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Discussion of Feynman, Chapter 42:  
questions ~ comments ~ opinions? 
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Feynman‟s bugs  



Possible 
shapes of 

spacetime: 
closed  
open 
flat 
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Boomerang 

satellite 

mapped the 

CMB over 

Antarctica 

in 2001 

Measurements indicate that on very 

large scales the geometry of the 

universe is very nearly FLAT. 



Planck detailed map of the CMB 
with foreground removed, 2015 
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How can you tell if the surface you live on is 
curved or flat?  
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24 RArea For a sphere: 

Predicted radius is thus: 

4

A
Rpredicted 

Now, if you dig a hole and 

measure the actual radius  

of the earth directly, you find 

that Rpredicted > Rmeasured!  

23c

GM
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The radius of the Earth is smaller than you would predict 

if you calculate it from measuring the area!  

Australian ant 
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Observers at the nose and tail of an accelerating rocket 
observe different times for light pulses emitted by each 
other’s light clocks.   



Einstein‟s Principle of equivalence 
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Experiment by 
Pound & Rebka 



Stretching of light waves due to the curvature of 
spacetime.  

photon climbing out loses energy, 

is red-shifted according to an observer at 

the „top‟ 

 

photon falling in gains energy, 

is blue-shifted according to an observer at 

the „bottom‟ 



Extreme tidal forces close to a black hole 

https://vimeo.com/1414

5244?from=outro-

embed 

falling through the event 

horizon – solutions to equations 

visualized 

https://vimeo.com/14145244?from=outro-embed
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Cassini probe measured gravitational 
redshift of signal sent to Earth by 
the gravitational field of the Sun 

Gravitational lenses 



Spacetime is curved. But -- 

How can space itself be curved?   

What does this even mean?  

What does 4D spacetime curve into? 

How can we truly visualize this?  



Michael Faraday in his lab 
Painting by Harriet Jane Moore  

Faraday’s Field Lines:  
The first idea that a charge creates 
a field which influences the shape 
of the space around it, and effects 
other charges. 



Iron filings follow magnetic field lines of a dipole magnet 

An electron at rest in a magnetic field does not “feel” 

 a magnetic force. Only an electron moving in a magnetic 

field is deflected by a force: F = qv x B. 



Visualizing gravitational 

fields  

Analogous to the way an 

electric charge “disrupts”  

the space around it with an 

electric field, a mass disrupts 

the spacetime around it with 

a gravitational field.  



The topography of the 

gravitational field of 

the Sun-Earth system 





Clocks actually tick at different rates in a gravitational field! 



GPS satellites must account for the different rates of 

time on the ground and at their altitude. 



• A global symmetry does not depend on spacetime. 
 
* A local symmetry depends on spacetime.  



And how does light “know” ahead of time what path it will take? 

How does Humpty Dumpty 

know to fall straight down? 



The shortest distance in space 

is the path of maximum 

proper time. 
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S is the Action. 

L is called the Lagrangian. 

L = T – V 

T = kinetic energy  

V = potential energy 
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m = mass 

k = spring constant, 

or „stiffness‟ 
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If S is constant (stationary) then the derivative of S must be zero. 

Example of a simple mass on a spring: 

Action:  

2

2

2

2

x
k

V

x
m

T



 

Substitute in the values for T and V… 
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ma F 

F = ma which is just Newton‟s second law! 



Humpty Dumpty will always follow a 

geodesic in spacetime!  

 

 

That is, he will always follow a path 

such that the difference between 

his kinetic and potential energies is 

stable to small perturbations.  



we looked at these previously… 
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we get the dispersion relation between 

energy and momentum in classical physics 

is the invariant quantity  

 

 

 

(Energy – momentum) = rest mass 

Einstein’s guess: 
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ct  
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Δx  

c Δt  

Δs2 = Δx2 + Δy2 + Δz2 – c2 Δt2   

Δτ2 ≡ - Δs2/c2   
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We defined the invariant interval in Special Relativity as the 

proper time, from Einstein‟s derivation: 
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The invariant quantity is the Lagrangian –  



General Covariance: An accelerating observer and a non-
accelerating  observer can interpret the different physical 
realities that each perceives as being due to a 
gravitational field. 

Progression of symmetry from obvious to subtle: 

 

1. Rotation of coordinate axes in space ~ invariance of the length of a line 

2. Relative motion of inertial observers at slow speeds ~ Galilean invariance  

 

*** Discovery: Speed of light is a property of Nature, same for all observers *** 

 

3. Relative motion of inertial observers at high speeds (Lorentz Boosts )  

   ~ Lorentz invariance 

 

*** Discovery: Gravity is Lorentz invariant  Gravity is not a force but a curvature 

  of spacetime *** 

 

4.  General covariance ~ Dynamical symmetry between accelerating observers 



1. Symmetry groups are defined by the operations that leave an object invariant. 

 

2. Noether proved that symmetries of the Lagrangian (L ) lead to conserved 

quantities in Nature – i.e., conservation laws in physics. 

 

3. Thus the symmetry operations which transform L   L’ so that energy and 

momentum (and other quantities) are conserved must be also identifiable as 

belonging to certain symmetry groups. 

 

4. Our task: Find the symmetry group which leaves the Action invariant under 

translations, rotations, Lorentz boosts, and general covariance! If we can find 

this group, then all objects belonging to it – i.e., such that they remain 

structurally invariant under the symmetry operations, then we can find 

hidden relationships and conservation laws which explain a wider range of 

phenomena.  



conservation of  

momentum  

 

 

conservation of energy 

 

 

invariance of the laws of physics  

to translations, rotations and boosts  

in space 

 

invariance to the laws of physics  
to translations, rotations and boosts 

in time 

 



Term which 

describes 

the shape of 

spacetime 

Term which describes 

all the energy and  

momentum contained 

within a small volume 

of spacetime The double sub script indicates 

that these are tensor quantities. 

This description of gravity as a curvature of spacetime due to 

the presence of matter and energy has led to our 

understanding of many interesting phenomena in the 

Universe, such as… 





















Discussion of final projects: 

 

1. Do you have an idea of what you want to do?  

Take some time now to brain storm. 

 

2. Going over final presentation process: 

• By next week I need a general description of 

what you plan to do, and any equipment you 

will need. 

• By May 27th I need a short write up that the 

Library people will print out to hang with your 

work of art. 

• By next week I need you to sign the release 

forms. 

• June 3rd: We will meet in Rm. 1312 in the 

library – more instructions to follow! 



We did not discuss these in class, but I’m including them for 

optional reading about General Relativity. The slides are based on 

a discussion of an article by physicist John Baez, which I had 

assigned in 2012. I removed this article from the reader because it 

seemed to be too difficult for most people who sign up for this 

class, but this year I think we have a number of students who are 

quite advanced, so I put it up on GauchoSpace for anyone who 

wishes to read it.  

 

The Meaning of Einstein's Equation 
John C. Baez and Emory F. Bunny 
January 4, 2006 



After the invention of special relativity, Einstein tried for a number of years to 

invent a Lorentz-invariant theory of gravity, without success. His eventual 

breakthrough was to replace Minkowski spacetime with a curved spacetime, 

where the curvature was created by (and reacted back on) energy and 

momentum. (quoting Sean Carroll…) 

After arriving at the amazing realization that mass and energy curve 

spacetime, and that gravity is not a force but the reaction of mass and energy to 

curved spacetime, Einstein had two major problems to solve: 1) He had to 

understand how to define curved spaces mathematically; and 2) He had to 

figure out how to prove that the Laws of Physics remain invariant to rotations, 

translations, and Lorentz boosts in curved spacetime. To do this, he had to find 

the  symmetry rule that allows observers to understand physics in each other‟s 

reference frames in curved spacetime, such that they will arrive at the same 

conclusions about the Laws of Physics, even though they may observe different 

“realities” due to local gravity! 



The  Big  Questions:  
What remains invariant under transformation of coordinate 
systems in curved spacetime, when there is no such thing 
as an inertial observer, no preferred reference frame, and it 
is not possible to even define relative motion unless two 
observers are close enough that they do not experience 
the curvature of spacetime?   
 
And how can we define coordinate systems in curved 
spacetime?  
 
And how is GR a theory of curved spacetime which satisfies 
the known Laws of Physics? 

Next, we explore these ideas as described by Professor John Baez (the father of 

the famous folk singer) in his article The Meaning of Einstein‟s Equation.   



Term which 

describes 

the shape of 

spacetime 

Term which describes 

all the energy and  

momentum contained 

within a small volume 

of spacetime 

On p. 93 Baez states: In Special Relativity it makes no sense to talk about absolute 

velocities; only relative velocities. In General Relativity it makes no sense to even 

talk about relative velocities, except if you measure them for particles at the same 

point of spacetime.  

 … in GR we take very seriously the notion that a vector is a little arrow 

sitting at a particular point in space-time… 

 

 What does he mean by that? What is a vector, and what sorts of physical 

quantities does it represent?  

Baez‟ goal is to explain Einstein‟s Equation in simple terms, and point out how it 

illuminates our understanding of gravity and 4D spacetime. 

The double sub script indicates 

that these are tensor quantities. 



In the flat, 4D Lorentz-invariant reference frame (Minkowski spacetime) in which we 
envision ourselves ‘at rest’ in a moving (but still inertial) frame, at some velocity which is a 
large fraction of the speed of light, we have ‘four vectors’ (-t, x, y, z).  

Diagram of a Lorentz boost taken from Sean Carroll‟s on-line notes on General Relativity,  

 available at  http://arxiv.org/PS_cache/gr-qc/pdf/9712/9712019v1.pdf.  

v = c = 1 
v = - c = -1 

 

 

at x’ = 0 : 



But the notion of vectors that have any extent beyond a single point makes no sense in 

curved spacetime, where all „rulers‟ conform to the local curvature, like the bugs on 

Feynman‟s hotplates!  “Flat” vectors are thus envisioned as being embedded in a higher 

dimensional space. 

A tangent vector at one point on a 2D 

circle embedded in a 3D space. 

Vectors in curved spacetime can only exist at one point; thus, 
there must be an infinite number of them which are collected at 
every point.  So, since any two lines define a plane, in curved 
spacetime a bundle of vectors defines a plane which is tangent to 
the curved space at a point – a tangent plane. 



Baez uses the example of parallel transport to 
illustrate how, in curved spacetime, if you move a 
vector from one place to another, even if you 
keep it pointing in the same direction, without 
rotating it, the path along which you move it 
makes a difference. This is a conceptual break 
with our every day notions of flat space.  

A couple of other illustrations 
I found on line: 
 
Left: two people who start out at 
the equator walking north, 
parallel to each other, will collide 
at the North Pole. 
 
Right: Vectors that point east and 
west at the pole, if parallel 
transported to the equator, will 
point south.  

Baez, p. 3 



Baez, p. 3 

A local approximation of 
an inertial 
coordinate system in 
curved spacetime. 
A geodesic is the path a 
test particle takes 
in freefall. 



a cat in free fall along a geodesic 

in spacetime 



 A test particle following a path in the x-y plane 

 near the surface of the earth, from  

 the human perspective … 

 

 … can be visualized as following a curve 

       in 3D (one spatial axis must be suppressed 

                           in order to draw it) on a grid like this: 

Baez then reminds us that when we observe a projectile in a parabolic path in spacetime from 
our limited perspective, it looks quite curved, even though the curvature of space due to the 
Earth’s gravitational field is imperceptible to us.  This is because the projectile’s path is quite 
curved in the time dimension, because one second in time = 300,000 km.   

source:     http://library.thinkquest.org/27585/what/what7.html 

I found this diagram on line. I 

can‟t draw the ball‟s trajectory 

on this grid, but you can imagine 

the ball going from  

(t1, x1,, y1) to (t2, x2, y2) and then 

imagine projecting that curved 

path in (t, x, y) space onto the x-y 

plane, and it will come out 

looking like a parabola. 



Why does this make no sense?  

 

Because, as we read in Feynman and in 

Zee, clocks don‟t run at the same rates in 

regions where the gravitational field 

strength is different. Remember the 

Pound and Rebka experiment! 

 

Curved spacetime is equivalent to a 

gravitational field, thus where ever you 

move your clock („time ruler‟), the 

curvature of spacetime is different, so the 

time ruler is stretched. Think of the bugs 

on a hotplate, with time-like meter sticks.  

Clocks tick at different rates due to the 

curvature of spacetime – i.e., the local 

gravitational field. 
A field of clocks in 3D flat space,  
all at rest relative to each other 

Baez, p. 3 



Over time, a round ball 

of test particles 

deforms in the 

presence of a 

gravitational field. 

OK, so if we extend this idea of the stress tensor to spacetime,  we 

include the time dimension.   We define a little spherical volume of 

test particles which deforms over time, due to the effects of energy 

and momentum contained within its local volume of spacetime – 

that is, the curvature of spacetime, or the local gravitational field.  

 

Baez states: 

but…WHAT DOES THIS MEAN? 

What is time-like momentum flowing in the t 

direction? What is space-like momentum flowing 

in the x, y, and z directions?  

 

And - How can momentum flow in time but not in 

space?  



“Flow” is a rate of change of something in some direction, and rates of change in math language are 

derivatives. If there is a something which is changing in more than one direction, we use partial 

derivatives to indicate that we are investigating the rate of change in only ONE direction at a time.   

Don’t forget that we’re extending the symmetry of Lorentz invariance, so we’re thinking in 
the Einsteinian paradigm that E = mc2 in the rest frame of a particle, so density = energy 
density = .  
 
And - keep in mind that GR is a description of the behavior of spacetime on large, ideal scales, 
that gravity is not a force but a curvature of spacetime, and that on such large scales matter 
and radiation behave like perfect fluids.  Perfect fluids are homogeneous and isotropic, 
characterized only by their pressure and density.  
 



A perfect fluid is one which is isotropic in its rest frame – that is, it looks the same in any 
direction to a bug sitting on a particle at rest in the fluid.   To really pick apart Baez’s description 
here gets a bit messy, in that we have to consider energy and momentum ‘flows’ as four-vectors 
in spacetime.  Rather, just consider the following:  
 
From Einstein: E2 – p2 = m0

2c4  where E = energy and p = momentum, and the quantity m0c2  is 
the rest mass.  Mass and energy are equivalent, but we use the symbol  to designate energy 
density in the time direction, and the symbol p to denote energy density in the spatial directions 
.  So we can write out an energy-momentum tensor, extending the analogy of the stress tensor 
to four dimensions: 
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Where the subscripts 0, 1, 2, 3 indicate 

t, x, y, z directions respectively.  

00  is the flow of time-like energy in the time 

direction,  p11 is the flow of space-like energy in 

the x direction, p22 is the flow of space-like energy 

in the y direction, and p33 in the z direction.  This 

is all terribly abstract, but you can envision  as 

being due to radiation, and p as being due to mass.  

For the ideal fluid, the off-diagonal 
components are zero, so we get:  



Hopefully, now the following makes more sense: 

= 

Now, what is this “V-double-dot?” Well, think of x-double-dot as an acceleration. In our 
usual linear thinking, this is a free fall straight down. Now, combine this in your mind’s 
eye with y and z, and you get a collapse! 



Gravity waves produced by two rotating massive objects 

disturbance of test particles due to passage of 

gravity waves  



and the design of instruments that can measure small 

deformations of spacetime:  

 

the LIGO gravity wave detector  



General Covariance: An accelerating observer and a non-accelerating  
observer can interpret the different physical realities that each perceives as 
being due to a gravitational field. 

Progression of symmetry from obvious to subtle: 

 

1. Rotation of coordinate axes in space ~ invariance of the length of a line 

2. Relative motion of inertial observers at slow speeds ~ Galilean invariance  

 

*** Discovery: Speed of light is a property of Nature, same for all observers *** 

 

3. Relative motion of inertial observers at high speeds (Lorentz Boosts )  

   ~ Lorentz invariance 

 

*** Discovery: Gravity is Lorentz invariant  Gravity is not a force but a curvature 

  of spacetime *** 

 

4.  General covariance ~ Dynamical symmetry between accelerating observers 



If spacetime is interdependent with the mass and energy contained within it – 

that is, there is no sense in which anyone is a perfectly inertial observer, and we 

can‟t tell that all our rulers and light beams are actually bent because we are part 

of the curvature of spacetime, HOW do we know that the laws of physics are still 

invariant to rotations and translations? How do we KNOW that the laws of 

physics are the same here and now as they were 10 billion years ago, in another 

part of the universe?  

 

In the simple case of rotations in flat space, we proved that the length of a line is 

invariant to rotations of the coordinate axes.  In Special Relativity we proved that 

inertial observers in relative motion will each measure the other‟s lengths as 

being contracted, relative to their own rest frame, by the same amount, and each 

other‟s times as being dilated, relative to their own rest frame, by the same 

amount.  

 

But in General Relativity, there are no inertial observers; we can‟t define relative 

velocities except in teensy-weensy regions of spacetime where we can‟t notice the 

curvature.  So what symmetry rule is there which allows us to prove that the 

Laws of Physics are still the same for all observers? Well, Einstein guessed that it 

had to do with the constancy of the speed of light, and the equivalence of mass 

and energy… which leads us to Section III of Zee: Into the Limelight. 



After the invention of special relativity, Einstein tried for a number of years to invent a Lorentz-invariant theory 

of gravity, without success. His eventual breakthrough was to replace Minkowski spacetime with a curved 

spacetime, where the curvature was created by (and reacted back on) energy and momentum. (quoting Sean 

Carroll…) 

After arriving at the amazing realization that mass and energy curve spacetime, and that gravity is not a force 

but the reaction of mass and energy to curved spacetime, Einstein had two major problems to solve: 1) He had to 

understand how to define curved spaces mathematically; and 2) He had to figure out how to prove that the Laws 

of Physics remain invariant to rotations, translations, and Lorentz boosts in curved spacetime. To do this, he had 

to find the  symmetry rule that allows observers to understand physics in each other‟s reference frames in curved 

spacetime, such that they will arrive at the same conclusions about the Laws of Physics.  

The  Big  Questions:  
What remains invariant under transformation of coordinate systems in curved spacetime, when there is no such thing 
as an inertial observer, no preferred reference frame, and it is not possible to even define relative motion unless two 
observers are close enough that they do not experience the curvature of spacetime?  And how can we define 
coordinate systems in curved spacetime? And how is GR a theory of curved spacetime which satisfies the known Laws 
of Physics? 



But the notion of vectors that have any extent beyond a single point makes no sense in 

curved spacetime, where all „rulers‟ conform to the local curvature, like the bugs on 

Feynman‟s hotplates!  “Flat” vectors are thus envisioned as being embedded in a higher 

dimensional space. 

A tangent vector at one point on a 2D 

circle embedded in a 3D space. 

Vectors in curved spacetime can only exist at one point; thus, 
there must be an infinite number of them which are collected at 
every point.  So, since any two lines define a plane, in curved 
spacetime a bundle of vectors defines a plane which is tangent to 
the curved space at a point – a tangent plane. 



Baez uses the example of parallel transport to 
illustrate how, in curved spacetime, if you move a 
vector from one place to another, even if you 
keep it pointing in the same direction, without 
rotating it, the path along which you move it 
makes a difference. This is a conceptual break 
with our every day notions of flat space. 

A couple of other illustrations 
I found on line: 
 
Left: two people who start out at 
the equator walking north, 
parallel to each other, will collide 
at the North Pole. 
 
Right: Vectors that point east and 
west at the pole, if parallel 
transported to the equator, will 
point south.  

Baez, p. 3 



Over time, a round ball 

of test particles 

deforms in the 

presence of a 

gravitational field. 

OK, so if we extend this idea of the stress tensor to spacetime,  we 

include the time dimension.   We define a little spherical volume of 

test particles which deforms over time, due to the effects of energy 

and momentum contained within its local volume of spacetime – 

that is, the curvature of spacetime, or the local gravitational field.  

 

Baez states: 

but…WHAT DOES THIS MEAN? 

What is time-like momentum flowing in the t 

direction? What is space-like momentum flowing 

in the x, y, and z directions?  

 

And - How can momentum flow in time but not in 

space?  



“Flow” is a rate of change of something in some direction, and rates of change in math language are 

derivatives. If there is a something which is changing in more than one direction, we use partial 

derivatives to indicate that we are investigating the rate of change in only ONE direction at a time.   

Don’t forget that we’re extending the symmetry of Lorentz invariance, so we’re thinking in 
the Einsteinian paradigm that E = mc2 in the rest frame of a particle, so density = energy 
density = .  
 
And - keep in mind that GR is a description of the behavior of spacetime on large, ideal scales, 
that gravity is not a force but a curvature of spacetime, and that on such large scales matter 
and radiation behave like perfect fluids.  Perfect fluids are homogeneous and isotropic, 
characterized only by their pressure and density.  
 



A perfect fluid is one which is isotropic in its rest frame – that is, it looks the same in any 
direction to a bug sitting on a particle at rest in the fluid.   To really pick apart Baez’s description 
here gets a bit messy, in that we have to consider energy and momentum ‘flows’ as four-
vectors in spacetime.  Rather, just consider the following:  
 
From Einstein: E2 – p2 = m0

2c4  where E = energy and p = momentum, and the quantity m0c2  is 
the rest mass.  Mass and energy are equivalent, but we use the symbol  to designate energy 
density in the time direction, and the symbol p to denote energy density in the spatial 
directions .  So we can write out an energy-momentum tensor, extending the analogy of the 
stress tensor to four dimensions: 
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Where the subscripts 0, 1, 2, 3 indicate 

t, x, y, z directions respectively.  

00  is the flow of time-like energy in the time 

direction,  p11 is the flow of space-like energy in 

the x direction, p22 is the flow of space-like energy 

in the y direction, and p33 in the z direction.  This 

is all terribly abstract, but you can envision  as 

being due to radiation, and p as being due to mass.  

For the ideal fluid, the off-diagonal 
components are zero, so we get:  



Hopefully, now the following makes more sense: 

= 

Now, what is this “V-double-dot?” Well, think of x-double-dot as an acceleration. In our 
usual linear thinking, this is a free fall straight down. Now, combine this in your mind’s 
eye with y and z, and you get a collapse! 



This description of gravity as a curvature of spacetime due to the presence of 

matter and energy has led to our understanding of many interesting phenomena in 

the Universe, such as… 

Term which 

describes 

the shape of 

spacetime. This, too 

is a tensor, and it 

describes the shape 

of spacetime in a 

local region. 

Term which describes 

all the energy and  

momentum contained 

within a small volume 

of spacetime. This is the 

energy momentum tensor. 

This is just a short hand notation for all of the above. 



Recall last quarter, we found all the symmetry operations (rotations and 

reflections) and combinations of them that left an equilateral triangle 

unchanged… There were 6 independent operations (3 rotations and 3 reflections) 

and 36 combinations, which form the group “D(3).”  (See lecture 4 from last 

quarter.)  

The equilateral triangle has discrete symmetry, that is, you can‟t rotate it by any 

arbitrary angle – only rotations of 120o are symmetry operations. For conserved 

quantities in Nature, we look for CONTINUOUS symmetries – like those we 

looked at for circles and spheres. 

θ 

We showed that rotations in the x-y plane 

are represented by little 2x2 matrices. 
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And Lorentz boosts in spacetime 

are represented by the 4x4 

Lorentz transformation matrix  






























00

0100

0010

00

c

cθ 

θ 

OPTIONAL DISCUSSION :  



p. 127 – 131: take a look at the group SO(3) – the group of rotations in 3D space. 

S = “special” 

O = “orthogonal” 

Matrix multiplied by its transpose = Identity 

Determinant of the matrix = 1 

In general, the order “n” tells the degrees of freedom. For Special Orthogonal groups, 

the degrees of freedom are given by  

2

)1( nn

For SO(3) df =  6
2

)4(3


6 directions, each 

one normal to one 

face of the cube 

But how did he come up with  

the dimensions? SO(3) is represented by a 3 x 3 

tensor. You can decompose a tensor of rank n into 

a symmetric, traceless component; the trace; and 

an antisymmetric component.  

1
2

)1(
1

2

)1(




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n x n = 

Which is how he gets his decomposition of SO(3), 

a 3 x 3 = 9 dimensional matrix, into 5, 3, and 1 

dimensional 

OPTIONAL DISCUSSION 
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A symmetric traceless tensor 
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A tensor with only a trace 
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An antisymmetric tensor 
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1 g 

Push of floor on person 

In a small enough region of spacetime, such that the 
gravitational field strength does not vary, a person 
accelerating at 1g “in outer space” cannot distinguish this 
from standing still on the surface of the Earth, at sea level. 

 apparent weight of person  



“traditional” Mercator 
projection of the world 
which reflects political  
dominance of the US and  
Europe. 
vs. 
Peters projection, which 
is geopolitically more  
correct in showing the 
relative sizes of land 

our perceptions under coordinate 
transformations 
on p. 84 Zee uses the analogy of 
the Mercator vs. the Peters  
projections 



Escher is well known for his 
explorations of gravity and higher 
dimensions through art. 

http://escherdroste.math.leidenuniv.nl/index.php?menu=escher 


