PHYS 21: Problems for Recitation 2

Due on Jan 182013
Prof. Oh

Katharine Hyatt

Hints for Assignment 2

- For 6.7, find equation for each side of triangle. Can you integrate over "strips" of the triangle?
- Your method for 6.10 should be very similar to 6.5
- For 6.12 , balance the forces on the small pulley first. What is the relationship between the tensions?
- For 6.9 , the book's diagram can help you write down the frictional forces.
- For 6.15 , can you set up a differntial equation using the torque?
- For 6.16 , the rod is not moving!

Assignment 1 Retrospective

- Several people wrote that they had no idea how to approach the problem. If this happens to you, please send me an email! I would be very happy to help you if you have no idea where to start.
- In problem 6.1, many of you misunderstood the question. The question is asking about a system of N particles such that $\sum_{i} p_{i}=0$. Keep in mind that $\sum_{i}\left(\vec{r}_{i} \times \vec{p}_{i}\right)$ DOES NOT EQUAL $\sum_{i} \vec{r}_{i} \times \sum_{i} \vec{p}_{i}$!
- In problem 6.2, many of you used M_{S} where you meant λt
- In problem 6.3, ω is in the opposite direction to $v_{b u g}$! Many of you didn't explain your answer to part (b) sufficiently - it's enough to say that $\vec{r}=\overrightarrow{0}$ at the pivot.
- For 6.4 , the module has a potential energy when it leaves the spaceship! If you forget this term, you whole answer is off by several factors.
- Many people got the expression for the centripetal force in 6.6 incorrect - the radius of turning is just R, NOT $R+d / 2$.
- You need to explain why the quanitity is conserved in 6.13. Many of you had unclear/fallacious reasoning for part (b).

1

Moment of inertia fun! Using the parallel axis theorem and the perpendicular axis theorem, find these moments of inertia:

- The vertical axis touching the side of a horizontal coin of mass m radius r
- The horizontal axis through the centre of a horizonal coin of mass m radius r
- The vertical axis through the centre of an annulus - a "donut ring" of inner radius r_{1} and outer radius r_{2}
- A "cage" of 3 x 3 rods, each of mass m, radius r, and length ℓ, through the centre of middle hole
- A "cage" of 3 x 3 rods, each of mass m, radius r, and length ℓ, a distance R from the edge.
- Stacked spheres, each of mass m, one of radius r and one of radius $2 R$, a distance ℓ away from their centreline.
(a) was covered in lecture.
(b) $-I_{z}=I_{x}+I_{y}=2 \cdot \frac{1}{2} m r^{2}=m r^{2}$
(c) $-I_{\text {longline }}=\frac{m r^{2}}{2}$
(d) -

$$
\begin{aligned}
I_{t a n g, \text { middle }} & =2 \cdot \frac{m L^{2}}{12}+4 \cdot\left(\frac{m L^{2}}{12}+m\left(\frac{L}{2}\right)^{2}\right) \\
& =\frac{m L^{2}}{6}+\frac{m L^{2}}{3}+m L^{2} \\
& =\frac{9 m L^{2}}{6}=\frac{3}{2} m L^{2}
\end{aligned}
$$

(e) -

$$
\begin{aligned}
I & =3 \cdot\left(\frac{m L^{2}}{3}\right)+\frac{m L^{2}}{12}+\frac{m L^{2}}{12}+m(L / 2)^{2}+\frac{m L^{2}}{12}+m(L)^{2} \\
& =m L^{2}+\frac{m L^{2}}{4}+\frac{m L^{2}}{4}+m L^{2} \\
& =2 m L^{2}+\frac{m L^{2}}{2} \\
& =\frac{5 m L^{2}}{2}
\end{aligned}
$$

(f) -

$$
\begin{aligned}
I & =\frac{2 m R^{2}}{5}+\frac{2 m(2 R)^{2}}{5}+2 m L^{2} \\
& =2 m R^{2}+2 m L^{2}
\end{aligned}
$$

Pictures for Moments of Inertia

