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We develop a theory of the effective disorder temperature in glass-forming materials driven away from
thermodynamic equilibrium by external forces. Our basic premise is that the slow configurational degrees of
freedom of such materials are weakly coupled to the fast kinetic-vibrational degrees of freedom and therefore
that these two subsystems can be described by different temperatures during deformation. We use results from
the preceding paper on the nonequilibrium thermodynamics of systems with internal degrees of freedom to
derive an equation of motion for the effective temperature and to learn how this temperature couples to the
dynamics of the system as a whole.
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I. INTRODUCTION

The effective disorder temperature is emerging as an es-
sential ingredient in theories of nonequilibrium phenomena
in amorphous materials �1–8�. Much of our own most recent
work is based on papers by Liu and co-workers especially
�9,10�. The preceding authors showed that, in systems driven
by external forces, slowly relaxing degrees of freedom may
fall out of equilibrium with the thermal reservoir and, as a
result, the temperature associated with those slow degrees of
freedom differs from the reservoir temperature. More re-
cently, the effective temperature has been used extensively in
shear-transformation-zone �STZ� theories of large-scale plas-
tic deformation in molecular glasses �11–16�. Perhaps its
most remarkable success along these lines has been in ex-
plaining the nature of shear-banding instabilities in such sys-
tems �17,18�.

Despite these successes, it has never been clear—at least
not to the present authors—whether the effective temperature
is truly a “temperature” in the thermodynamic sense or
whether it merely resembles a temperature in some aspects
but differs in others. We have argued, e.g., in �11,12,15,16�
that a noncrystalline material should be characterized in large
part by its internal state of disorder, which we identify with
the configurational entropy. Then the intensive quantity ther-
modynamically conjugate to this entropy, i.e., the derivative
of the configurational energy with respect to the configura-
tional entropy, must have the properties of a temperature in
the sense that systems with higher temperatures are more
highly disordered and neighboring subsystems are in equilib-
rium with each other if they are both at the same tempera-
ture.

Our goal here is to make these ideas more precise. We are
certainly not the first to explore this line of thinking in non-
equilibrium thermodynamics. The idea of describing the non-
equilibrium properties of supercooled liquids and glasses
�e.g., ergodicity breaking as manifested by aging� can be
traced back at least as far as the 1946 paper by Tool �19�,
who suggested that deviations from thermal equilibrium may

be described by an additional parameter with the dimensions
of temperature—the so-called “fictive temperature.” As will
be seen, Tool’s fictive temperature is a special case of the
effective temperature to be discussed here.

Recently, there have been several important attempts
to develop a theory of nonequilibrium thermodynamics
based on an effective-temperature generalization of Tool’s
fictive temperature. Nieuwenhuizen �3� developed a two-
temperature thermodynamics by introducing an additional
pair of thermodynamically conjugate variables—an effective
temperature and a configurational entropy as described
above. He used this framework to study, for example,
the Ehrenfest relations, the Prigogine-Defay ratio, and
fluctuation-dissipation relations in glassy systems. Nieuwen-
huizen’s analysis does not refer explicitly to inherent struc-
tures �20–22� as a rationale for introducing the configura-
tional entropy and the associated effective temperature.
However, Sciortino and co-workers �4,5� do base their two-
temperature thermodynamics on the concept of inherent
structures and use it as the rationale for separating the con-
figurational entropy from other entropic contributions. Their
numerical results strongly support this separation and hence
the validity of the effective temperature concept.

The present work is in the spirit of these recent develop-
ments, but differs from them by considering systems driven
by external forces. We are interested in nonequilibrium phe-
nomena in which internal degrees of freedom are coupled to
external forces �23� in such a way that the system is driven
persistently out of mechanical equilibrium. �Other types of
forcing, for example, by magnetic fields, can easily be incor-
porated into our formulation.� We are especially interested in
the general constraints imposed by the laws of thermody-
namics on thermomechanical equations of motion.

In developing our version of a two-temperature theory, we
wish to determine what roles the effective temperature can
play in dynamical theories of glassy phenomena and what its
limitations might be. Questions to be addressed include: un-
der what circumstances is the effective temperature different
from the ordinary reservoir temperature? What are the forms
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of the first and second laws of thermodynamics in systems
where both ordinary and effective temperatures are well de-
fined? What is the equation of motion for the effective tem-
perature in driven situations? For the most part, our answers
confirm the guesses made in earlier publications, e.g.,
�12,13,16�, but there are some differences.

To answer these questions, we have had to re-examine
some basic principles of thermodynamics, especially the
meaning of the second law in a nonstandard situation of the
kind we encounter here and we also have had to understand
the thermodynamic roles played by internal degrees of free-
dom in nonequilibrium situations. We have reported progress
along those lines in the preceding paper �23�, where an
entropy-production inequality for the dynamics of internal
degrees of freedom was derived directly from a statistical
interpretation of the second law of thermodynamics. This
derivation was shown to be valid if the internal variables are
a small set of extensive quantities whose associated entropies
and energies are properly included in any dynamical descrip-
tion of the system. Much of the present analysis is based on
those results.

In Sec. II of this paper, we introduce the hypothesis that a
glassy system consists of two weakly coupled subsystems,
one of which contains the slow configurational degrees of
freedom that are characterized by the effective temperature.
In order to focus as sharply as possible on the basic thermo-
mechanical issues, as opposed to questions about spatial
variations or time-dependent orientations of the stress, we
specialize to the case of a spatially uniform system. We make
several other simplifying assumptions, to be specified later,
for the same reason. We derive the two-temperature equa-
tions of motion in Sec. III and conclude in Sec. IV with
remarks about the theory.

II. SEPARABLE SUBSYSTEMS

Our basic premise is that the degrees of freedom of a
classical ��=0� noncrystalline material, either below or not
too far above a glass transition, can to a good approximation
be separated into two parts: first, a set of configurational
coordinates describing the mechanically stable positions of
the molecules in their inherent structures �20–22� and, sec-
ond, the remaining kinetic and vibrational variables. We as-
sume that the two sets of degrees of freedom describe weakly
coupled subsystems of the system as a whole, in analogy to
the usual thermodynamic analysis in which two neighboring
subsystems of a larger system are brought into weak contact.
In the latter situation, if the temperatures of the neighboring
subsystems differ from each other, we know from the second
law of thermodynamics that heat flows from the hotter to the
colder subsystem and we can compute the rate of heat flow
either phenomenologically by defining a transport coefficient
or sometimes by computing that coefficient from first prin-
ciples. We propose to repeat such an analysis for configura-
tional and kinetic-vibrational degrees of freedom in weak
contact with each other.

The configurational and kinetic-vibrational subsystems
are distinguished by their different time scales. The kinetic-
vibrational degrees of freedom are fast; they move at mo-

lecular speeds. The configurational degrees of freedom are
slow; they change on time scales no shorter than those asso-
ciated with molecular rearrangements in glassy materials. If
these two time scales are comparable to one another, then the
system is liquidlike and the concept of an effective disorder
temperature is irrelevant, but the separation between fast and
slow variables may remain useful.

To be more specific about the separability of these
subsystems, consider a potential-energy landscape in Nd-
dimensional configuration space, where N is the number of
molecules and d is the dimensionality. The inherent struc-
tures are the molecular configurations at the local energy
minima in this space and the configurational subsystem,
apart from uniform translations and rotations, is defined by
the denumerable set of these states. A molecular rearrange-
ment of the kind that occurs during plastic deformation cor-
responds to the motion of a system point from the near
neighborhood of one inherent state to that of another.

If the total energy of the system lies below all but a small
fraction of the energy minima, then the intersection of the
potential-energy landscape with the surface of constant en-
ergy consists primarily of isolated, compact, manifolds
enclosing the low-lying inherent structures. Very few energy-
conserving, deterministic trajectories connect the neighbor-
hoods of different inherent structures. For a large-enough
system that is not totally jammed, however, there always
must exist some such trajectories; neighboring molecules al-
ways can move around each other if a large-enough number
of the other molecules move out of their way, as happens in
the excitation-chain mechanism, for example �24�. These
connecting trajectories—narrow filaments in configuration
space—occupy only a small fraction of the constant-energy
manifold. Thus, in physical space, they correspond to highly
improbable, collective events. The probabilities of such
events are enhanced when the transitions are assisted by ther-
mal fluctuations, which are not yet part of this picture but
will enter shortly.

By definition, the motions of the kinetic-vibrational sub-
system occur only on trajectories within the compact mani-
folds and not on the filamentary connections between them.
Our principal assumption is that the latter motions can accu-
rately be approximated by weak, thermodynamically con-
strained, couplings between the configurational and kinetic-
vibrational subsystems. That is, molecular rearrangements in
the configurational subsystem—transitions between inherent
structures—are driven by noise generated in the kinetic-
vibrational subsystem; conversely, heat generated during
irreversible rearrangements flows through the kinetic-
vibrational subsystem to a thermal reservoir.

We further assume that we can accurately approximate the
total potential energy near any one of the minima by the
inherent-state energy plus the harmonic energy of small-
amplitude molecular vibrations about that state. Then, for a
system of N molecules in the neighborhood of the �th inher-
ent state, the total energy H is given by

H � HC�r�� + HK�p,�r�� , �2.1�

where
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HK�p,�r�� = K�p� + W��r�� . �2.2�

Here, K�p� is the kinetic energy as a function of the set of N
momenta �p�, HC�r�� is the inherent-state energy at the �th
minimum located at �r��, and W��r�� is a quadratic form in
the molecular displacements ��r�� measured from that mini-
mum �25�. Note that the separation of the subsystems postu-
lated in Eq. �2.1� is mathematically exact if the vibrational
spectrum associated with HK�p ,�r�� were independent of the
inherent-state index �. This is not quite true in general, but is
a rather good approximation below the glass transition in the
absence of irreversible volume deformation �4�. This issue
will be discussed in detail in Sec. III below.

The configurational part of the internal energy, HC, must
depend on the size and shape of the system; i.e., HC must
contain at least the macroscopic part of the elastic energy.
Since, by construction, both subsystems occupy the same
region of physical space, we must exclude the macroscopic
displacement modes from HK. Doing so is consistent with
the separation of time scales because elastic modes that span
the whole system have frequencies that are vanishingly small
in the limit N→�. We thus assume that the bulk elasticity
resides primarily in the configurational subsystem. The
kinetic-vibrational subsystem consists only of the high-
frequency, localized modes that, in a disordered noncrystal-
line material, do not probe the boundaries of the system and
are sensitive only to the average spacing between the mol-
ecules. Therefore, we assume that the kinetic-vibrational
subsystem has an elastic bulk modulus and contributes a par-
tial pressure to the system as a whole, but it has no shear
modulus.

Note that we are maintaining the analogy between
the present picture of weakly coupled configurational and
kinetic-vibrational subsystems and the usual thermodynamic
picture of spatially neighboring subsystems. In the usual pic-
ture, the neighboring dynamical systems have coordinates in
common only for the molecules that interact with each other
across the surface of contact and the coupling is weak be-
cause it involves only a small fraction of the total number of
degrees of freedom. Here, because the basins of attraction of
the inherent structures do not overlap or, equivalently, that
the vibrational amplitudes are small, the coupling is weak
because only a small fraction of the configuration space con-
tains trajectories that link different inherent states.

III. TWO-TEMPERATURE THERMODYNAMICS

A. Internal energy and entropy

In accord with the preceding discussion, we consider the
deformation of a spatially uniform, amorphous system, in
contact with a thermal reservoir at temperature �R. We as-
sume that �R is either below or not too far above the glass
temperature �g, so that the two-temperature decoupling can
take place. As in �23�, we express temperatures in units of
energy and set Boltzmann’s constant kB equal to unity.

Our goal of identifying temperaturelike quantities requires
that we start the statistical analysis by working in a micro-
canonical ensemble where the internal energy of each sub-
system is a function of its entropy—in principle, an indepen-

dently computable quantity obtained by counting states. Thus
we write the total, extensive, internal energy of the system,
including a thermal reservoir, in the form

Utot � UC�SC,Eel,����� + UK�SK,Vel� + UR�SR� , �3.1�

where UC and UK, respectively, are the configurational and
kinetic-vibrational internal energies obtained from the energy
functions HC and HK discussed in Sec. II, SC and SK are
the respective entropies, and ���� denotes a set of internal
state variables. Variations of the �� describe irreversible
changes in the state of the system which may be—but are not
necessarily—coupled directly to shape deformations. UR is
the energy of the thermal reservoir, which we assume to be
strongly coupled to the kinetic-vibrational subsystem.

Eel is a symmetric elastic strain tensor that, in principle,
includes both deviatoric �shear� and volumetric deforma-
tions. We maintain that only the reversible part of the strain
can appear as an independent argument of the internal en-
ergy. The inelastic deformation can play no role here because
it must be defined as the displacement from some initial
reference configuration and therefore is determined by the
entire history of prior deformations. We insist that the motion
of the system at any given time be determined entirely by the
external forces acting on it and the current values of the
internal state variables. In other words, the memory of prior
deformations is carried entirely by those state variables. The
inelastic deformation itself can be determined only by inte-
grating the equations of motion for those quantities.

In using the elastic part of the deformation as an indepen-
dent argument of the internal energy, we are assuming that an
elastic strain tensor can be identified unambiguously. This is
a controversial assumption, for example, see the discussion
in �26�, but it is not crucial for the main theme of this paper.
Therefore, for simplicity, we restrict ourselves to situations
in which elastic displacements are small and linear elasticity
is accurate, but we consider arbitrarily large inelastic defor-
mations.

As argued in Sec. II, the kinetic-vibrational subsystem has
a bulk modulus and therefore the internal energy UK in Eq.
�3.1� can depend on the elastic part of the volume deforma-
tion, i.e., Vel=V Tr Eel, but it does not depend on Eel itself.
The absence of a shear modulus for this subsystem follows
rigorously from our assumption of linear elasticity. To see
this, invert UK�SK ,Vel� to obtain the kinetic-vibrational en-
tropy SK in the form

SK = SK�UK,Vel� . �3.2�

In the harmonic approximation for HK in Eq. �2.1�, we have

SK = 3N	1 + ln
UK

3N
�� − 


n=1

3N

ln�	n� , �3.3�

where the 	n are the frequencies of the vibrational modes
and we have assumed there to be 3N kinetic and 3N vibra-
tional degrees of freedom. The dependence of SK on the de-
formation resides in the frequencies 	n, which are the eigen-
values of the dynamical matrix—the second derivatives of
W��r�� in Eq. �2.2�. For linear elasticity, the 	n are linear in
that strain and therefore the first-order shifts in the normal-
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mode frequencies must change sign when the shear strain
changes sign. On the other hand, rotational and inversion
symmetries in a statistically isotropic system preclude such
sign changes. Thus, the 	n must be independent of the shear
strain to first order and the shear modulus must vanish.

The preceding discussion implies that the normal-mode
frequencies 	n depend on the total volume V and not just on
its elastic part. Thus, in principle, UK depends on the internal
state variables. This mechanical coupling between the
kinetic-vibrational and configurational subsystems could be
accounted for within the present formulation, but only at the
expense of unnecessary complication. We therefore assume
that the dependence on the set of internal state variables ����
resides exclusively in the configurational internal energy UC.

In analogy to the expression for the internal energy in Eq.
�3.1�, the total entropy is given by

Stot � SC�UC,Eel,����� + SK�UK,Vel� + SR�UR� . �3.4�

Note that the “nonequilibrium” subscript used in �23� is no
longer needed here. We assume that we can invert the ex-
pression for any one of these three entropies to obtain the
corresponding internal energy function in Eq. �3.1� or vice
versa.

In principle, we have three separate temperatures: the ef-
fective temperature 
, the kinetic-vibrational temperature �,
and the reservoir temperature �R��. These are given, re-
spectively, by


 = 
 �UC

�SC
�

Eel,����
, � = 
 �UK

�SK
�

Vel

, �R =
�UR

�SR
. �3.5�

Note that we depart here from the notation used in �16� and
other earlier STZ papers, where 
 was defined to be a dimen-
sionless ratio of the effective temperature to an STZ forma-
tion energy in units of Boltzmann’s constant. Here, 
 has the
units of energy. The thermodynamic stresses are

VTC = 
 �UC

�Eel
�

SC,����
, pK = − 
 �UK

�Vel
�

SK

. �3.6�

B. First law of thermodynamics

The first law of thermodynamics for this system is

VT:D = U̇tot, �3.7�

where the total stress T is the sum of the partial stresses, T
=TC+TK. D is the total rate of deformation tensor, including
both elastic and inelastic parts. The tensor operation denoted
by “:” is defined as A :B�AijBij, where A and B are second-
order tensors. This definition coincides with the standard sca-
lar product of two symmetric tensors. Note that all the stress
quantities can be expressed as a sum T=−p1+s of hydro-
static �p� and deviatoric �s� contributions. Breaking Eq. �3.7�
into its component parts, we obtain

�U̇C − VTC:D� + �U̇K − VTK:D� + U̇R = 0. �3.8�

To evaluate these terms, look first at the configurational
subsystem and recall that changing the shape of the system at

fixed values of SC and ���� is by definition an “elastic”
deformation; there is no irreversible change in the internal
state of the system. Using this definition, we have


 �UC

�t
�

SC,����
= VTC:Del, �3.9�

where Del is the elastic part of the rate of deformation tensor.
Because we assume that the total rate of deformation is a
sum of elastic and inelastic parts

D = Del + Din, �3.10�

the configurational component of Eq. �3.8� is

U̇C − VTC:D = 
ṠC − VTC:Din + 

�

 �UC

���
�

SC,Eel

�̇�.

�3.11�

Next, consider the kinetic-vibrational component of Eq.
�3.8�, where


 �UK

�t
�

SK

= − pKV̇el. �3.12�

Therefore,

U̇K − VTK:D = �ṠK − VsK:Ddev + pKV̇in, �3.13�

where Ddev is the deviatoric �nonhydrostatic� part of the total

rate of deformation D and we have used V̇= V̇el+ V̇in to elimi-

nate V̇el. Note the appearance of sK in the last equation. If it
has no thermodynamic deviatoric stress �cf. Eq. �3.6�� then
the kinetic-vibrational subsystem can support a viscous shear
stress, which can appear in Eq. �3.13� in the presence of
nonzero shear flow, i.e., when Ddev�0.

Recombining terms, we find that the first law, Eq. �3.7�,
becomes


ṠC + �ṠK + U̇R − VTC:Din + pKV̇in − VsK:Ddev

+ 

�

 �UC

���
�

SC,Eel

�̇� = 0. �3.14�

Using

− VTC:Din = − VsC:Din
dev + pCV̇in, �3.15�

we rewrite Eq. �3.14� in the form


ṠC + �ṠK + U̇R − VsC:Din
dev + pV̇in − VsK:Ddev

+ 

�

 �UC

���
�

SC,Eel

�̇� = 0. �3.16�

Note that the partial deviatoric stress sC couples to the de-
viatoric, inelastic rate of deformation Din

dev, the total pressure
p couples to the inelastic part of the volume rate of change

V̇in, and the partial deviatoric stress sK couples to the total
deviatoric rate of deformation Ddev. These features will re-
appear below in dissipation inequalities based on the second
law of thermodynamics.
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C. Second law of thermodynamics

The second law of thermodynamics requires that the total
entropy be a nondecreasing function of time

ṠC + ṠK + ṠR � 0, �3.17�

where

U̇R = �RṠR. �3.18�

Use Eq. �3.16� to eliminate ṠC in Eq. �3.17� and rearrange the
terms as follows:

− 
1 −
�

�R
�U̇R − 
1 −




�
�
�ṠK +

�

�R
U̇R� + VsK:Ddev

+ WC�sC,p,��̇��� � 0, �3.19�

where

WC�sC,p,��̇��� = VsC:Din
dev − pV̇in − 


�

 �UC

���
�

SC,Eel

�̇�.

�3.20�

WC is the analog of the quantity defined in Eq. �4.11� of �23�.
Note that WC is the difference between the rate at which
inelastic work is being done on the configurational sub-
system and the rate at which energy is stored in the internal
degrees of freedom. As in �23�, it is an energy-dissipation
rate.

The left-hand side of the inequality in Eq. �3.19� is the
sum of independently variable quantities that must separately
be non-negative if the inequality is to be satisfied for all
possible motions of the system. Thus, in the spirit of Cole-
man and Noll �27�, we require that

− 
1 −
�

�R
�U̇R � 0, �3.21�

− 
1 −



�
�
�ṠK +

�

�R
U̇R� � 0, �3.22�

sK:Ddev � 0, �3.23�

and

WC�sC,p,��̇��� � 0. �3.24�

The first two of these inequalities pertain to the heat flow
between the subsystems. We have arranged them in a way
that reflects the fact that the thermal coupling between the
configurational and kinetic-vibrational subsystems is ex-
pected to be weak and the coupling between the kinetic-
vibrational subsystem and the reservoir should be strong. To
satisfy them, we write

�ṠK +
�

�R
U̇R = − A�
,��
1 −




�
� , �3.25�

U̇R = − B��,�R�
�R

�

1 −

�

�R
� , �3.26�

where A and B are non-negative thermal transport coeffi-
cients. Using the definition of the kinetic-vibrational �exten-
sive� heat capacity at constant volume

�ṠK = CV
K�̇ �3.27�

and eliminating U̇R between Eqs. �3.25� and �3.26�, we ob-
tain the following heat equation for the kinetic-vibrational
subsystem:

CV
K�̇ = B��,�R�
1 −

�

�R
� − A�
,��
1 −




�
� . �3.28�

The first term on the left-hand side describes heat transfer
between the kinetic-vibrational subsystem and the thermal
reservoir and the second term describes heat transfer between
the kinetic-vibrational subsystem and configurational sub-
system. Our assumptions imply that A�
 ,�� is small because
it contains the physics of the weak coupling described in
Sec. II. On the other hand, a large value of B implies that
�→�R such that

QR � lim
B→�

�→�R

B��,�R�
1 −
�

�R
� �3.29�

is finite. In this way, the thermal reservoir controls the tem-
perature of the kinetic-vibrational subsystem.

The third term on the left-hand side of Eq. �3.19� must, by
itself, be non-negative for arbitrary values of the deviatoric
part of the rate of deformation tensor, Ddev. We satisfy this
requirement by assuming a linear relation of the form

sK = �Ddev, �3.30�

where the shear viscosity � is a scalar for our isotropic ma-
terial.

The fourth inequality, Eq. �3.24�, pertains to the irrevers-
ible dynamics of the configurational subsystem. This in-
equality, which is a generalization of the standard Clausius-
Duhem inequality �28� to the two-subsystems situation, must
be satisfied by any constitutive model. The implications of
this inequality for the STZ theory of amorphous plasticity
�11–16� are discussed in the following paper �29�.

D. Equation of motion for �

The crux of our two-temperature analysis is an equation
of motion for the effective temperature 
. This is a heat-
balance equation, which we obtain by rewriting the first law
of thermodynamics as stated in Eq. �3.16�. Define the effec-
tive �extensive� heat capacity at constant volume


ṠC = CV
ef f
̇ . �3.31�

Then use this definition and Eq. �3.25� in Eq. �3.16� to obtain
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CV
ef f
̇ = WC�sC,p,��̇��� + V�Ddev:Ddev + A�
,��
1 −




�
� .

�3.32�

Here,

− A�
,��
1 −



�
� � �ṠK + U̇R � − Q �3.33�

is the rate at which heat is flowing to the kinetic-vibrational
subsystem and the thermal reservoir. The approximation in
Eq. �3.33� is accurate when ���R and the kinetic-vibrational
subsystem serves as the thermal reservoir. Moreover, if the
thermal reservoir has a large heat capacity �as is commonly
assumed�, Eq. �3.28� implies

�̇ = 0, QR = Q . �3.34�

Under these circumstances, Eq. �3.32� is a complete descrip-
tion of the energy flow in this system.

In the absence of deformation, i.e., when the term propor-
tional to A�
 ,�� is all that remains on the right-hand side of
Eq. �3.32� or when A�
 ,�� is large, then 
→� and our two-
temperature formulation reverts to an ordinary one-
temperature theory. A single heat equation for 
=� can be
obtained by summing Eqs. �3.28� and �3.32� and identifying
CV=CV

K+CV
ef f as the total heat capacity. For example, using

this procedure, we recover the one-temperature equations of
motion for viscoelastic volume deformations derived in �23�.

We reiterate the physical meaning of the different terms in
Eq. �3.32�. CV

ef f
̇ is the rate of change of the heat of disorder.

The first term on the right-hand side, WC�sC , p , ��̇���, is the
non-negative rate of energy dissipation in the configurational
subsystem, which we find to be the difference between the
rate at which inelastic work is being done, �VsC :Din

dev

− pV̇in�, and the rate at which energy is being stored in the
configurational degrees of freedom ����. The term
V�Ddev :Ddev is the rate of viscous heating in the kinetic-
vibrational subsystem. Finally, −A�
 ,���1−
 /�� is the rate
at which heat flows out of the configurational subsystem.

IV. CONCLUDING REMARKS

The main goal of this paper has been to derive the con-
straints imposed by the first and second laws of thermody-
namics on driven, glass-forming systems whose states of
configurational disorder can be characterized by an effective
temperature and whose nonequilibrium dynamics can be de-
scribed by internal state variables. We stress that we have
provided only a general thermodynamic description and not
yet a detailed physical theory of such systems. Although we
have made several inessential simplifying assumptions—
spatial homogeneity and a simple distinction between elastic
and inelastic deformations, for example—our only funda-

mental physical assumption is weak coupling between the
configurational and kinetic-vibrational subsystems.

In Sec. I, we raised the question of whether the effective
temperature is truly a “temperature” in the thermodynamic
sense or whether it merely resembles a temperature in some
aspects but differs in others. Although we cannot yet answer
this question definitely, our experience so far suggests that
the former is the case. For example, the effective temperature
is thermodynamically conjugate to a well-defined configura-
tional entropy; thus, systems with higher effective tempera-
tures are more disordered. Thermodynamics tell us that
weakly coupled subsystems are in equilibrium with each
other if they are both at the same temperature; the effective
temperature certainly plays that role. In �13�, it was shown
how the effective temperature plays the role of an ordinary
temperature in quasi-equilibrium equations of state and, in
�29�, we will see that the effective temperature controls the
quasi-equilibrium distributions of configurational internal
variables.

There are, however, many questions that remain to be
investigated. For example, does the effective temperature
diffuse in spatially inhomogeneous situations and, if so, what
is its diffusion constant? This issue already has arisen in �18�
in the context shear-banding instabilities. Another open
question—how can the effective temperature be measured
experimentally in molecular or atomic glasses? �See �15�.� In
other words, how might we construct an effective-
temperature thermometer?

To make further progress in answering any of these ques-
tions, we must make more specific physical assumptions. In
particular, we must specify physical ingredients of the dissi-

pation function WC�sC , p , ��̇��� defined in Eq. �3.20� and the
thermal coupling coefficient A�
 ,�� defined in Eq. �3.25� and
we must make use of the second-law constraints in both
cases. As was shown for a special situation in �23�, non-

negativity of WC�sC , p , ��̇��� is a generalization of the
Clausius-Duhem inequality. Inequalities of this kind are usu-
ally satisfied �28� by assuming the existence of variational
principles such that the internal variables ���� move down-
hill in some free-energy landscape. We shall see in �29� that,
when we interpret the internal state variables ���� to be the
STZ dynamical variables, we no longer recover a simple
variational form of this inequality and that the dynamical
structure of the theory is much richer than it was in �23�.
Similarly, much of the physics of the STZ theory resides in
the coupling coefficient A�
 ,��. It is here where the assump-
tion of weak coupling between the subsystems must be de-
scribed in more detail, albeit still in a phenomenological
manner.
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