
Symmetry and Aesthetics  in  

Contemporary Physics 
 

CS-10, Spring, 2016 

Dr. Jatila van der Veen   



Introducing Richard Feynman:  A curious character! 

https://www.youtube.com/watch?v=QkhBcLk_8f0 

https://www.youtube.com/watch?v=QkhBcLk_8f0


Feynman: Symmetry in Physical Laws 

Questions? Comments? 

What parts did you find most interesting? 

What parts did you perhaps not understand? 

What parts do you perhaps not agree with? 

What do you think of his ending? 



right-handed and left-handed 

amino acids are utilized differently 

in living things 

broken symmetry 

or 

chance of 

initial conditions? 



natural  

sugar solutions 

rotate polarized light 

to the right (demo) 

p. 68 

in reader 

(52-5, 

Feynman) 



In thin section, certain 

minerals rotate plane- 

polarized light in 

characteristic patterns 

and colors 



Professor Chien-Shiung Wu 
     Wú Jiànxíong 
 
mirror symmetry is not fundamental 
without reversing the charge! 

CP symmetry violation: 
left-handed matter behaves  

like right-handed antimatter 







Almost symmetry: protons and neutrons 
 
Particles that are affected equally by the strong force but have different charges 
can be treated as being different states of the same particle with isospin values 
related to the number of charge states.  
 
Thus, in some internal “isospin space” protons and neutrons can be 

interchanged. 



Rotations in a plane are a representation of the group 
SO(2): Special Orthogonal group of order 2 which 
describes rotations in the Real plane. 
 



Rotations in a plane are a representation of the group 
SO(2): Special Orthogonal group of order 2 which 
describes rotations in the Real plane. 
 
* The group consists of rotations described by a matrix of sines and cosines.  
 
* The group SO(2) is  closed under matrix multiplication. 
 
* We found the identity element which “does nothing” to an object (we used 
a vector, or line segment). 
 
• Each element (rotation by ) has an inverse (rotation by 360- ),  
•such that  r  r-1 =  I.  
 



Rotations in a plane are a representation of the group 
SO(2): Special Orthogonal group of order 2 which 
describes rotations in the Real plane. 
 
* The group consists of rotations described by a matrix of sines and cosines.  
 
* The group SO(2) is  closed under matrix multiplication. 
 
* We found the identity element which “does nothing” to an object (we used 
a vector, or line segment). 
 
• Each element (rotation by ) has an inverse (rotation by 360- ),  
•such that  r  r-1 =  I.  
 
•Orthogonal: Determinant = 1                                       det = cos2 + sin2 = 1 
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•Generalize to a sphere: SO(3)  

lengths and angles 

are preserved under 

rotations and translations 



SO(4) 

rotation 

in 

4-D 

just 

for fun! 
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Galilean Invariance: 
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v  Newtonian mechanics is based on the 

assumption that space is SO(3) and time 

is an independent variable. 



Galilean Symmetry: All inertial reference 

frames are identical. If you don‟t look out 

the window, you can‟t tell if you‟re moving 

or not.  
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Galilean Transformation written out as 

equations (left) and in short hand (matrix) 
notation (right). 



J. C. Maxwell  
1831 – 1879  

Towards the end of the 19th century, James Clerk Maxwell, 
building on previous work of Faraday, Gauss, Lenz, and 
others, discovered a new symmetry of Nature: 
 

A changing electric field produces a magnetic field. 
A changing magnetic field produces an electric field. 

Michael Faraday  
1791-1867  

Heinrich Lenz 
1804-1865  
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Imagine being at rest on an electric 
charge moving at constant v in a 
magnetic field.  
In this case the magnet appears to be 
moving relative to you.  
A static charge feels only an electric field. 
So you conclude that the moving magnet 
must be producing an electric field 
because there is a force that is 
accelerating you in a circular path. 
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Now suppose you are at rest on the magnet. You feel a magnetic force 
on you when the charge whizzes by. A magnet cannot feel an electric 
force, so you conclude that the moving charge must produce a 
magnetic field.  

Hence, Maxwell‟s equations: 



And Maxwell is credited with figuring out that light is an 
electromagnetic wave that travels at a constant speed in a 
vacuum, depending only on the 
properties of the vacuum: 



y y‟ 

v  

u 

Critter running at velocity v in a train moving with 

velocity u has velocity V relative to an observer 

on the platform: 

uvV 

y y‟ 

v  

But shining a light in the train moving with 

velocity u does not result in an observer on 

the platform measuring a velocity V for the 

speed of light! 

c 
cvV 

? 

Applying Galilean reasoning to this led to a contradiction: 



A. A. Michaelson  
1852-1931 

Edward Morley 
1828 - 1923 

Famous Michaelson – Morley experiment of 1887 tried to 
demonstrate the presence of “ether” that permeates 
space, and was thought to alter the speed of light 
depending on the direction, which should be seen as the 
Earth changed direction of  travel... 
 
THE MOST SUCCESSFUL FAILED  EXPERIMENT IN HISTORY  

But folks thought that if light is a wave, there must be some medium for 
it to propagate through. So they decided that there must be an “ether” 
permeating space, through which light can travel.  

http://en.wikipedia.org/wiki/Image:Edward-Morley-1887.jpg


c’ = c – ve   

c’ = c + ve  

Expectation: speed of light should be different at different 

times of the year, depending on relative velocity of Earth 

through the ether, which was presumed to have a velocity 

of its own, similar to a flowing river. 



Michaelson & Moreley‟s interferometer 



Hendrik Lorentz proposed 

that moving bodies experience 

a time dilation relative to a „local 

time‟ and a length contraction 

relative to a local observer. 

 

He concluded that it would be 

impossible for either observer 

to tell which one was moving, 

and which one was not. 

Hendrik Antoon Lorentz 

(1853 – 1928) 
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cτ  

vt  

c2 t2 = v2 t2 + c2 τ 2  

Imagine a train with a light clock that 

“ticks” with a pulse of light once/second. 

view from inside the train 

view from the track 



c2 t2 = v2 t2 + c2 τ 2  
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Conclusion: Time is NOT the same for 

each observer, when they try to compare 

measurements in each other‟s frame. 
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As v  c,  τ 0  As v  c,  t  ∞   

Time ceases to exist  
for a light beam. 

The length of a second on a light 
beam  approaches infinity as seen 
by an observer who is NOT on the 
light beam.  

As v  0,   τ   t which is just the Galilean transformation    
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For motion along the x-axis:  

The Lorentz Transformation looks suspiciously like a ROTATION 

which MIXES space and time! 
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x’ = x cos  + y sin   
y’ = - x sin   + y cos  
for any angle  

Rotation in space of x and y to x‟ and y‟ 
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For motion along the x-axis:  



r  

r2 = x1
2 + x2

2 + x3
2 =  c2t2  

   or 
x1

2 + x2
2 + x3

2 – c2t2 = 0  

Putting these together, we have: 

Developing the idea of a new ‘geometry’ for spacetime: 
A pulse of light spreads out in a sphere of radius r. A sphere is defined in space  
at any instant of time as satisfying the relation:   r2 = x1

2 + x2
2 + x3

2 . 
But, since light travels at speed c, we know the sphere is expanding as its radius 
grows at the rate     r = ct . 

S  

If we generalize these coordinates to x1 , x2 , x3 , and x4 we must 
choose x4 = ict where i = √(-1)   

So, Einstein generalized space and time coordinates  
into a spacetime continuum in a complex “geometry:” 

x1 = x  
x2 = y  
x3 = z  
x4 = ict  



So, we have  x1
2 + x2

2 + x3
2 + x4

2 =  x2 + y2 + z2 – c2t2 = 0  

r’  

An observer in another frame would 
observe for the same light pulse: 

x’2 + y’2 + z’2 – c2t’2 = 0  

We know c = constant for all observers. 

So we define the invariant “spacetime interval: ” 

Δs2 = Δx2 + Δy2 + Δz2 – c2 Δt2   



Δs2 = Δx2 + Δy2 + Δz2 – c2 Δt2   

For (Δs2 ) > 0   points are space-like separated  
 
For (Δs2) = 0    this corresponds to Δx2 + Δy2 + Δz2 = c2 Δt2 or traveling at  
                          the speed of light – called “null” or “light-like” separated  
 
For (Δs2) < 0    points are time-like separated  

y 

ict  

photons with zero rest mass follow paths of Δs2 = 0  

particles with non-zero rest mass follow time-like paths (world 
lines) always inside the light cone 

particles which follow space-like world lines have been 
called tachyons. Tachyons would travel always faster 
than the speed of light, would have negative energy, 
and would violate causality...none have ever been 
observed!  x  



Without deriving here, for motion in the x-direction (like we looked 
at before), the analog is a rotation of the ct and x axes, and instead 
of “regular” sine and cosine, we must use the hyperbolic sinh and 
cosh.  

ct’ = ct (cosh  ) – x (sinh  ) 
x’ = -ct (sinh  ) + x (cosh   ) 
y’ = y  
z’ = z   

x 

ct  

x’ 

ct’ 

   

A 

B 

cΔt  

Δx  
We call this a 

Lorentz boost. 
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The light cone is the locus of points that 
would be traced out by a pulse of light 
emitted at P or converging on it. The surface 
of the pulse would be an expanding or 
contracting sphere in three spatial 
dimensions. In this diagram, showing only 
two spatial dimensions and time, it appears 
as the circular cross section of a cone. 

Clocks are devices that are used for measuring time-like distances. 
Rulers are devices that are used for measuring space-like distances. 

From the definition  Δs2 = Δx2 + Δy2 + Δz2 – c2 Δt2   
 
we define Δτ2 ≡ - Δs2/c2  as the proper time  



* Euclidean space 
* Rotations, translations in 3-space 
* Euclidean Group 

* Minkowski space 
* Rotations, translations, 
and “Lorentz boosts” in 
4-space (3 space, 1 time 
dimension) 
* Poincare Group 

Old perception: 

New 

perception: 



Thus we have a NEW SYMMETRY. Space is not really 

SO(3) with independent time. Spacetime is SO(4). 

The laws of physics are not violated. 

Our perception of space and time must be restructured to 

understand SPACETIME! 

Group Representations Degrees of freedom 

SO(2) Circle, motion in a plane [2(2+1)/2] = 3 d.f. 
1 rotation angle, 2 

directions of translation 

SO(3) Rotations on a sphere [3(3+1)/2] = 6 d.f. 
3 rotation angles,  

3 directions of translation 

SO(4)  
“Poincare Group” 

Spacetime [4(4+1)/2] = 10 d.f. 
3 rotation angles, 

3 directions of translation, 
3 ‘boosts’ 

1 direction of time 





x 

ct  

x’ 

ct’ 

   

What would it look like ? 



We define the “proper” frame as the frame in which the observer is at 

rest. 

Define:  = proper time measured by observer in his/her rest frame 

Define: L0 = proper length measured by observer in his/her rest frame 

Define: t‟ = time as measured in the “other” frame 

Define: L‟ = length as measured in the “other” frame 
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Some consequences: 



J. van der Veen, 2007 

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

beta

g
a

m
m

a

c

v














2

2

1

1

c

v


Foreshortening of length in the direction of travel as 
observer approaches the speed of light 

v/c gamma 
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cosmic ray hits upper atmosphere 

hits an atom, releases pions 

pions decay into showers of muons  

In Earth rest frame: 
L0 = 10 km = height of 
atmosphere 
 
In rest frame of muons: 
= half life = 2.2 x 10-6 sec. 
 

What is L’ of atmosphere, 
as seen by muons which 
travel at .98c? 
 
What is the half life of 
muons as observed in the 
Earth frame? 

2

2

2

2

1

1

'

0

'

c

v

c

v

t

LL








muons decay before reaching the ground  

BUT many muons still reach detectors underground. How? 
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So L’ = .2L0 = (.2) x 10km = 2 km 
 
This result tells us that from the reference frame of the muons, moving at .98c relative 
to the ground, the length of the atmosphere appears to be only 2 km instead of 10 km! 

What is L’ of atmosphere, as seen 
by muons which travel at .98c? 
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What is the half life of muons as observed in the Earth frame? 

Half life as seen by an observer on Earth is longer than the half life as measured in the 
muons’ rest frame: 

sec101.1
2.

sec102.2
' 5

6







t



kmkmkm
L

L 299.1)10(199.' 0 


sec101.1sec)102.2(5 56'   t

length of atmosphere as  
seen by muons in their frame 

half-life of muons as 
measured in Earth frame 

How many muon half-lives pass 
before the muon shower hits the 
ground? 

Remember: The Earth observer sees the 
muons traveling at .98c “down” and the 
muons see the ground traveling “up” 
 at .98c! 



Earth observer measures: 
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half lives 

half lives 

for the muons to traverse the 
atmosphere 

for the muons to traverse the 
atmosphere 

3a. How much time passes in each observer’s frame? 

3b. How many half lives go by in each observer’s frame? 

Earth observer sees the muons moving down at a constant 
speed of .98c, and the muons see the ground moving up 
towards them at a constant speed of .98c.  Using the 
relationship that time elapsed = distance/speed: 



Artists’ renditions of the view 
through the front window of a 
space vehicle traveling near light 
speed. 

“ They’ve gone to plaid!”  



Diagram of a Lorentz boost taken from Sean Carroll’s on-line notes on General 
Relativity,  available at   
http://arxiv.org/PS_cache/gr-qc/pdf/9712/9712019v1.pdf.  

v = c = 1 

v = - c = -1 

 

 

at x’ = 0 : 

As v  c the axes collapse! 



http://casa.colorado.edu/~ajsh/sr/congridbig_gif.html 



 
van der Veen, 2010 

A relativistic bike ride through Tubingen, Germany  
Prof. Ute Kraus http://www.spacetimetravel.org/tuebingen/tuebingen.html 





camera standing still camera moving at .8c 

camera moving at .95c (left) and .99c (right) 



v  
Train  

Platform  

M’ 
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A B 

Imagine a long train moving at speed v relative to a 
platform. At the moment that the front and back of the 
train coincide with points A and B on the platform, and 
the center of the train M’ coincides with the midpoint 
of A and B (call it M) on the platform, lightning strikes 
the front and back of the train, as seen by the station 
master. 



v  

Platform  

M’ 
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v  

Platform  

M’ 
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v  

A B 

The observer at M sees the light from the lightning reach him simultaneously, 
but the observer at M’ sees the light from the strike at the front of the train before  
  she sees the light from the strike at the back of the train.  

The light from each lightning bolt travels at c in all directions from each strike.  
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Graphical depiction of the Relativity of Simultaneity: 

 

Events A and B are simultaneous in the primed frame, but not in the 

unprimed frame. t‟ = 0 but t is not. A and B are spacetime separated by 

ct in the x,ct frame  

Lines of constant  

t are parallel to the 

x axis. 

Lines of constant 

t‟ are parallel to the 

x‟ axis. 



Events that are simultaneous (constant t) in one frame will 

not be seen as simultaneous in another which is moving 

relative to the first. 

 

The speed of light will always be measured the same in any 

reference frame. 

Green frame: A and B are 

simultaneous 

 

Red frame: A occurs before B 

 

Blue frame: B occurs before A 



Light pulse viewed by observer in its rest frame –  

light is emitted at the center, bounces off spherical  

mirror, and returns to the center 

Light cone in observer‟s 

rest frame 

Light cone for a 

moving observer 

seen by non-

moving observer 

http://casa.colorado.

edu/~ajsh/sr/simulta

neous.html 



Anand 

Das, 

2013 











Truth = laws of Nature. We 

understand by reason. 

Math is the language of 

reasoning with Nature. 

Math gives us a way to 

understand what we can‟t 

experience 

Reality = subjective, based 

on observations, which 

depend on the observer. 

“Truths” derived from 

perception are not 

universally true. Every 

person‟s reality is unique 

Special Relativity ushered in a new paradigm in 

western thought: 



In the early 20th century, relativity 

became a popular theme in art, 

music, and literature 



African mask, Fang people  

Nok sculpture,  
Louvre exhibit  

Detail from Les Demoiselles  

Cubist movement was heavily 

influenced by primitive art as an 

abstract geometric formulation of 

perceived reality. 



Rene Magritte  

Salvador Dali  



Picasso explored the problem of representing  simultaneous 

viewpoints on one canvas. 



 
van der Veen, 2010 

Les Demoiselles d'Avignon  
Pablo Picasso, 1907 



Guernica, painted by Picasso in 1939  



Guitar and Flowers 
Juan Gris, 1912 

Harbor in Normandy  
Georges Braque, 1906  

Attempt to portray simultaneous viewpoints from 3 or 4 dimensions 
onto 2.  



Escher – 

playing with rotations 

through 4D? 





Umberto Boccioni (1882-1916) 
Dynamism of a Soccer Player (oil on canvas, 1913)  

Representing intervals of time at one time, over a certain spatial interval 



Multiple exposure photographs of  

Etienne-Jules Marey – 

technology for representing temporal 

sequences simultaneously  



Marcel Duschamp 
descending a flight of  
stairs.  

Nude descending a flight  
of stairs, by Marcel Duschamp, 
1916 



Andreas Gianopoulous, 3rd year math major, CCS-120, 2011 



X-rays: looking through 

multiple layers in one  

view  

modern galaxy surveys: looking back 

through a slice of spacetime  



Planck All-Sky map – composite of 9 frequencies from 30 to 857 GHz 
Looking back through 13.7 billion years of time on one image  


