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We present a shear-transformation-zone �STZ�-based analysis of numerical simulations by Haxton and Liu
�Phys. Rev. Lett. 99, 195701 �2007��. The extensive Haxton and Liu �HL� data sharply test the basic assump-
tions of the STZ theory, especially the central role played by the effective disorder temperature as a dynamical
state variable. We find that the theory survives these tests, and that the HL data provide important and
interesting constraints on some of its specific ingredients. Our most surprising conclusion is that, when driven
at various constant shear rates in the low-temperature glassy state, the HL system exhibits a classic glass
transition, including super-Arrhenius behavior, as a function of the effective temperature.
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I. INTRODUCTION: BASIC HYPOTHESES

In a remarkable recent report, Haxton and Liu �HL� �1�
have described molecular-dynamics simulations of a sheared,
two-dimensional, glass-forming material with a simple repul-
sive harmonic interaction over three decades of steady-state
strain rates �̇, and for bath temperatures T ranging from
about one tenth of the glass transition temperature T0 to
about twice T0. Most importantly, by measuring pressure
fluctuations, HL have determined values of the effective dis-
order temperature Teff for each value of �̇, T, and the shear
stress s. This extensive data set tests the applicability of any
theory of amorphous plasticity such as the shear-
transformation-zone �STZ� theory discussed here, and also
probes the limits of validity of the effective-temperature con-
cept �2–7�. We find that the main features of the STZ theory
presented in earlier papers �8–11� nicely survive these tests.
Moreover, several of the theory’s specific ingredients, which
had not been tightly constrained by earlier experiments or
simulations, can be refined and extended in light of the HL
data. Our most surprising conclusion is that, for T�T0, the
relation between �̇ and Teff is a direct analog of the relation
between the � relaxation rate and the bath temperature T
near a conventional glass transition.

It is well-known �e.g., see �12�� that, for unstressed glass-
forming materials in a range of temperatures above some TA,
the viscosity � is—at least to a first approximation—a simple
activated process with a temperature-independent energy
barrier. Below TA, � depends super-Arrheniusly on T, diverg-
ing as T decreases toward the glass transition temperature �or
Kauzmann temperature� T0. Figure 1�a� shows that the HL
data for the viscosity in the limit of vanishing strain rate can
be fit by a function of the form

� = �0���exp�1

�
+ ����� , �1.1�

where �=T /TZ and kBTZ is an Arrhenius activation energy
that we interpret as the energy of formation for an STZ. ����

is a model-dependent function, to be specified later, that di-
verges as �→�0=T0 /TZ and vanishes for ���A=TA /TZ. The
prefactor �0��� is a relatively slowly varying function of �
that appears prominently in our data analysis in Sec. III.

Our key hypothesis is that, below the glass transition tem-
perature �0, there is a relationship analogous to Eq. �1.1�
between the steady-state effective temperature and the strain
rate �̇. In analogy to the definition of �, and consistent with
earlier notation �9–11�, we write 	�Teff /TZ. We also define
q�
0�̇, where 
0 is the fundamental time scale that appears
in the dynamical STZ equations of motion. Thus, q is a di-
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FIG. 1. �Color online� �a� Logarithm of the HL viscosity �open
triangles� �1� as a function of the inverse temperature 1/�=TZ /T.
The solid line is the STZ theory fit to these data points. The dashed
extension of this line indicates a region where the temperatures are
so high that the theory becomes incorrect. �b� Logarithm of the HL
strain rate as a function of the inverse effective temperature 1/	 at
temperatures below the glass transition temperature �0=0.20. The
data points correspond to temperatures �=0.022 �stars�, 0.044
�squares�, and 0.11 �triangles�. The solid line is the theoretical fit.
See Sec. III for details of the theoretical analysis and an evaluation
of TZ.
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mensionless rate of molecular rearrangements or, equiva-
lently, a stirring rate. The HL results are expressed in terms
of a molecular time scale, t0, which is derived from their
molecular interactions and is not necessarily the same as

0—although the two times should have about the same or-
der of magnitude. We find it convenient to set 
0= t0=1, and
to incorporate any difference between these time scales into
the parameter �0 defined below in Eq.�2.5�. For clarity, how-
ever, we occasionally retain explicit factors 
0.

We propose that the rate q be interpreted as a purely ki-
netic quantity, independent of the specific mechanism by
which the rearrangements occur. We then define 	̂�q� to be
the dimensionless, steady-state, effective temperature at stir-
ring rate q. To a first approximation, we assume that 	̂�q� is
independent of � for ���0. As we shall see later, the tem-
perature dependence of 	̂�q� becomes more interesting for
larger �.

In the limit q�1, the number of rearrangements depends
only on the extent of the deformation and not its duration;
thus the condition for steady-state equilibrium is that, with
high probability, each molecule has changed its neighbors at
least a few times. It follows that 	̂�q→0�=	0 is a nonzero
constant, also independent of the rearrangement mechanism.
We then postulate that the inverse function q�	̂� is the rate at
which rearrangements occur when the system is driven so
that its steady-state effective temperature is 	̂. Then, in anal-
ogy with Eq. �1.1�, we write

1

q�	̂�
=

1

q0
exp�A

	̂
+ �eff�	̂�� , �1.2�

where q0 and A are constants to be determined, and �eff�	̂� is
a super-Arrhenius function that diverges at the effective
Kauzmann temperature 	0 and vanishes above some 	A.

This hypothesis is supported by the HL data. Figure 1�b�
is an Arrhenius plot of the HL results for the strain rate
versus the effective temperature for three values of �, all
almost certainly below �0, and the solid curve is a fit to those
points using Eq. �1.2�. There are large uncertainties in the
data at small strain rates �large 1/	�, but the existence of
Arrhenius and super-Arrhenius regions is apparent. Note that
the Arrhenius region, i.e., the section of the curve that is
linear in 1/	, seems to extend all the way to infinite 	. Or-
dinarily we do not think of Arrhenius formulas remaining
valid out to high temperatures. The difference here may be
that the effective temperature pertains only to a fraction of
the degrees of freedom in this system; so, perhaps in analogy
to magnetic spin temperatures, the maximally disordered
state at infinite 	 is realistic.

One of the most interesting features of Eq. �1.2� is that 	
diverges at a finite strain rate, q0�0.08 as seen from the
extrapolation shown in Fig. 1�b�. For molecular systems
where 
0 is of order femtoseconds, �̇=0.08/
0 is an impos-
sibly large rate; but it is accessible in numerical simulations
and perhaps also in granular systems or similar ones. The
system must liquify in some sense when driven faster than
q0; and the STZ theory must break down near that point.

II. STZ THEORY

A. General STZ equations

In order to use Eq. �1.2� to compute stresses, strain rates,
and effective temperatures for � both below and above �0,
we need a complete set of dynamical equations of the kind
provided by the STZ theory. In this section, we summarize
the version of that theory that was presented in �11�, special-
izing to steady-state motion but otherwise retaining the gen-
erality needed to describe plasticity over the wide range of
driving conditions studied by HL. We need one structural
modification of this theory, which we explain following Eq.
�2.8� below; and our analysis requires model-dependent rate
factors that differ from those used in earlier papers. We start
by writing the STZ equations in a form determined by the
basic structure of the theory. Then, in the following section,
we specify our choice of the model-dependent ingredients of
these equations.

In keeping with the emphasis of HL and the results of
recent STZ analyses such as �9,10�, we write this theory in a
form in which the effective temperature 	 is the single, dy-
namically relevant, internal state variable. Accordingly, we
need just one equation for the dimensionless strain rate q as
a function of the shear stress s and the effective temperature
	, supplemented by the steady-state version of an equation of
motion for 	.

The equation for the strain rate has the form

q � �̇
0 = 2e−1/	f�s,�� , �2.1�

where f�s ,�� is a model-dependent function �to be specified
shortly�, and exp�−1/	� is proportional to the STZ density.
This clean separation between the stress-dependent and
	-dependent parts of the plastic strain rate is an important
characteristic feature of the STZ theory that has been empha-
sized recently by Shi et al. �13�.

The equation for 	 is

e−1/	�s,��	1 −
	

	̂�q�
 = K�	������	

�
− 1� . �2.2�

This is essentially the steady-state version of Eq. �3.5� in
�11�; but here we have written it in a form that is more
appropriate for situations in which 	̂�q� can become large.

According to Eq. �2.2�, 	 finds its steady-state value when
the rate at which it is being driven mechanically toward its
kinetically optimal value 	̂�q�, on the left-hand side, is bal-
anced by the rate at which 	 relaxes toward the bath tem-
perature on the right. �s ,��, another model-dependent func-
tion, is proportional to the rate at which the work done by the
driving force is dissipated as configurational entropy; thus
�s ,�� vanishes at s=0. The function

���� � �exp�− ����� , for � � �0,

0, for � � �0
�2.3�

is the super-Arrhenius part of the � relaxation rate. Because
���� vanishes for ���0, Eq. �2.2� implies that the low-
temperature, steady-state value of 	 is 	̂�q�, as anticipated in
Eq. �1.2�. The function K�	� appearing in Eq. �2.2� is pro-
portional to the density of sites at which thermal equilibra-
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tion events—as opposed to shear-transformations—take
place. We assume here, as in �11�, that

K�	� = �e−�/	, �2.4�

with �=1, which means that both kinds of sites are compa-
rably populated. The parameter � remains to be determined
from the data.

In the general STZ equations as developed in �10,11�, the
function f�s ,�� in Eq. �2.1� has the form

f�s,�� = �0C�s��T�s� − m�s�� , �2.5�

where �0 is a dimensionless constant,

C�s� =
1

2
�R�s� + R�− s�� , �2.6�

T�s� =
R�s� − R�− s�
R�s� + R�− s�

, �2.7�

and R�s� /
0 is the rate at which individual STZ’s undergo
forward shear transitions driven by the stress s.

The function m�s� is the orientational variable that
emerges in the role of a back stress in the STZ theory. It
satisfies the steady-state relation

2C�s��T�s� − m�s���1 − m�s�s/s0� = m�s����� . �2.8�

Here, and in the equation for �s ,�� that follows, we depart
slightly from the equations derived in �11�. In that paper, the
yield stress sy was assumed to be approximately equal to a
temperature-independent constant �̄, and the stress was ev-
erywhere written in units of that constant. Here, on the other
hand, it is obvious—most visibly in the HL graphs of stress
versus strain rate at low-temperatures—that sy must be a
function of �. Examination of the derivation of the STZ
equations in �11� indicates that the factor of proportionality
between �s ,�� and the energy dissipation rate per STZ,
which was set equal to �̄ there primarily for dimensional
reasons, should have been a possibly temperature-dependent
stress that we now call s0. The result of this change is that a
factor s, which multiplies the strain rate in the expression for
the rate at which plastic work is done on the system, is re-
placed by s /s0, and the explicit s that appears in Eq. �2.8�
now becomes s /s0. This change in the analysis removes an
ambiguity in the older STZ theories; e.g., see �14�—details
will be published elsewhere �15�.

The significance of the quantity s0 is that below the glass
transition temperature it is closely related to the dynamical
yield stress sy. For ���0 and ����=0, sy is the value of s for
which the two factors on the left-hand side of Eq. �2.8� van-
ish simultaneously; therefore it is the solution of the equation

syT�sy� = s0. �2.9�

Because T�s��1 in all cases and is approximately equal to
unity at low temperatures, sy �s0. If s0 is a function of � in
Eq. �2.9�, then sy also is temperature dependent. Although
there is no yield stress for ���0, f�s ,�� still changes
abruptly at s�s0 for � not too much larger than �0. This

implies that at stresses close to s0, the stress vs strain rate
curve exhibits an abrupt change in slope.

The STZ formula for the dissipation rate per STZ �s ,��
appearing in Eq. �2.2� is

�s,�� =
2C�s��T�s� − m��s/s0 − ��m�� + m��m�����

1 − m��m�
,

�2.10�

where m=m�s� as given by Eq. �2.8�, and

s0��m� = T−1�m� �2.11�

is the inverse of the function T�s�; that is, T�s0��m��=m. The
function  is proportional to the total dissipation rate as de-
scribed in �11�. It is not difficult to show that �0�s ,��
=2�s /s0�f�s ,�� for ���0, confirming that the energy dissi-
pated is equal to the work done on the system when configu-
rational relaxation cannot occur via thermal fluctuations
alone. Above the glass transition, on the other hand, the ex-
ternal work is not the same as the dissipation, and the use of
Eq. �2.10� is necessary for accurate calculations.

B. Model-dependent ingredients

We turn now to the STZ forward transition rate R�s�. Here
we depart from the choices made in earlier papers �10,11�,
where we were concerned with experiments and simulations
performed only at relatively small driving forces, and which
therefore did not sharply constrain our choice of R�s�. HL
have provided a data set that goes up to stresses more than
ten times the yield stress, at temperatures both well above
and well below the glass transition, and thus have made it
necessary for us to consider this rate factor in a broader
context than before.

We need a function R�s� that interpolates between Eyring-
like behavior �16� at very small stresses and power-law
growth at very large ones. In choosing such an R�s�, we find
that we must depart from our earlier, purely phenomenologi-
cal procedure of choosing simple functions with very few
adjustable parameters, in the expectation that whatever data
we had available would not justify additional theoretical
complications. Here we are facing a very different situation.
In order to interpret the HL data, we find it better to start
with a physically motivated model containing an uncomfort-
ably large number of parameters. Determining the values of
these parameters is made easier in places by the fact that we
can fit some parts of the data independently of other parts,
and then see how these initially separate pieces of the puzzle
fit together, for example, in connecting our predictions of
behaviors at very small strain rates to those at very large
ones. Another advantage of this more nearly first-principles
procedure is that we can guess the magnitudes of many pa-
rameters on physical grounds, and also know the limits of
validity of physics-based approximations. For example, we
know that the Eyring-like formula that we use for the STZ
transition rate breaks down at the highest temperatures simu-
lated by HL; and thus we know to assign less weight to our
theory at those temperatures in fitting the HL viscosity curve.

Our proposed R�s� is
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R�s� = exp�−
�E

�
e−s/�̃�	1 + � s

s1
�2
n/2

. �2.12�

The first factor on the right-hand side of Eq. �2.12� is the
Eyring rate in a form similar to that used in �8�, where the
exponential function of s / �̃ causes the rate to saturate at
large s. Here, �E is the height of the Eyring activation barrier
in units of TZ. We expect �E�1, because the barrier oppos-
ing STZ transitions from one state to the other should be less
than the barrier opposing creation of new STZ’s. The param-
eter �̃ is related to the curvature of this barrier at its peak. It
appears here ostensibly in the same place where �̄ appeared
in �11�, but now it has no direct connection to the yield
stress. In the limit of small stress, we recover an Eyring rate
factor in the form

R�s� � exp	−
�E

�
�1 − s/�̃�
; �2.13�

therefore

C�s� � e−�E/� cosh��Es

��̃
� , �2.14�

and

T�s� � tanh��Es

��̃
� . �2.15�

The second factor on the right-hand side of Eq. �2.12�
converts the saturated Eyring function at large s to a power
law,

C�s� � � s

s1
�n

, T�s� � 1. �2.16�

Here, s1 is a temperature independent stress scale. Without
loss of generality, we normalize the nominal yield stress
s0��� so that s0�0�=1 and measure stresses s in units of this
zero-temperature yield stress. The crossover stress s1 deter-
mines when the system departs from Eyring stress-activated
behavior.

The exponent n in Eq. �2.12� is especially interesting. In
strongly dissipative systems, we expect n=1, indicating that
the STZ transition rate is controlled at large stresses by some
linear dissipative mechanism such as friction or viscosity. In
the opposite limit, where rates are controlled by collisions
between primarily hard-core objects and the detailed molecu-
lar interactions are relatively unimportant, we expect to find
Bagnold scaling �17�. That is, if there is no natural energy or
stress scale in the problem, then dimensional analysis re-
quires that the stress be proportional to the square of a rate.
Since R�s� /
0 is the only available quantity with dimensions
of inverse time, we must have R�s�s1/2 and n=1/2. It ap-
pears that the latter case is more consistent with the HL
viscosity data.

Other model-dependent ingredients that we must specify
are the super-Arrhenius function ���� and its analog �eff�	̂�.
Here we adopt formulas motivated by the excitation-chain
theory of the glass transition �18,19� proposed recently by

one of us. For present purposes, these formulas need not be
interpreted as anything more than phenomenological fits to
experimental data. We write

���� = � �1

� − �0
�p

exp	− b
� − �0

�A − �0

 , �2.17�

where b�3 produces a reasonably accurate description of
the transition from an inverse power-law divergence near �0
to simple Arrhenius behavior above �A in analyses of experi-
mental data �15�. The excitation-chain theory predicts p=1
�Vogel-Fulcher� in three dimensions and p=2 in two, but the
HL data is not accurate enough to distinguish between these
possibilities. Since viscosity data are often fit with a Vogel-
Fulcher function, we have chosen to be conservative and use
p=1 in our analyses. However, we point out in Sec. III that
p=2 remains an interesting possibility.

The effective-temperature analog of Eq. �2.17� is

�eff�	̂� = � 	1

	̂ − 	0
�p

exp	− b
	̂ − 	0

	A − 	0

 . �2.18�

III. COMPARISONS BETWEEN STZ THEORY
AND THE HL SIMULATIONS

A. Evaluating the parameters

We turn now to a detailed numerical comparison between
these theoretical predictions and the HL data. We start by
deducing values of the parameters TZ and A in Eq. �1.2� and
the exponent n in Eqs. �2.12� and �2.16�, using primarily the
data in the extreme Arrhenius region at low temperatures �
and large values of 	.

Figure 1�b�shows the HL data for −log10�q� as a function
of 1/	, for the three lowest HL temperatures, �=0.022,
0.044, and 0.11, all of which are comfortably below the glass
transition temperature �0�0.20. Therefore, ����=0 and 	
= 	̂. From Eq. �1.2� and the observed slope of this graph in
the Arrhenius region, i.e., from the data shown in HL, Fig.
1�b�, we find that ATZ�0.0068 �in HL units�.

A second piece of information is obtained by looking at
the HL results for stress as a function of 1/	, shown here in
Fig. 2. Again, we look only in the large 	, small � limit.
Equations �1.2� and �2.1�, plus our large-s estimate for the
rate factor, combine to give

lo
g 1
0(
s)

1/χ
1 2 3 4 5

-0.5

0

0.5

1

FIG. 2. �Color online� Logarithm of the stress s as a function of
1/	 for HL results at temperatures both above �open symbols� and
below �filled-in symbols� the glass transition. The curves are the
predictions of the STZ theory at the same temperatures.
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q � q0e−A/	 � 2�0e−1/	� s

s1
�n

, �3.1�

from which we find

ln�s/s1� �
1

n
ln� q0

2�0
� −

A − 1

n	
. �3.2�

The observed slope in Fig. 2, i.e., in the original HL figure in
which ln�s� is plotted as a function of 1/Teff, tells us that
�A−1�TZ /n�0.004.

A third relation, equivalent to the first two but useful for
data analysis, is

ln�s/s1� �
1

n
ln�q0

1/A

�0
� +

1

n
�A − 1

A
�ln�q� . �3.3�

The observed asymptotic slope of the graph of ln�s� versus
ln�q� shown in Fig. 3 is �A−1� /nA�2/3. If we assumed n
=1, we would find A�3 and TZ�0.002 25, a value of TZ
that is too small to be consistent with the HL viscosity data.
However, n=1/2 �the Bagnold prediction� implies that A
�1.5 and TZ�0.0045, which fits the viscosity quite well.

We then use the last two graphs to evaluate the
q-independent terms on the right-hand sides of Eqs. �3.2� and
�3.3�, with q0�0.08. In this way we check for consistency of
the estimates we have obtained from a noisy data set, and
find a relation between s1 and �0:

s1 � 2.3 � 103�0
2. �3.4�

Several other parameters can be determined by direct ex-
amination of the HL data. HL measure their stresses � in
units related to their interatomic forces. Because our values

of s are expressed in units of the zero-temperature yield
stress, the ratio of � to s is approximately the value of � at
the lowest strain rate and the lowest temperature shown in
HL, Fig. 1�a�, i.e., approximately 0.001 in HL stress units.
Thus, the stress-conversion relation is

� � �HLs, �HL � 0.001. �3.5�

Similarly, we deduce from the small-q limits of the stress in
HL, Fig. 1�a� �shown here in Fig. 3�, that for ���0, sy �s0 is
roughly a linearly decreasing function of �. There is no com-
parably systematic way to evaluate s0��� for ���0, but we
see no structure in these curves that might indicate a further
decrease of the stress scale s0��� at temperatures above �0.
Accordingly, we choose

s0��� � �1 − c�/�0, for � � �0,

1 − c , for � � �0,
�3.6�

where c�0.6.
The parameter �0, in our notation, is proportional to the

number density of STZ’s in the limit of infinite 	, modified
by a time-scale conversion factor of order unity. We have
found no independent estimate of �0 comparable to the pre-
ceding estimates of TZ, A, n, etc., but we expect it to be small
if the STZ theory is to remain valid at large values of 	.
Equation �3.4� provides an additional constraint. As dis-
cussed in the next section, the stress crossover behavior for
the full set of HL data provides an estimate of s1�0.08, and
this implies that �0�0.006.

Our next step is to use the parameters determined so far to
compare the HL viscosity shown in Fig. 1�a� with the STZ
predictions and thereby evaluate the parameters that occur in
Eqs. �2.14�, �2.15�, and �2.17�. Figure 4 shows the HL data
for log10�s /q� as a function of log10�q� at temperatures above
and below the glass transition. By definition, the HL viscos-
ity is �=�HLs / �̇ in the limit s→0, and the HL viscosity data
in Fig. 1�a� are based on extrapolation of the data in Fig. 4 to
s=0 using the Ellis equation �20�.

To evaluate �, we use Eqs. �2.1�, �2.5�, and �2.8� with 	
=�, and, after some algebra, find that
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FIG. 3. �Color online� �a� Theoretical log-log plots of stress s as
a function of strain rate q for a range of temperatures above and
below the glass transition. The short-dashed �brown� curves are for
�=0.28 and �=0.30, both just above the glass transition tempera-
ture �0=0.2. �b� The same as �a� but for a smaller range of strain
rates and including HL data at the selected temperatures
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FIG. 4. �Color online� Logarithm of the stress s divided by q as
a function of log10�q� for HL results at temperatures both above
�open symbols� and below �filled-in symbols� the glass transition.
The curves are the predictions of the STZ theory at the same tem-
peratures. For temperatures below the glass transition, the limit as
s→0 of s /q is the Newtonian viscosity, �.
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�0��� =
�HL

�0T��0��1 +
����

2C�0�� =
�HL�̃�

�0�E
�1 +

1

2
����e�E/�� .

�3.7�

The second version of this equation makes explicit use of
Eqs. �2.14� and �2.15�. Obviously there are too many param-
eters here for us to obtain more than a very rough estimate of
their range of values. None of the six HL data points for �
are close enough to the transition temperature �0 to provide
an accurate picture of the super-Arrhenius singularity. To
make matters worse, the highest reported temperature is ap-
proximately equal to TZ, well above any reasonable value for
�E and thus far too high for the Eyring formula to be valid.
Nevertheless, we find some interesting information by ex-
ploring the ways in which we can fit the theory to the data.

Our procedure has been simply to use Eq. �3.7� in con-
junction with Eq. �1.1� to plot the logarithm of ���� and
compare the results with the HL data points. To start, we
accept the values TZ�0.0045 �in HL units�, obtained from
the large-stress behavior, and �0�0.20 estimated by HL. We
also fix p=1 and b=3 in Eq. �2.17�. Then our best-fit param-
eters are �A�0.69, �1�0.69, �̃�0.3, and �E�0.4. Our fit to
the HL viscosity measurements is shown in Fig. 1�a�. The
dashed part of that curve indicates the region where, given
the above value of �E, we know that the Eyring formula in
Eq. �2.12� cannot be valid.

In contrast to the uncertainties that complicate the theo-
retical fit to the HL viscosity data, the analogous relation
between the strain rate and the effective temperature shown
in Fig. 1�b� seems relatively easy to understand. Whereas the
viscosity is an intrinsically dynamic quantity, involving
material-specific relations between stress and plastic re-
sponse, the function q�	� appears to be, as we have postu-
lated, a purely kinetic relationship. The solid curve shown in
Fig. 1�b� is a fit to Eq. �1.2� with the following parameters
defined in Eq. �2.18�; 	0=0.20, 	A=0.30, 	1=0.26, p=1, and
b=3. We emphasize that there are still substantial uncertain-
ties in these numbers. Within these uncertainities, it appears
that 	0��0.

At the outset, it might seem plausible to set �0=	0 and
thereby assume that there is only one energy scale that de-
termines both the thermal and effective glass temperatures.
This simplification cannot always be correct, however, be-
cause we know from the ubiquitous appearance of transient
stress peaks in stress-strain curves measured at high strain
rates that slow thermal quenches can bring glasses into states
where �0�	�	0. The conventional interpretation of these
stress peaks is that the as-quenched state of the system has a
low fictive temperature 	 with a correspondingly small popu-
lation of STZ’s, and that plastic flow cannot begin until
enough deformation has occurred to increase 	 to a value of
order 	0. The fictive temperature cannot be below �0, so
stress peaks could not be produced by this process if �0
=	0. In this situation, therefore, we expect that the HL model
would not exhibit stress peaks except, possibly, at very high
strain rates where 	̂�q� is substantially larger than 	0.

In exploring fits to the viscosity data, however, we find
one intriguingly different possibility. We can fit the HL vis-

cosity data with p=2 in Eq. �2.17�—the prediction of the
excitation-chain theory—but this fit looks best if we reduce
�0 to about 0.1, i.e., half the previous estimate. This lowered
transition temperature would mean, for example, that the HL
curves of stress versus strain rate shown in Fig. 3 for values
of � down to 0.1 would bend over and exhibit viscous be-
havior at strain rates much smaller than those measured by
HL. If that were the case, then 	0 would be substantially
higher than �0, and the transient behavior of the HL model
might be more interesting than predicted at the end of the last
paragraph.

B. Comparisons over the full range of the HL data

In order to extend our analysis to temperatures above the
glass transition �Kauzmann� temperature �0 and to arbitrary
strain rates, we must reexamine our assumption that the ef-
fective Kauzmann temperature 	0 is independent of the bath
temperature �. To see what is happening here, we take ad-
vantage of our simplifying assumption that �=1 in Eq. �2.4�
and solve this equation for 	,

1

	
=

�s,��/	̂�q� + �,����/�
�s,�� + �����

. �3.8�

Note that, for ���0, we can take the limits q→0 and �
→�0 in different orders and obtain different answers. If we
take the limit of vanishing q first, so that �s ,�� vanishes,
then 	→�. However, if we let � go to �0 first, so that ����
vanishes, then 	→ 	̂�q�→	0 for sufficiently small q. We see
no a priori reason why the crossover between these limiting
behaviors described by Eq. �3.8� cannot be physically correct
for a temperature independent 	0, but that assumption is
qualitatively inconsistent with the HL data. Equation �3.8�
implies that 	 always must lie between � and 	̂�q�, but we
have found �in a calculation not shown here� that if we
choose 	0=�0 to be a �-independent constant, then the HL
data in Fig. 5 for �=0.31 and 0.44 lie above the allowed
range in the transition region between the small-q and large-
q limits.

A physically plausible alternative is to assume first that
	0��0 �the inequality being consistent with the existence of
transient stress peaks�, and then that 	̂�q→0�=� whenever �
exceeds 	0. That is,

χ

log10(q)
-5 -4 -3 -2

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.1

FIG. 5. �Color online� Effective temperature 	 as a function of
log10�q� for HL results both above �open symbols� and below
�filled-in symbols� the glass transition. The smooth curves are the
predictions of the STZ theory at the same temperatures �.
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lim
q→0

	̂�q� = �	0, if � � 	0,

� , if � � 	0.
�3.9�

With this assumption, 	̂�q→0� is a continuous function of �
across the glass transition and, for ��	0, there are no small-
q steady-state solutions other than 	=�. Nothing in this hy-
pothesis precludes 	0 itself from being a function of tem-
perature. In fact, we think we see a hint in the HL data that
	0 may be a decreasing function of � up to the point where
�=	0, beyond which 	̂�q→0�=�.

The assumption in Eq. �3.9� accurately fits the HL data. In
implementing Eq. �3.9�, we have simply rescaled the param-
eters 	A and 	1 in Eq. �2.18� so that the ratios 	A /	0 and
	1 /	0 remain the same in both low- and high-temperature
regions. We also have chosen �=5 in Eq. �2.4� and �̃=0.3 in
Eq. �2.12�. Our results are shown in Figs. 2, 3, 5, and 6.

Figure 5 shows 	 as a function of strain rate q for a set of
temperatures � both above and below �0. As expected, the
HL data and STZ curves collapse to roughly a single curve
for temperatures below �0. Above �0, as predicted by Eq.
�3.8�, 	→� in the limit of small q, and the crossover to
large-q behavior is correctly predicted by the theory. Figure 6
shows the same data as in Fig. 5, but here as the Arrhenius
plot, Fig. 1�b�, with the high-temperature data included. We
show this different view of the data to emphasize that even
the high-temperature values of 	 collapse to a single Arrhen-
ius line, extrapolating to a single “melting” strain rate q0, in
the limit of infinite 	.

Similarly, the graphs of stress s as functions of 1 /	 in Fig.
2, and those for s as functions of strain rate in Figs. 3�a� and
3�b�, show good agreement between theory and simulations
at all temperatures and stresses. As in the other figures, these
curves and the corresponding HL data points are shown at a
selection of temperatures above and below �0. Note, in Fig.
3, that the curves for ���0 make smooth transitions to linear
viscous behavior at small strain rates. As expected, the
curves for ���0 level off at temperature-dependent yield
stresses. The short-dashed lines in Fig. 3�a� illustrate the bi-
furcation at �0. At temperatures just above �0, the material
appears to exhibit a yield stress down to very small strain
rates, but eventually flows even in the limit of arbitrarily
small stress, thus showing how hard it is to make an accurate

estimate of �0 by going to smaller and smaller strain rates.
Two material-specific parameters, �̃ and s1, are best con-

strained using the HL data for log10�s /q� vs log10�q�, shown
in Fig. 4. The small strain-rate asymptote of these curves for
temperatures above the glass transition is log10������, and
the way in which the stress crosses over from its power-law
dependence at large q to the yield stress or Newtonian vis-
cosity at small q is strongly sensitive to STZ transition rate
parameters �̃ and s1. We find that �̃�0.3 and s1�0.08 fit
the crossover behavior quite well.

The curves in Fig. 4 show the STZ solutions for
log10�s /q� vs log10�q� at temperatures above and below the
glass transition. For temperatures above the glass transition,
�̂�q�=s /q is very similar to the Cross form used by HL to
extrapolate their data. However, the STZ solutions for �̂�q�
asymptote to a slightly smaller value of � as q→0 than the
one specified by HL. It is unclear how to best extrapolate this
stress and/or strain rate data to s=0, and this uncertainty
explains why the HL viscosity values in Fig. 1�a� are slightly
larger than the STZ fit.

IV. CONCLUDING REMARKS

The natural way in which the STZ theory accounts for the
wealth of data provided by the Haxton-Liu simulations lends
credibility to major elements of that theory, especially the
form of the expression for the plastic strain rate in Eq. �2.1�
and the central role played by the effective disorder tempera-
ture. The self-consistent evaluation of parameters in Sec. III
depends directly on the first of these elements, and the re-
markable appearance of an effective glass transition in the
nonequilibrum glassy state seems to confirm the second.
Nevertheless, unanswered questions abound. We conclude by
listing some of them.

How close is the analogy between the thermal and
effective-thermal glass transitions? The analogy does seem
surprisingly close, but there are interesting and potentially
very important differences. We think that the near equality of
the transition temperatures �0 and 	0, if correct at all, must
be an artifact of the HL model. We have argued here that �0
must be substantially smaller than 	0 in many realistic cir-
cumstances and we suspect that this inequality might even
turn out to be true in the HL model if measurements could be
made at appreciably smaller strain rates. It already is appar-
ent that the effective Arrhenius activation energy AkBTZ in
Eq. �1.2� is larger than the thermal activation energy kBTZ by
a factor of about 1.5, thus there is no universality in the
energy scales. Why not?

We see an even deeper question in this regard. As dis-
cussed in the paragraph preceding Eq. �1.2�, the fact that
	̂�q� goes to a nonzero value 	0 in the limit of small q seems
to have a robust explanation in purely kinetic terms. Is a
similar argument relevant to the thermal glass transition?
Would it imply that the viscosity—the analog of
q−1—rigorously does diverge at �0?

What should the STZ transition rate R�s� really look like?
Which features of it are model dependent? Which have some
degree of universality? In Eq. �2.12�, we have tried to go part
of the way toward deducing R�s� from first-principles, many-
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FIG. 6. �Color online� The same data as shown in Fig. 5 but in
the form of an Arrhenius plot of log10�q� as a function of 1/	, for
HL results both above �open symbols� and below �filled-in symbols�
the glass transition. The smooth curves are the predictions of the
STZ theory at the same temperatures �.
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body physics. Doing this correctly would be analogous to
using statistical mechanics to compute the viscosity in the
Navier-Stokes equations. The problem here is harder, of
course, because we do not yet have a precise definition of an
STZ. Nevertheless, this problem needs to be given more
thought in view of the information we have obtained from
the HL results.

One especially intriguing aspect of this question emerges
from our observation that R�s� exhibits Bagnold scaling at
large s. Under what circumstances may we expect this to
happen? Is this special to the HL model? Ordinarily, we think
of Bagnold scaling as being relevant to the large-stress be-
havior of the strain rate as a whole, i.e., to q�s� in present
notation, whereas our q�s� behaves quite differently. The spe-
cial feature here is that the Bagnold behavior is modified by
the STZ density, i.e., the factor exp�−1/	� in Eq. �2.1�,
which is strongly q dependent. We suspect that the full Bag-
nold behavior would occur at strain rates larger than q0,
where the STZ density is not a meaningful quantity, but
where the HL model might look the same as a rapidly flow-
ing granular material. A better understanding of this large-q
situation might provide insight regarding the applicability of
STZ theory to granular systems.

Which features of the models are sensitive to the details of
particle interactions? Which are universal? The STZ equa-
tions capture many features of the HL simulations, which
model a simple binary mixture with purely repulsive har-
monic interactions. The HL data set is unique because it
investigates a broad range of strain rates and thermal tem-
peratures and measures the effective temperature using
steady-state pressure fluctuations. Which features of the HL
data depend on the chosen interaction potential, and which
are universal? STZ theory provides some clues: the func-
tional form for the divergence in the effective temperature
�i.e., p in Eq. �2.18�� should be universal, but the temperature
at which the system departs from simple activated behavior,
	A, likely depends on the details of the interactions. As ad-
ditional simulations shed light on the glassy behavior of ma-
terials with other interaction potentials, we will be able to
test these predictions and verify our fits for STZ parameters.

Will the present version of the STZ theory accurately pre-
dict the time-dependent transient behavior of the HL model?
One of the principal successes of earlier applications of the
STZ theory has been that it correctly accounts for response
times observed, for example, in transient stress-strain experi-

ments. The key idea here is that there is a separation of time
scales between slow processes, i.e., relaxation of plastic flow
or disorder temperature, as opposed to fast processes such as
the response to perturbations of the STZ orientation variable
m that appears in Eq. �2.8�. That separation seems problem-
atic at the upper end of the scale of strain rates used by HL.
We have no problem with it here because we consider only
steady-state behavior.

It will be interesting to look at transient behavior in the
HL model to see where the fully dynamic version of the STZ
theory may break down. Before doing that, however, it will
be important to look at less esoteric behavior, e.g., transient
responses to changes in driving forces of systems initially
quenched at different rates to temperatures near the glass
transition. Do such systems exhibit stress peaks? The model
that we have used for interpreting the HL data, in which 	0
=�0, implies that they should not occur here. Might transient
experiments reveal that, as we suspect, 	0��0?

What are the implications for strain localization? The ef-
fective temperature provides a mechanism for strain localiza-
tion in amorphous materials—regions with a higher effective
temperature are more likely to undergo plastic deformation,
which generates heat that increases the local effective tem-
perature. Although previous studies assumed a constant
value for 	̂ �21�, Eq. �1.2� shows that this assumption is only
valid near the effective glass transition. The fact that 	̂ in-
creases with increasing strain rate is likely to enhance local-
ization and may permit steady-state localized solutions.

What role do thermal fluctuations play in determining the
properties of the effective glass transition? We already have
concluded that 	̂�q→0� must be equal to � at high tempera-
tures, ��	0, but we have little knowledge about what hap-
pens to the corresponding 	0 when ��	0, and have simply
assumed that it is a constant. More detailed information
about this quantity might help us understand the molecular
mechanisms that are at work here.
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