Aging Desktop FreeBSD Low end Phase I None GLFW  

Portable 
Visualization 
System 

Windows7 High end 
Workstation 

Phase II Circular 
polarization 
modulator 

IS900 tracker, VR 
Juggler 

Mac Mini  Windows7  Moderate Phase I,II Anaglyph Small form factor 
system 

Desktop Wine (Ubuntu) Moderate Phase II Anaglyph Essentially native 
performance speed 

Mac Mini Wine (OSX) Moderate Phase I None Low frame rate 

 



 8 Copyright © 2011 by ASME 

 The Planck Mission Simulation has been developed 

for deployment on a number of platforms. As the Planck 

Satellite continues to collect data and scientific discoveries 

from the data are made public, the Planck mission will become 

ever-more present in the public eye. The Education / Public 

Outreach arm of Planck mission is important to keeping the 

public well informed. Development of the software has 

produced a number of lessons learned. Minimizing third party 

dependencies and choosing libraries which port well when 

utilization is necessary are effective strategies for cross-

platform deployment. Designing an application to fail 

gracefully when missing dependency libraries can greatly aid in 

rapid development of a new platform deployment. Usage of on-

screen controls in lieu of hardware controller button mappings 

provides both a more intuitive interface and one which is 

useable in a greater variety of circumstances. Moreover, 

discrete usage of a common lower-level programming 

language, such as C, allows an application to be both portable 

and efficient; thereby facilitating usage of inexpensive 

hardware, or even reuse of older hardware, for visualization 

applications. 

Future work includes a possible implementation of the Planck 

Mission Visualization using WebGL and HTML 5. 

Additionally, making the application available on mobile 

devices and additional platforms will likely be an ongoing part 

of development. 

ACKNOWLEDGMENTS 
 The authors would like to acknowledge collaborators 

from the European Space Agency (ESA), the National 

Aeronautics and Space Administration (NASA), the Jet 

Propulsion Laboratory (JPL), and the Purdue Calumet Center 

for Innovation and Simulation (CIVS). 

REFERENCES 
[1] Planck Collaboration (2011). Planck Early Results: The 

Planck mission, Astronomy & Astrophysics manuscript no. 

Planck2011-1.1 c ESO 2011 January 12, 2011.  

 

[2] van der Veen, J. (2010). Planck Visualization Project: 

Seeing and Hearing the CMB, in Science Education and 

Outreach: Forging a Path to the Future, ASP Conference Series, 

Vol. 431, 2010 

 

[3] van der Veen, J., Alper, B., Smith, W., McGee, R., Lubin, P., 

and Kuchera-Morin, J. The Planck Visualization Project: 

Seeing and Hearing the CMB, poster delivered at the meeting 

of the American Astronomical Society, January 11, 2010, 

Seattle, WA. 

 

 [4] Bowman, D. A., & Hodges, L. F. (1999). Formalizing the 

design, evaluation, and application of interaction techniques for 

immersive virtual environments. Journal of Visual Languages 

and Computing, 10(1), 37–53.   

  

[5] www.vrjuggler.org 

 

[6] www.glfw.org  

 

 [7] Yair, Y., Mintz, R., & Litvak, S. (2001). 3D-virtual reality 

in science education: An implication for astronomy teaching. 

Journal of Computers in Mathematics and Science Teaching, 

20(3), 293–306. 

 

 [8] Klimenko, S., Nielson, G. M., Nikitina, L., Nikitin, I., & 

Strassner, J. (2004). Virtual Planetarium: Learning Astronomy 

in Virtual Reality. Proccedings of ED-MEDIA, 2004.   

 

[9] Cruz-Neira, C., Bierbaum, A., Hartling, P., Just, C., & 

Meinert, K. (2002). VR Juggler- An Open Source platform for 

virtual reality applications. In AIAA Aerospace Sciences 

Meeting & Exhibit, 40 th, Reno, NV. 

 

[10] Berglund, C. (2006). GLFW-An OpenGL Framework. 

 

[11] Kilgard, M. J. (1996). The OpenGL utility toolkit (GLUT) 

programming interface API version 3. 

 

[12] Hiebert, G. (n.d.). Openal 1.1 specification and reference. 

 

[13] http://xiph.org/vorbis/ 

 

[14] http://www.mpg123.de/ 

 

[15] http://www.ffmpeg.org/ 

 

[16] http://freeimage.sourceforge.net/ 

 

[17] http://openil.sourceforge.net/ 

 

[18] http://revel.sourceforge.net/ 

 

[19] Xvid. (2004). 1.0. 3 MPEG-4 codec source code. 

 

[20] http://paulbourke.net/oldstuff/glf/ 

 

[21] http://www.freetype.org/index2.html 

 

[22] http://www.angelcode.com/products/bmfont/ 

 

[23] Murray, J., & Van Ryper, W. (2005). Wavefront OBJ File 

Format Summary. 

 

[24] www.intersense.com 

 

[25] Celentano, A., & Pittarello, F. (2004). Observing and 

adapting user behavior in navigational 3D interfaces. In 

Proceedings of the working conference on Advanced visual 

interfaces (pp. 275–282). 

 

http://www.vrjuggler.org/
http://www.glfw.org/
http://xiph.org/vorbis/
http://www.mpg123.de/
http://www.ffmpeg.org/
http://freeimage.sourceforge.net/
http://openil.sourceforge.net/
http://revel.sourceforge.net/
http://paulbourke.net/oldstuff/glf/
http://www.freetype.org/index2.html
http://www.angelcode.com/products/bmfont/


 9 Copyright © 2011 by ASME 

 

 

 

 

 

 

 

 

 

 

 

 

 


