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We use the internal-variable, effective-temperature thermodynamics developed in two preceding papers to
reformulate the shear-transformation-zone �STZ� theory of amorphous plasticity. As required by the preceding
analysis, we make explicit approximations for the energy and entropy of the STZ internal degrees of freedom.
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form as a function of the effective temperature. Finally, we derive an equation of motion for the effective
temperature for the case of STZ dynamics.
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I. INTRODUCTION

Understanding the irreversible deformation of amorphous
systems remains a major challenge in nonequilibrium statis-
tical physics and materials science �1,2�. Systems of interest
include noncrystalline solids below or near their glass tem-
peratures, dense granular materials, and various kinds of soft
materials such as foams, colloids, and the like. An ongoing
effort to develop a dynamical theory of such systems has
been based on the shear-transformation-zone �STZ� model of
�3�. Recent work has extended the original model to include
an effective disorder temperature as an essential ingredient
�4–11�.

Our main goal in this paper is to develop an STZ theory
that is consistent with the internal-variable, effective-
temperature thermodynamics described in two preceding pa-
pers �12,13�. In �12�, we focused on the role of internal state
variables in determining the nonequilibrium dynamics of
amorphous, not necessarily glassy, systems. We used the sta-
tistical interpretation of the first and second laws of thermo-
dynamics to obtain equations of motion for the internal vari-
ables and we emphasized the need to understand how both
energy and entropy are shared between the internal variables
and other degrees of freedom.

In �13�, we extended this development to include an ef-
fective disorder temperature. Our basic premise in that paper
was that the slow configurational degrees of freedom of such
materials are only weakly coupled to the fast kinetic-
vibrational degrees of freedom and therefore that these two
subsystems can be described by different temperatures dur-
ing deformation. Using the tools of nonequilibrium statistical
thermodynamics, we derived a general form for the equation
of motion for the effective temperature and obtained a set of
second-law constraints on the thermomechanical equations
of motion for such systems.

We start here in Sec. II by summarizing the major results
of �12,13� in a form appropriate for the STZ analysis. In Sec.
III, we introduce the STZ degrees of freedom as thermody-
namically well-defined internal state variables with associ-
ated energies and entropies. We then deduce specific forms

for the STZ equations of motion based on the thermody-
namic analysis. Our most important departure from earlier
versions of the theory is that the STZ transition rates are now
required to have an Eyring form as a function of the effective
temperature rather than the reservoir temperature. In Sec. IV,
we discuss the noise strength that determines the STZ anni-
hilation and creation rates and we derive an equation of mo-
tion for the effective temperature. Section V contains a sum-
mary of the STZ equations. We conclude in Sec. VI with
remarks about the significance and limitations of this theory.

II. THERMODYNAMIC CONSTRAINTS

We consider the deformation of an amorphous material in
contact with a thermal reservoir at temperature �R. We as-
sume that �R is either below or not too far above the glass
temperature �g, so that the two-temperature theory developed
in �13� is applicable. We express temperatures in units of
energy and set Boltzmann’s constant kB equal to unity. For
simplicity, we assume from the beginning that the system is
spatially uniform and that it undergoes only volume-
conserving, pure-shear deformations.

The total, extensive, internal energy of this system, in-
cluding a thermal reservoir, is

Utot � UC�SC,Eel,����� + UK�SK� + UR�SR� , �2.1�

where UC and UK, respectively, are the configurational and
kinetic-vibrational internal energies, SC and SK are the re-
spective entropies, and ���� denotes a set of internal state
variables, soon to be identified as the STZ variables. UR is
the energy of the thermal reservoir, which we assume to be
strongly coupled to the kinetic-vibrational subsystem. Eel is a
deviatoric �traceless, symmetric�, elastic shear strain. Note
that our assumption of volume-conserving, pure-shear defor-
mation allows us to omit any volume dependence in UK �cf.
Eq. �3.1� in �13��.

The effective temperature � and the kinetic-vibrational
temperature � are
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� = � �UC

�SC
	

Eel

, � = � �UK

�SK
	

Vel

. �2.2�

We assume that �
�R, i.e., that the kinetic-vibrational sub-
system is always in equilibrium with the thermal reservoir.
The shear stress acting on the configurational subsystem is

VsC = � �UC

�Eel
	

SC,����
, �2.3�

where V is the fixed total volume. As explained in �13�, the
kinetic-vibrational subsystem has no shear modulus, but it
can support a viscous stress in the presence of shear flow. For
further simplicity, we assume that the kinetic-vibrational vis-
cosity vanishes.

The total entropy is

Stot � SC�UC,Eel,����� + SK�UK� + SR�UR� . �2.4�

The expression for any one of these three entropies can be
inverted to obtain the corresponding internal energy function
in Eq. �2.1� or vice versa.

Without further loss of generality, we specialize to the
case of pure, planar shear oriented along fixed axes, say x
and y, and define sC�sC,xx=−sC,yy. We assume �for small
elastic deformations� that the rate of deformation tensor is
the sum of elastic and inelastic parts, D=Del+Din, where

Del= Ėel, and we define Din�Din,xx=−Din,yy. All other ele-
ments of these deviatoric tensors vanish; thus, for example,
the rate of inelastic work done by the shear stress is sC :Din
=2sCDin.

The analysis in �13� produced an equation of motion for
the effective temperature that is basically a statement of the
first law of thermodynamics, i.e., a heat-flow equation. For
the present case, this equation has the form

CV
ef f�̇ = WC�sC,��̇��� + A��,���1 −

�

�
	 . �2.5�

Here,

CV
ef f�̇ = �ṠC �2.6�

is the time rate of change of the heat of configurational dis-
order and CV

ef f is an effective �extensive� heat capacity at
constant volume. As in the preceding papers, the non-
negative dissipation rate WC—the difference between the
rate at which inelastic work is being done on the configura-
tional subsystem and the rate at which energy is being stored
in the internal degrees of freedom—is

WC�sC,��̇��� = 2VsCDin − 
�
� �UC

���
	

SC,Eel

�̇� � 0.

�2.7�

Non-negativity of WC is an important second-law constraint
that plays a central role in the analysis to follow.

The second term on the right-hand side of Eq. �2.5�,

A��,���1 −
�

�
	 � Q , �2.8�

is the rate at which heat is flowing into the configurational
subsystem. Here, A�� ,�� is a non-negative thermal transport
coefficient that, as will be seen, depends on other dynamical
variables in addition to � and �.

III. STZ EQUATIONS OF MOTION

The basic assumptions of the STZ theory have been de-
scribed in �7�. To the extent possible, the following discus-
sion follows the steps outlined in that paper.

The main idea is that deformation of amorphous materials
occurs via localized molecular rearrangements that take
place at STZs. The STZs are created and annihilated either
by thermal fluctuations or by noise generated by the defor-
mation itself. They are rare, ephemeral fluctuations that are
especially important for irreversible deformations because
they make stress-driven transitions between two, energeti-
cally almost degenerate orientations. Thus, the STZs are two-
state systems. There is nothing arbitrary about this two-state
picture. The STZs have the special property of being able to
shift between one orientation and another in response to a
shear stress. Sites with this property are already statistically
unlikely, and higher-order degeneracies are statistically
negligible.

The difference between what we are doing here and the
analysis presented in �7� is that now, on the basis of �12,13�,
we insist on a proper thermodynamic description of the STZs
as internal degrees of freedom. Such a description requires a
specific STZ model. To construct any such model, we must
make physical assumptions that may need to be modified in
later applications. In particular, as in the earlier work, we
assume that there is just a single kind of STZ, with a single
characteristic formation energy eZ and a single mechanism
for making transitions between the two orientational states.

For additional simplicity, we go back to the original ver-
sion of the theory �3� in which the STZs occur only with
orientations either “+” or “−” with respect to the shear direc-
tion. A procedure for averaging over STZ orientations and
constructing a properly invariant tensorial version of the
theory was presented in �7�. That procedure works just as
well for the present analysis, but seems unnecessarily com-
plex for present purposes. The internal state variables are the
extensive numbers of STZs in these two different states, N+
and N−. As usual, define

� �
N+ + N−

N
, m �

N+ − N−

N+ + N−
. �3.1�

Thus, the set of internal state variables ���� reduces to
�� ,m�.

Our arguments in �12,13� tell us that we must include the
entropy associated with the internal variables � and m in this
analysis. If we take the two-state model literally, then we
compute this entropy by counting the number of ways in
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which we can distribute N+ + zones and N− − zones among,
say, N available sites in the system. This number is

exp�SZ� =
N!

N+ ! N− ! �N − N+ − N−�!
, �3.2�

which, after use of Stirling’s approximation, reduces to

SZ��,m�
N


 − � ln � − �1 − ��ln�1 − �� + �S0�m� ,

�3.3�

where

S0�m� = ln 2 −
1

2
�1 + m�ln�1 + m� −

1

2
�1 − m�ln�1 − m� .

�3.4�

To use this formula, write

SC = SZ��,m� + S1�U1� , �3.5�

where S1 and U1, respectively, are the entropy and energy of
all the degrees of freedom of the configurational subsystem
apart from those attributable to the STZs. Accordingly,

UC�SC,Eel,�,m� = N�eZ + U1�S1,Eel�

= N�eZ + U1�SC − SZ��,m�,Eel� ,

�3.6�

where eZ is the formation energy of an STZ. Equations �3.5�
and �3.6� are equivalent to each other if we write U1=UC
−N�eZ in Eq. �3.5�.

In terms of these STZ variables, the inequality in Eq. �2.7�
becomes

WC�sC,��̇��� → WC�sC,�̇,ṁ�

= 2VsCDin − N�eZ + � ln� �

1 − �
	 − �S0�m���̇

+ N��
dS0

dm
ṁ � 0. �3.7�

To make further progress, go back to the original STZ equa-
tions of motion for the N�,

�0Ṅ� = R��sC�N	 − R�	sC�N� + 
̃�1

2
Neq − N�	 .

�3.8�

Here, �0 is a time scale, the factors R��sC� /�0 are the rates at
which STZs switch back and forth between their two orien-

tations, 
̃ /�0 is the rate factor for creation and annihilation of
STZs, and Neq is an as-yet undetermined “equilibrium” value
for the number of STZs. The superscript “eq” is used here
and below to denote steady-state equilibrium. Note that, in
Eq. �3.8�, we are assuming that the STZ creation rate is the
same for both STZ orientations, independent of the orienta-
tional state of the system as a whole.

The deviatoric, inelastic rate of deformation tensor is

Din =
v0

�0V
�R�+ sC�N− − R�− sC�N+� ,

where v0 is a molecular-scale volume. As usual, define

C�sC� �
1

2
�R�+ sC� + R�− sC�� ,

T�sC� �
R�+ sC� − R�− sC�
R�+ sC� + R�− sC�

. �3.9�

Then,

�0Din =
Nv0

V
�C�sC��T�sC� − m� . �3.10�

In previous papers, we defined Nv0 /V��0. We will return to
this notation in Sec. V. The equations of motion for � and m
are

�0�̇ = 
̃��eq − �� , �3.11�

where �eq=Neq /N and

�0ṁ = 2C�sC��T�sC� − m� − 
̃m −
�̇

�
m . �3.12�

The next step in this analysis is to impose the second-law
constraint expressed in Eq. �3.7�. We immediately encounter
a difference between the present situation and the one de-
scribed, for example, by Maugin �14�. Specifically, the in-
elastic rate of deformation Din appearing in WC is not simply

proportional to the time derivatives �̇ and ṁ. Therefore, we
cannot satisfy the inequality in Eq. �3.7� by identifying the
coefficients of those time derivatives as thermodynamic
forces associated with energy landscapes and then requiring
that � and m both relax toward free-energy minima. In fact,
our situation is more interesting. It is almost certainly typical
of open systems in which external work is being done and
energy is being dissipated and where no variational formula-
tion is relevant.

Our strategy is to use Eq. �3.12� to evaluate ṁ in Eq. �3.7�
and thereby to write WC as the sum of two terms: one pro-

portional to �̇ and the other proportional to the stress-
dependent quantity T�sC�−m. These two terms must indi-
vidually be non-negative. The inequality in Eq. �3.7�
becomes

�0

N
WC�sC,�̇,ṁ�

= − 
̃��m
dS0

dm
− �eZ + � ln� �

1 − �
	 − �S0�m�

+ �m
dS0

dm
��0�̇ + 2�C�sC��T�sC� − m��v0sC + �

dS0

dm
	

� 0. �3.13�
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From Eq. �3.4�, we know that

dS0

dm
= −

1

2
ln�1 + m

1 − m
	 = − tanh−1�m� . �3.14�

Therefore, the first term in the expression for WC in Eq.
�3.13� is always non-negative and we can set it aside for the
moment.

The second term in Eq. �3.13� produces a standard, varia-
tional, second-law inequality of the form

−
�FZ

��
�̇ � 0, �3.15�

where

FZ��,m� = NeZ� − ��SZ��,m� − m
�SZ

�m
� �3.16�

is a free energy. �eq in Eq. �3.11� must be the value of � at
which

� �FZ

��
	

�=�eq
= 0. �3.17�

Therefore,

�eq��,m� =
Zeq

1 + Zeq , �3.18�

where

Zeq��,m� = exp�−
eZ

�
+ S0�m� − m

dS0

dm
� . �3.19�

For ��eZ, we expect �eq
Zeq�1, which is consistent with
the basic idea of a low density of STZs. We then obtain the
expected Boltzmann factor, �eq
exp�−eZ /��, with a small
modification from the m-dependent entropy. The term pro-
portional to mdS0 /dm in Eq. �3.19� means that Zeq diverges
weakly and �eq→1, when m→ �1. However, it is easy to
see from the denominator in the equation of motion for m,
i.e., either Eq. �4.6� or Eq. �4.8� shown below, that m
→ �1 is a dynamically inaccessible limit. Therefore, as long
as eZ is the largest energy scale in the problem—which has
always been the case in prior applications—the requirement
of small � is satisfied.

The more interesting result comes from the term propor-
tional to T�sC�−m in Eq. �3.13�. That term must be non-
negative for all values of the stress sC, i.e.,

�T�sC� − m��v0sC + �
dS0

dm
	 � 0, �3.20�

which means that the two stress-dependent factors, T�sC�
−m and v0sC+�dS0 /dm, must each be monotonically in-
creasing functions of sC that change sign at the same point
for arbitrary values of m. From Eq. �3.14�, we see that this
condition can be satisfied only if

T�sC� = tanh�v0sC

�
	 , �3.21�

which, according to Eq. �3.9�, means that

R�sC� = R0�sC,�,��exp�v0sC

�
	 , �3.22�

where R0 is a symmetric, non-negative function of sC. As
indicated, R0 may also depend on the temperatures � and �
because the transitions between STZ orientations are very
likely to be thermally activated processes. Equation �3.22�
indicates a major difference between the present thermody-
namic results and the earlier theories. In the latter, we started
with physical models for the transition rates R��sC� and then
assumed that the dependence of the internal energy on the
STZ variables would be consistent with these rates. Here we
start with a known internal energy and must argue in the
other direction to make sure that the rates are consistent with
thermodynamics. In particular, Eq. �3.22� tells us that the
STZ transition rates must have an Eyring form with the ef-
fective temperature � rather than the reservoir temperature �
in the exponent.

IV. NOISE STRENGTH AND EQUATION
OF MOTION FOR �

Having used the second law to deduce equations of mo-
tion for the STZ variables, our next steps are to go back to

the first law in Eq. �2.5� and use the expressions for �̇ and ṁ

to compute 
̃ and then to derive the STZ version of an equa-
tion of motion for �. Both of these steps again require going
beyond purely thermodynamic arguments and making addi-
tional physical assumptions.

Equation �2.5� now can be expressed explicitly in terms of
the internal variables

CV
ef f�̇ − A��,���1 −

�

�
	

= �ṠC − Q

= − N

̃

�0

�FZ

��
��eq − �� − N


̃

�0
��m

dS0

dm

−
2N�

�0
C�sC��T�sC� − m��v0sC + �

dS0

dm
	 . �4.1�

As in previous STZ papers, we assume that the rate factor 
̃

is a sum of two independent noise strengths, 
̃=
�sC ,��
+���. Here, 
�sC ,�� is the part of the rate factor determined
by mechanically generated noise and ��� is the super-
Arrhenius, thermally generated part. We next invoke Pech-
enik’s hypothesis �15�, which identifies 
 as being propor-
tional to the total rate of heat production per STZ

�ṠC − Q = WC =

�sC,��

�0
N�v0s0, �4.2�

where the proportionality factor s0 has the dimensions of

stress. Inserting this relation into Eq. �4.1� and solving for 
̃,
we find
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̃ = 
�sC,�� + ��� =
Ñ�sC,�,m�

���,m�
, �4.3�

where

Ñ�sC,�,m� = ���v0s0 + 2C�sC��T�sC� − m��v0sC + �
dS0

dm
	

�4.4�

and

���,m� = v0s0 +
�FZ

��
��eq

�
− 1	 + m�

dS0

dm
. �4.5�

The equation of motion for m, Eq. �3.12�, becomes

�0ṁ =
M�sC,�,m�

���,m�
, �4.6�

where

M�sC,�,m� = − m
�eq

�
���s0v0 + 2C�sC��T�sC� − m�

��v0�s0 − msC� − ��eq

�
− 1	

��v0msC + m�
dS0

dm
−

�FZ

��
	� . �4.7�

At this point, it is useful to distinguish between slow and
fast processes, as was done in �6,7�. The inelastic deforma-
tion rate given in Eq. �3.10� contains a factor �, meaning
that it is proportional to the density of STZs and is small.
The equation of motion for � will be seen to be similarly
slow. On the other hand, the equations of motion for � and m
contain no such factors �. These internal state variables re-
spond rapidly to changes in their environments. Therefore,
we simplify the analysis by setting �=�eq and replacing m
by meq, the stationary solution of

�0ṁ =
2C�sC��T�sC� − m��1 − msC/s0� − m���

1 + �m�/v0s0��dS0/dm�
. �4.8�

This solution is shown explicitly in Eq. �5.5�. These approxi-
mations are always valid for steady-state solutions but, as
seen in �7�, they also work well for transients.

In steady state and at low temperatures where ���
0,
Eq. �4.8� exhibits the usual �3,5,16� exchange of stability at a
yield stress �minimum flow stress� sy determined implicitly
by

sy tanh�v0sy

�0
	 = s0, �4.9�

where �0 is the steady-state value of � in the limit of van-
ishingly small strain rate. According to Eqs. �4.8� and �5.5�,
for ���=0, meq goes through a maximum value of
tanh�v0sy /�0� at sC=sy. At that point, Eqs. �3.18� and �3.19�
tell us that the condition

�eq��0,meq� 
 exp�−
eZ − v0sy

�0
	 � 1 �4.10�

requires that eZ be much larger than �0 and v0sy, which, as
noted earlier, is generally true.

To complete this development, we need an explicit equa-
tion of motion for � and again we need to make additional
physical assumptions. Use Eqs. �4.1� and �4.2� to write

CV
ef f�̇ =


�sC,��
�0

N�eqv0s0 + A��,���1 −
�

�
	 . �4.11�

The thermal transport coefficient A�� ,�� is one of two places
in this theory where the weak coupling between the configu-
rational and kinetic-vibrational subsystems must be modeled
explicitly. The other place is the noise strength 
 defined in
Eq. �4.2�, where we argued that mechanically generated
noise contributes additively, along with the thermal noise, in
creating configurational disorder. Similarly, it seems plau-
sible that the overall heat exchange between the two sub-
systems is enhanced by mechanical noise. Thus, we propose

that A have a form similar to that of 
̃ and write

A��,�� =
a0�N

�0
�
�sC,�� + ����� , �4.12�

where � is a dimensionless parameter, the factor � has been
inserted for dimensional reasons, and a0 is a dimensionless
quantity to be determined as follows.

Separate the right-hand side of Eq. �4.11� into parts pro-
portional to 
 and  and then write this equation in the form

�0CV
ef f�̇

N
= 
�sC,����eqv0s0 + a0�� − ��� + a0������ − �� .

�4.13�

In �8�, it was argued that athermal �=0� amorphous systems
reach steady state for effective temperatures � equal to some
function �̂�q�, where q is a dimensionless, non-negative mea-
sure of the total strain rate. For time-independent stresses, q
is the magnitude of �0Din. This means that the quantity in
square brackets in Eq. �4.13� must vanish at �= �̂�q�, a con-
dition that we satisfy by setting

a0 =
�eqv0s0

�̂�q� − �
. �4.14�

Thus, Eq. �4.13� becomes

�0CV
ef f�̇

v0s0N
=

�eq

�̂�q� − �
�
�sC,����̂�q� − �� + ������ − ��� .

�4.15�

Equation �4.15� is essentially the same �̇ equation that we
have used in previous applications. The main difference is
the prefactor ��̂−��−1. Non-negativity of a0 requires that
�̂�q���, which is a plausible and interesting constraint. The
steady-state solution of Eq. �4.15� is
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�ss =

�sC��̂�q� + ����


�sC� + ���
. �4.16�

The function 
�sC� vanishes in the limit of vanishing strain
rate q; therefore, for fixed, nonzero ���, �ss→� as q→0.
On the other hand, if the strain rate is fixed and ��� becomes
small, then �ss→ �̂�q�. As pointed out in �8�, the crossover
between these limiting behaviors takes place at very small
strain rates for small ��� and therefore it can be very diffi-
cult to determine whether a glass transition has occurred. At
higher temperatures, this crossover occurs at higher strain
rates and the condition �̂�q��� requires that �̂ be a function
of � in some circumstances. For the moment, we note that
physically realistic systems do not probe the extreme limit of
vanishingly small strain rate and we therefore assume that
�̂�q�−���0−� is a positive constant for situations in which
the system is deforming at experimentally accessible rates.

V. SUMMARY OF STZ EQUATIONS

We conclude this part of the paper by summarizing the
STZ equations in their most usable versions, that is, in the
limit in which the relaxation of the STZ variables � and m is
much faster than the rates at which plastic deformation and
the effective temperature respond to changes in the external
driving forces. Many of these equations are the same as the
ones that appear—in more general tensorial versions—in �7�.
As noted previously, however, there are some differences.

The rate of inelastic deformation, given here in Eq. �3.10�,
is a function of the configurational shear stress sC �assuming
no appreciable contribution from the viscous stress in the
kinetic-vibrational subsystem� and the effective temperature
�,

Din
dev = �eq���f�sC,�� , �5.1�

where

�eq��� 
 e−eZ/� �5.2�

and

f�sC,�� =
�0

�0
C�T − meq� .

Here, we have reverted to the earlier notation, �0=Nv0 /V,
which is the ratio of a molecular volume v0 associated with
STZ transitions to the volume per molecule in the system as
a whole and is of the order of unity. The STZ formation
energy eZ previously was denoted by kBTZ. In �7�, TZ was
found to be larger than the glass temperature by a factor of
about 30 for a metallic glass and the time constant �0 was of
the order of a femtosecond. We have abbreviated the func-
tions C and T as follows:

C = R0�sC,�,��cosh�v0sC

�
	 �5.3�

and

T = tanh�v0sC

�
	 , �5.4�

where R0�sC� is an arbitrary, symmetric function of the shear
stress sC. meq�sC ,�� is the stationary solution of Eq. �4.8�

meq�sC,�� =
s0

2sC
�1 +

sC

s0
T +

���
2C �

−
s0

2sC
��1 +

sC

s0
T +

���
2C �2

− 4
sC

s0
T .

�5.5�

The parameter s0 is a stress that can be determined from the
low-temperature yield stress �minimum flow stress� sy via
Eq. �4.9�

sy tanh�v0sy

�0
	 = s0, �5.6�

where �0 is the steady-state value of � in the limit of van-
ishingly small strain rate.

It is useful to look at the equation of motion for �, Eq.
�4.15�, in two special cases. First, consider the parameter
range relevant for deformations of ordinary plastic materials
such as metallic glasses. The experience gained from the
studies reported in �7,8� suggests, for temperatures not too
far above the glass transition and for strain rates not ex-
tremely small, that we can assume that �̂�q�
�0 remains
constant at a value larger than �, so that the dimensionless
quantity �̂ / ��̂−�� is a slowly varying function of � that can
be absorbed into other parameters such as the effective heat
capacity and �. When this is true, Eq. �4.15� can be written
in the form

�0c̃0

v0s0
�̇ � e−eZ/��
�sC,���1 −

�

�0
	 + �̃����1 −

�

�
	� ,

�5.7�

where c̃0 and �̃ are dimensionless constants of the order of
unity. To use this equation, we need the explicit expression
for 
,


�sC,�� =
N�sC,��

1 − �meq�/s0v0�tanh−1�meq�
, �5.8�

where

N�sC,�� = ���
meq�

v0s0
tanh−1�meq� + 2C�sC��T�sC� − meq�

�� sC

s0
−

�

v0s0
tanh−1�meq�� �5.9�

and meq�sC ,�� is given by Eq. �5.5�.
Second, consider the athermal limit of Eq. �4.15� by set-

ting �=0 and ���=0. In this case, we have
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�0c̃0

v0s0
�̇ � e−eZ/�
�sC,���1 −

�

�̂�q�
	 . �5.10�

This limit is appropriate for granular materials, bubble rafts,
and the like, where ordinary thermal fluctuations are irrel-
evant and the disorder described by the effective temperature
is generated only by externally driven deformation. Thus,
only states with stresses above the yield stress are relevant
and Eq. �5.5� tells us that meq=s0 /sC �exactly�. Moreover,
when sC�s0, we have

s0�eq
�sC,�� 
 2sCDin, �5.11�

so that the noise strength is just proportional to the rate at
which inelastic work is done on the system. We have used
�̂�q� on the right-hand side of Eq. �5.10�, instead of its
small-q limit �0, because large values of q are more easily
attainable for systems in which the intrinsic relaxation time
�0 is not microscopically small. As shown in �17�, �̂�q� in-
creases rapidly when q grows to values of the order of unity.
Thus, the restoring term in Eq. �5.10� becomes small and the
resulting rapid growth of � produces localized shear failure.
This mechanism was shown in �18� to provide a plausible
explanation of rapid stress drops and localized failure in
earthquake faults.

VI. CONCLUDING REMARKS

We have made many simplifying assumptions in develop-
ing this thermomechanical version of the STZ theory. Some
of these assumptions were needed only to simplify the pre-
sentation and seem to have little if any physical importance.
For example, it should not be difficult to rewrite this theory
in tensor notation, as in �7�, and apply it to spatially nonuni-
form situations with orientationally varying stress and flow
fields. It will be technically more difficult to deal with situ-
ations in which both volumetric and shear deformations are
occurring and are coupled to each other, but here again, there
seems to us to be no problem in principle.

Yet another example of simplification is that, throughout
this series of three papers, we have dropped terms that would
have described thermoelasticity or, more pertinently in the
context of nonequilibrium phenomena, thermoviscoelasticity.
Here too, we see no intrinsic difficulties. In fact, we see
attractive opportunities to use a thermoviscoelastic version of
this theory for studying the behavior of glasses subject to
thermal cycling in the neighborhood of the glass tempera-
ture.

One of our more problematic simplifications is our as-
sumption that we can distinguish elastic from plastic strains
and use the elastic strain as an independent argument of ther-
modynamic functions such as the internal energy or the en-
tropy. As we have stated here and in earlier papers, we main-
tain that the plastic strain, necessarily measured from some
reference configuration �possibly evolving�, cannot be a
physically meaningful variable for determining the current
state of the system or predicting its subsequent motion. Thus,
we have insisted on expressing our equations of motion in
Eulerian coordinates and using the internal state variables to
carry the memory of recent deformations.

This self-imposed requirement leaves us with an as-yet
unsolved problem regarding elasticity. The problem is com-
pounded here by our recognition of the extended thermody-
namic roles played by internal degrees of freedom, which, as
we have seen, may store energy in recoverable forms as well
as relax irreversibly toward states of equilibrium. In such
situations, it is unclear to us whether “elastic” behavior is
always the same as “reversible” behavior or whether the con-
ventional Kroner-Lee �19,20� decomposition of elastic and
plastic displacements is generally correct. We have evaded
these issues so far by restricting our attention to infinitesi-
mally small elastic displacements. However, we suspect that
these questions now require more serious attention.

Our list of topics needing further investigation includes
the choice of rate factors in the STZ theory. Our most notable
departure from earlier STZ results is the relatively simple,
�-dependent transition rate shown in Eq. �3.22�. This for-
mula is primarily a result of our statistical interpretation of
the second law of thermodynamics in �12,13�; it is related to
the two-temperature theory only in the sense that it is the
effective temperature �, and not the thermal temperature �,
that governs the configurational subsystem’s motion toward
statistically more probable states. So far as we can tell, this
result does not substantially change previous conclusions,
e.g., in �7,8�. In fact, the stronger stress dependence in Eq.
�3.22� may be needed in order to understand seismic data
�21�.

This statistical interpretation of the rate factors is espe-
cially difficult for jammed states at low temperatures, where
the stress is below the yield stress and ���=0. Our theory
predicts that, in this situation, m=tanh�v0sC /��. This result
makes sense for a glass below its glass transition tempera-
ture, where thermal fluctuations still can activate transitions
between the states of STZs even if they cannot create new
ones. In this case, we can change the inelastic strain by
changing the stress, although re-equilibration to a new state
of deformation might be very slow.

For a granular material, however, the most we can say is
that m=tanh�v0sC /�� is the statistically most likely average
orientation of STZs at the given values of sC and �. Such a
state might be achieved by tapping the system, i.e., by arti-
ficially introducing something like thermal noise. But the
way in which such a jammed system responds to changing
stresses has to do with whether it forms force chains or
bridging structures or the like. Such mechanisms cannot be
included in a theory of the kind we are discussing here.
Therefore, when talking about granular materials in Sec. V,
we have restricted ourselves to unjammed systems that are
undergoing deformation. More generally, this limitation of
the STZ theory emphasizes the need for a more thorough
investigation of the limits of validity of this theory and of
similarly constructed statistical theories of noncrystalline de-
formation.
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