

Symmetry and Aesthetics in Contemporary Physics CS-10, Spring 2016 Dr. Jatila van der Veen CLASS 6: FURTHER INTERROGATIONS OF REALITY

Special Relativity ushered in a new paradigm in

 western thought:$$
\begin{aligned}
& \text { Kinowing ovir sbeling }
\end{aligned}
$$

Truth = laws of Nature. We understand by reason. Math is the language of reasoning with Nature. Math gives us a way to understand what we can't experience

Reality = subjective, based on observations, which depend on the observer. "Truths" derived from perception are not universally true. Every person's reality is unique

Last week we looked at "reality" moving at high speeds:

A relativistic bike ride through Tubingen, Germany Prof. Ute Kraus http://www.spacetimetravel.org/tuebingen/tuebingen.html

a photorealistic view of relativistic travel:
https://www.youtube.com/watch?v=JQnHTKZBTI4
lack of simultaneity in special relativity: https://www.youtube.com/watch?v=Xrqi88zQZJg

eans voruoder to oder atberspeangue. Letgoin Zog Yoequ.

$$
a^{2}-a b=a b+a c-b^{2}-b
$$

$$
a \in \text { subth. }
$$

$$
\begin{gathered}
a^{2}-a b-a c=a b-b^{2}-b c \\
a(a-b-c)=b(a-b-c) \\
a=b
\end{gathered}
$$

Salvador Dali

Rene Magritte

A RIFFERENT BEAHTY?

A Dance in Tha Fire

Nestinar, Ivailo Ayanski, Bulgaria

"On this day, June 3," explained Ivailo, "all cosmological signs of earth, fire, water, air, come together. All these forces align and create the appropriate conditions for firewalkers to go beyond the everyday, to overcome, what are considered the laws of physics. On that day, in the fire, everything turns its sign around.

Ayanski interview, 2011:

https://www.youtube.com/watch?v=fGcRgUvyxLs

Ayanski, firewalk, 2010:
 https://www.youtube.com/watch?v=5rAb8GDa x4

"I know about the power of minerals and stones; the whole of nature talks to me and resonates within me. I communicate with the world on a different vibrational level. It is a magical thing which was given to me during my childhood by my grandmother and I am immensely thankful for it."

Lifted Up by the Power of the Saints: Prihvanati, Music, and Embodied Experience in the Firewalking Rituals of Two Bulgarian Nestinari Plamena Kourtova, 2007, Masters Thesis http://diginole.lib.fsu.edu/islandora/object/fsu:181082/datastream/PDF/view

Discussion of Zee's chapters 3 \& 4, in which he recounts basically the same story as we read in Feynman and discussed in class, but with his own perspective...

Comments?
Opinions on his explanations?

What do you think of his statement in the last paragraph on p. 75?

Recall from last week:

p. 54:

Relative motion as a symmetry Galilean invariance

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
\Delta t^{\prime}
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z \\
\Delta t
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & v \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
x^{\prime}=x-v \Delta t
$$

$$
y^{\prime}=y
$$

$$
z^{\prime}=z
$$

$$
t^{\prime}=t
$$

time is the same for everybody

Imagine a train with a light clock that "ticks" with a pulse of light once/second.

view from the track

$$
c^{2} \Delta t^{2}=v^{2} \Delta t^{2}+c^{2} \Delta \tau^{2}
$$

Lorents Invariance: For motion along the x-axis:

$$
\begin{aligned}
& x^{\prime}=\frac{x-v t}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& t^{\prime}=\frac{t-\frac{v x^{2}}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& y^{\prime}=y \\
& z^{\prime}=z
\end{aligned}
$$

Developing the idea of a new 'geometry' for spacetime:

A pulse of light spreads out in a sphere of radius r. A sphere is defined in space at any instant of time as satisfying the relation: $r^{2}=x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}$. But, since light travels at speed c, we know the sphere is expanding as its radius grows at the rate $r=c t$.

If we generalize these coordinates to x_{1}, x_{2}, x_{3}, and x_{4} we must choose $\mathrm{x}_{4}=$ ict where $\mathrm{i}=\mathrm{V}(-1)$

So, Einstein generalized space and time coordinates into a spacetime continuum in a complex geometry, and introduced the idea of 4-vectors with components

$$
\begin{aligned}
& x_{1}=x \\
& x_{2}=y \\
& x_{3}=z \\
& x_{4}=i c t
\end{aligned}
$$

Clocks are devices that are used for measuring time-like distances. Rulers are devices that are used for measuring space-like distances.

So, we have $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+x_{4}{ }^{2}=x^{2}+y^{2}+z^{2}-c^{2} t^{2}=0$
An observer in another frame would observe for the same light pulse:
'

$$
x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-c^{2} t^{\prime 2}=0
$$

We know c = constant for all observers.

So we define the invariant "spacetime interval: "

$$
\Delta s^{2}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-c^{2} \Delta t^{2}
$$

From the definition $\Delta s^{2}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-c^{2} \Delta t^{2}$
we define $\Delta \tau^{2} \equiv-\Delta s^{2} / c^{2}$ as the proper time

```
\Deltas}\mp@subsup{}{2}{2}=\Delta\mp@subsup{x}{}{2}+\Delta\mp@subsup{y}{}{2}+\Delta\mp@subsup{z}{}{2}-\mp@subsup{c}{}{2}\Delta\mp@subsup{t}{}{2
\Deltat}\equiv-\Delta\mp@subsup{s}{}{2}/\mp@subsup{c}{}{2}\mathrm{ is the proper time
```

For $\left(\Delta s^{2}\right)>0$ points are space-like separated

For $\left(\Delta s^{2}\right)=0$ this corresponds to $\Delta x^{2}+\Delta y^{2}+\Delta z^{2}=c^{2} \Delta t^{2}$ or traveling at the speed of light - called "null" or "light-like" separated

For $\left(\Delta s^{2}\right)<0$ points are time-like separated
particles with non-zero rest mass follow time-like paths (world lines) always inside the light cone

photons with zero rest mass follow paths of $\Delta s^{2}=0$
particles which follow space-like world lines have been called tachyons. Tachyons would travel always faster than the speed of light, would have negative energy, and would violate causality...none have ever been observed!

Intuitive derivation: see pp. 70-75 of Fearful Symmetry...
classically,

$E=\frac{m v^{2}}{2}$	
$p=m v$	$p^{2}=m^{2} v^{2}$
$E=\frac{p^{2}}{2 m}$	

Einstein's guess:
we get the dispersion relation between energy and momentum in classical physics

$$
E^{2}-c^{2} p^{2} \text { is the invariant quantity (Energy - momentum) }
$$

$$
E^{2}-c^{2} p^{2}=\left(m_{0} c^{2}\right)^{2}
$$

in particle's rest frame, $p=0$

$$
E= \pm m_{0} c^{2}
$$

Dirac: negative root \rightarrow antimatter We'll come back to this controversy later!

Aside: Without deriving here, Einstein's revision of Newtonian ideas of mass and momentum:

...hence, as you approach the speed of light, mass increases without limit - i.e., only massless particles can travel at the speed of light

- A global symmetry does not depend on spacetime.
* A local symmetry depends on spacetime.

symmetry

(invariance with respect to automorphism groups)

RECALL:

$L^{\prime 2}=x^{\prime 2}+y^{\prime 2}=x^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+y^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=x^{2}+y^{2}=L^{2}$

Call this rule " Λ " for describing the counter clockwise rotation of the reference frame:

$$
\Lambda=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

If this describes a group, it should have the 4 properties that define a group:

Is it closed under repeated rotations?
Are repeated rotations associative? Is there an identity element ? $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
Is there an inverse? If it is a group, there should be!

$\Lambda=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

general rule for finding the inverse of a matrix:

$$
\Lambda^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{\operatorname{det} \Lambda}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

$\Lambda=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right) \quad \operatorname{det} \Lambda=\cos ^{2} \theta+\sin ^{2} \theta=1$
$\Lambda^{-1}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)^{-1}=\frac{1}{\operatorname{det} \Lambda}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
$=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

check: does $\Lambda^{-1}=1$?

$\Lambda^{-1} \Lambda=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
$=\left(\begin{array}{cc}\cos ^{2} \theta+\sin ^{2} \theta & -\cos \theta \sin \theta+\sin \theta \cos \theta \\ -\sin \theta \cos \theta+\cos \theta \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta\end{array}\right)$
$=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \checkmark \mathrm{YES}!$

Summary of SO(2):

Transpose

$$
\Lambda=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

$$
\Lambda^{T}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

$$
\Lambda^{T} \Lambda=\left(\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & 0 \\
0 & \cos ^{2} \theta+\sin ^{2} \theta
\end{array}\right)
$$

$$
=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

condition of orthogonality: the inverse is the transpose

plus the special property: $\operatorname{det} \Lambda=\cos ^{2} \theta+\sin ^{2} \theta=1$
This is a representation of the infinite group of rotations in the real plane - Special Orthogonal Group of order 2.
Conditions for all SO(n) groups: Orthogonal, and determinant =1

Galilean Symmetry: All inertial reference frames are identical. If you don't look out the window, you can't tell if you're moving or not. Global symmetry in 'flat' space.

Galilean Transformation written out as equations (left) and in short hand (matrix) notation (right). Global symmetry IN Euclidean space

$$
\begin{aligned}
& x^{\prime}=x-v \Delta t \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& \Delta t^{\prime}=\Delta t
\end{aligned}
$$

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
\Delta t^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & -v \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
\Delta t
\end{array}\right)
$$

In the flat, 4D Lorentz-invariant reference frame (Minkowski spacetime) in which we envision ourselves 'at rest' in a moving (but still inertial) frame, at some velocity which is a large fraction of the speed of light, we have 'four vectors' ($-t, x$, y, z).

Diagram of a Lorentz boost taken from Sean Carroll's on-line notes on General Relativity, available at http://arxiv.org/PS_cache/gr-qc/pdf/9712/9712019v1.pdf.

Lorente Invariance: For motion along the x-axis:

$$
\text { DEFINE: } \begin{aligned}
& \gamma=\frac{1}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}} \\
& \beta=\frac{v}{c} \\
& o r, v=\beta c
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime}=\gamma(x-v t) \\
& t^{\prime}=\gamma\left(t-\frac{\beta x}{c}\right)
\end{aligned}
$$

Lorentz Transformation: the rule that translates between inertial reference frames

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
t^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{\gamma \beta}{c} & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]
$$

Figure 9. Classification of symmetry

Michael Faraday in his lab Painting by Harriet Jane Moore

Faraday's Field Lines:
The first idea that a charge creates a field which influences the shape of the space around it, and effects other charges.

Definition of unitary groups $\mathbf{U}(\mathrm{n})$:

$\mathrm{U}^{*}=\mathrm{U}^{-1} \ldots$ i.e., the complex conjugate transpose

 is equal to the inverse
Special unitary groups SU(n):

satisfy the additional condition that $|\operatorname{det}|=1$.

A gauge theory is a theory where the action is invariant under a continuous group symmetry that depends on spacetime.

A gauge theory is a theory where the action is invariant under a continuous group symmetry that depends on spacetime.

When the symmetry group depends on spacetime, it is called a local symmetry.

A gauge theory is a theory where the action is invariant under a continuous group symmetry that depends on spacetime.

When the symmetry group depends on spacetime, it is called a local symmetry.

The continuous symmetry that depends on spacetime is called a gauge group.

The transformation that depends on spacetime is called a gauge transformation.

A gauge theory is a theory where the action is invariant under a continuous group symmetry that depends on spacetime.

When the symmetry group depends on spacetime, it is called a local symmetry.

The continuous symmetry that depends on spacetime is called a gauge group.

The transformation that depends on spacetime is called a gauge transformation.

Gauge symmetries introduce gauge fields to the theory which mediate a force.

Iron fillings follow magnetic field lines of a dipole magnet

An electron at rest in a magnetic field does not "feel" a magnetic force. Only an electron moving in a magnetic field is deflected by a force: $F=q v \times B$.

U(1) symmetry = rotation by phase angle, describes the Electromagnetic interaction.
$\mathrm{E} \& \mathrm{M}$ fields are described by A , a vector potential, and V , a scalar potential.

Invariance under gauge transformation means that making a small change in A must be accompanied by a corresponding small change in V .

For example:

E\&M fields are described by \mathbf{A}, a vector potential, and V , the scalar potential.

Invariance under gauge transformation means that making a small change in A must be accompanied by a corresponding small change in V:

$$
\begin{aligned}
\bar{A}^{\prime} & =\bar{A}+\nabla \lambda \\
V^{\prime} & =V-\frac{\partial \lambda}{\partial t}
\end{aligned}
$$

Aharonov-Bohm Experiment

Shot electrons through a slit with a solenoid in front of it. With no current, the electrons arrived at the screen in phase. With the current on, the electrons arrived out of phase.

Aharonov

Bohm

Electrons behave both like particles and like waves.

$\Psi(\overrightarrow{\mathrm{x}}, \mathrm{t})=|\Psi(\overrightarrow{\mathrm{x}}, \mathrm{t})| \mathrm{e}^{\mathrm{i} \theta(\overrightarrow{\mathrm{x}}, \mathrm{t})}$

Louis de Broglie

Magnetic field outside a solenoid is zero, but there is a magnetic potential (A) which affects the phase of the electrons, so they arrive out of phase at the screen.

A does not affect the motion of the electrons, but affects their phase.

A is the first-discovered example of a gauge field.

Why is $E \& M$ described by $U(1)$ symmetry?

Electrons described as a vector in the complex plane

The phase factors are just complex $e^{i \theta(x, t)}$ numbers with amplitude 1.

So we can picture them as points on a circle of radius 1 in the complex plane.

This collection of complex numbers is a representation of the group $\mathrm{U}(1)$. It is the complex equivalent of $\mathrm{SO}(2)$, rotations in the real plane.
$U(1)$ is the group of all possible phase multiplications $e^{i \alpha}$

$$
\Psi(x) \rightarrow e^{i \alpha} \Psi(x) \quad ; \quad \bar{\Psi}(x) \rightarrow e^{-i \alpha} \bar{\Psi}(x)
$$

The $U(1)$ group has the property that the internal rotation operations are commutative: $e^{i \theta \alpha 1} e^{i \theta \alpha 2}=e^{i \theta \alpha 2} e^{i \theta \alpha 1}$.

Hence it is called Abelian, after the mathematician Niels Henik Abel.

Local U(1) symmetry describes the Electromagnetic interaction.

$U(1)$ local symmetry \rightarrow a gauge field mediates the interactions between the charge fields.

Invariance under phase transformations requires a compensating change in the E-M field.

Similar gauge invariance exists for the strong and weak interactions, the "internal rotation" depends on more than one parameter in these cases. Group of objects can be formed from these generalized "rotational displacements".

However, these elements are no longer commutative. Such groups are called non-Abelian.

More about these later...

Time for a break!

A look at some contemporary artists attempting to express concepts in contemporary theoretical physics...

A review of the history of western music - a progression from symmetry to symmetry breaking???

https://www.youtube.com/watch?v=IExW80sXsHs

A collaboration between cosmologist George Smoot and musician Mickey Hart: Rhythms of the Universe https://www.youtube.com/watch?v=qu1JCQj5HLY

Dancing in the Quantum World: interactive installation

https://www.youtube.com/watch?v=y4MGYFeZOAE

Quantum trailer - a piece performed at CERN:

https://www.youtube.com/watch?v=spiT35AQWXw

SYMMETRY - CERN dance-opera filmed inside the collider (official trailer):
https://vimeo.com/120676848
numerical simulation of gravity wave detection by LIGO earlier this year:
http://www.aei.mpg.de/1824987/?page=2
mixed media: portrayal of symmetry and broken symmetry in dance with multimedia:
https://www.youtube.com/watch?v=xdkIMiMfRAA
(Note: this one was done with kids at a summer camp at Notre Dame University by ...er...yours truly.)

The AlloSphere at UCSB: the ultimate instrument for creating interactive visualizations of science and art:

http://www.allosphere.ucsb.edu/about.php

For next time, chapter 5: A Happy Thought

Consequences of Faraday-Maxwell-Lorentz Invariance: Gravity is also visualized as a FIELD. Einstein showed that gravity is a deformation of spacetime.

