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We use shear transformation zone �STZ� theory to develop a deformation map for amorphous solids as a
function of the imposed shear rate and initial material preparation. The STZ formulation incorporates recent
simulation results �T. K. Haxton and A. J. Liu, Phys. Rev. Lett. 99, 195701 �2007�� showing that the steady
state effective temperature is rate dependent. The resulting model predicts a wide range of deformation behav-
ior as a function of the initial conditions, including homogeneous deformation, broad shear bands, extremely
thin shear bands, and the onset of material failure. In particular, the STZ model predicts homogeneous defor-
mation for shorter quench times and lower strain rates, and inhomogeneous deformation for longer quench
times and higher strain rates. The location of the transition between homogeneous and inhomogeneous flow on
the deformation map is determined in part by the steady state effective temperature, which is likely material
dependent. This model also suggests that material failure occurs due to a runaway feedback between shear
heating and the local disorder, and provides an explanation for the thickness of shear bands near the onset of
material failure. We find that this model, which resolves dynamics within a sheared material interface, predicts
that the stress weakens with strain much more rapidly than a similar model which uses a single state variable
to specify internal dynamics on the interface.
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I. INTRODUCTION

Amorphous solids such as foams, dense colloids, bulk
metallic glasses, and granular fault gouge are ubiquitous in
engineering applications and natural systems. Although these
materials exhibit a yield stress on experimental time scales,
they flow, deform, and fail in a manner which is different
from crystalline solids or Newtonian fluids. Many of these
materials undergo strain localization, where a small region
deforms much more rapidly than adjacent regions. For ex-
ample, bulk metallic glasses develop very thin shear bands
�1,2�, fault gouge in earthquake faults develops a prominent
fracture surface that accommodates most of the slip �3�, and
colloidal systems develop broad shear bands �4�.

Surprisingly, the mechanisms that lead to this strain local-
ization have remained elusive. An early theory of shear
banding �5� suggests that a small increase in the thermal
temperature lowers the viscosity, resulting in more rapid de-
formation and a local increase in temperature. However, Le-
wandowski and Greer showed that shear bands in bulk me-
tallic glasses cannot be explained by adiabatic thermal
effects �6�. Although thermal heating must play a role at high
strain rates, it does not appear to govern the formation of
shear bands in many materials.

In a recent paper �7�, we found that at low strain rates the
shear transformation zone �STZ� theory for amorphous solids
predicts shear band formation. These bands are generated by
feedback between the local strain rate and the configurational
disorder of an amorphous packing. In a separate paper �8�,

we used STZ theory to fit data over a wide range of strain
rates from a simulation of glassy disks by Haxton and Liu
�9�. These data indicate that dynamics of the glassy material
change dramatically at large strain rates.

Experimental studies of bulk metallic glasses driven at a
wide range of strain rates also show that deformation is strain
rate dependent. Homogeneous deformation is seen at low
strain rates and inhomogeneous flows dominate at large
strain rates �10,11�.

In this paper, we study deformation in the STZ model as a
function of the initial material preparation and externally im-
posed strain rate, and include the rate dependence observed
by Haxton and Liu in our model. This STZ formulation is
valid for a large range of strain rates and predicts four dif-
ferent types of deformation behavior: homogeneous defor-
mation, thick disorder limited shear bands, thin diffusion
limited shear bands, and material failure. We will discuss
these various types of deformation in detail in the following
sections. We describe the mechanism that generates shear
bands and the processes that determine the thickness and
longevity of these inhomogeneous flows. We numerically in-
tegrate the STZ equations to produce a deformation map for
the model glass simulated by Haxton and Liu that shows the
type of deformation or failure predicted as a function of the
initial conditions.

Shear bands in this STZ formulation occur due to a feed-
back between the effective temperature, which describes the
configurational disorder in a glassy or jammed material, and
the local strain rate. In a sheared, steady state, nonequilib-
rium amorphous material, the effective temperature can be
calculated by measuring the fluctuations and linear response
of an observable such as the pressure and applying the
fluctuation-dissipation theorem �FDT� �9,12,13�. Ono, et al.*lm2@princeton.edu
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have shown that in several simulated foams, measurements
of different observables yield a single, rate dependent steady
state effective temperature which is distinct from the thermal
temperature �13�. In addition, these authors show that the
FDT effective temperature is consistent with an entropic
definition: The effective temperature is the derivative of the
configurational entropy with respect to the �potential� energy.
This definition suggests that slow steady shearing causes the
material to ergodically explore all possible configurational
packings, and therefore the system maximizes a configura-
tional entropy.

The STZ model describes plastic deformation in amor-
phous material as a series of localized plastic events that
occur in susceptible regions, or zones �14–16�. Following
Falk and Langer, we model STZs as bistable regions that are
more likely than the surrounding material to deform under
stress, and are created and annihilated as energy is dissipated
in the system �16�. This model has successfully been used to
describe bulk metallic glasses, thin films, and hard spheres in
several different geometries �7,17–20�.

An important feature of all STZ formulations is that the
zones are activated by an effective temperature or free vol-
ume, and there is a feedback between packing structure and
deformation. In particular, we postulate that an STZ is an
unlikely, high-energy configuration of an amorphous pack-
ing. Because the effective temperature governs the statistics
of configurational packings, the steady state density of STZs
should correspond to a Boltzmann factor

�̂ = exp� − Ez

kBTeff
� � exp�−

1

�
� , �1�

where �̂ is proportional to the steady state STZ density, Ez is
an activation energy, kB is the Boltzmann constant, Teff is the
effective temperature, and ��Ez / �kBTeff� is a dimensionless
effective temperature �17�.

Because plastic deformation occurs only at these STZs,
the plastic strain rate in simple shear is proportional to this
density, and in many situations can be written as follows:

�0�̇pl = 2e−1/�f�s� , �2�

where � is strain, f�s� is a function of the deviatoric stress s,
and �0 is an internal time scale such as the phonon frequency.
For the remainder of this paper we will refer to the dimen-
sionless plastic strain rate q= �̇pl�0 and q̄= �V0 /L��0 is the
imposed average strain rate times the STZ time scale.

For completeness, the Appendix reviews the STZ model
and defines the exact equations and parameters used in this
work. The model is vastly simplified by focusing on a mate-
rial in a simple two-dimensional shear geometry at thermal
temperatures far below the glass transition temperature. The
material extends infinitely in the direction parallel to the
flow, and the coordinate y specifies a position between ma-
terial boundaries at −1 and +1 in the direction perpendicular
to the flow. The model can then be summarized by two equa-
tions.

The first specifies that elastic deformation increases the
shear stress, while plastic deformation decreases it:

ds

d�
= �*�1 −

2

q̄
f�s��̄	 , �3�

where �* is the ratio of the elastic modulus to the yield stress

and �̄ is the average of the STZ density �=exp�−1 /�� in
the y direction. In writing this equation we have assumed
that the deviatoric stress is constant across the width of
the sample, as discussed in the Appendix. Because the exter-
nally applied strain rate is constant, the derivative of the
stress with respect to time t in Eq. �A2� has been written
as a derivative with respect to the dimensionless strain
�= �V0 /L�t.

A second equation specifies that the effective temperature
approaches its steady state value, �̂�q� as plastic work is
dissipated, and it also diffuses:

d�

d�
=

2s�

c̃0s0q̄
f�s�e−1/��1 −

�

�̂�q�
	 + a2�̇pl

�2�

�y2 , �4�

where c0 is a dimensionless specific heat, a is a diffusion
length scale on the order of an STZ radius, and s0 is the
stress threshold for the onset of plastic deformation. For the
remainder of this paper, a symbol with an overline denotes a
quantity that is a spatial average or constant as a function of
position. The function f�s� is described in the Appendix.

The remaining unspecified component of Eq. �4� is the
steady state effective temperature �̂. This material dependent
parameter captures the physically intuitive idea that there is a
maximum possible disorder attained in a sheared amorphous
packing; above �̂ no heat can be dissipated in the configura-
tional degrees of freedom. Recent simulations by Haxton and
Liu �9� suggest that the steady state effective temperature is
dependent on the plastic strain rate, denoted q. In steady
state, the inverse strain rate 1 /q can be viewed as a function
of the steady state effective temperature �̂, very similar to the
viscosity is a function of the thermal temperature T. We have
shown �8� that the the glassy steady state effective tempera-
ture is well fit by the following functional form

1

q��̂�
=

1

q0
exp�A

�̂
+ �eff��̂�� . �5�

A discussion of this effective temperature glass transition is
given in Ref. �8�, we adopt the super-Arrhenius function �eff
identified in that paper:

�eff��� =
�1

� − �0
exp�− b�� − �0�/��A − �0�� , �6�

where �0 is the thermal glass transition temperature, �A is the
temperature at which the system begins to exhibit Arrhenius
behavior, and b, �1 are fit parameters. The super-Arrhenius
component �Eq. �6�� ensures that the effective temperature
approaches a constant �0 as the strain rate approaches zero,
which is seen in simulations.

As noted above, this paper focuses on deformation in ge-
ometries where the equilibrium shear stress is constant across
the sample. Although there are many interesting geometries
with shear stress gradients �and STZ theory can explain these
shear bands �20��, often in these cases stress effects compete
with internal structural effects and complicate the analysis.
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In contrast, experiments in simple shear geometries exhibit
strain localization even though the equilibrium stress is con-
stant in space, indicating that some property of the internal
state governs shear band formation.

Shear banding is caused by the coupling in Eq. �2� be-
tween a configurational or structural parameter and the plas-
tic rate of deformation. Although the stress equilibrates
quickly, the effective temperature dynamics continue to
evolve over much longer time scales. Materials that develop
long-lived shear bands exhibit a very different macroscopic
rheology compared to those that deform homogeneously
�21�. The type of deformation has important implications for
the macroscopic material and frictional properties—systems
that localize also weaken rapidly.

The remainder of this paper is organized as follows. In
Sec. II we study the stability of the model given by Eqs. �3�
and �4� with respect to perturbations. We numerically inte-
grate the STZ equations to validate our analytic stability re-
sults in Sec. III and study the different types of deformation
that persist for long times in Sec. IV. Section V concludes
with a discussion of our results and open questions.

II. STABILITY ANALYSIS

We now study shear band formation for systems with a
rate-dependent steady state effective temperature �̂�q�. The
fact that shear bands persist in the STZ model is somewhat
surprising, given that the only stationary state of Eqs. �3� and
�4� is homogeneous deformation. In the following sections,
we provide an explanation for shear band formation and evo-
lution across a wide range of strain rates.

We emphasize that all of the shear bands discussed below
are transient phenomena—at very large strains the shear
bands diffuse across the entire width of the material and
deformation once again becomes homogeneous. However,
because the internal dynamics of the configurational degrees
of freedom can be very slow compared to the stress evolu-
tion timescale, shear bands persist for very long times. For
example, the shear stress in numerical solutions to the STZ
equations generally appears to reach a steady state within a
few percent strain but the effective temperature profile often
remains inhomogenous for more than 20% strain.

First, the evolution equations for � and s can be written as
follows:

ṡ�s,�� = �*�1 − 2
f�s�
q̄

 dye−1/�	 , �7�

�̇�s,�� = 2f�s�e−1/�� s�

q̄c0s0
�1 −

�

�̂�q�
	 + a2�2�

�y2� , �8�

where the �·� operator indicates a derivative with respect to
strain, which is proportional to time ��= �V0 /L�t�. The func-
tion �̂�q�= �̂�2f�s�e−1/�� depends implicitly on the stress and
the effective temperature. Then the Jacobian J is given by

J11 =
dṡ

ds
=

− 2�*

q̄
e−1/�f��s� , �9�

J12 =
dṡ

d�
=

− 2�*

q̄
e−1/�f�s�W�	��/�2, �10�

J21 =
d�̇

ds
=

2�e−1/�

s0c0q̄
��1 −

�

�̂
	�sf��s� + f�s�� +

�sf

�̂2

��̂

�s
� ,

�11�

J22 =
d�̇

d�
=

2e−1/�f�s�s
s0c0q̄

��1 −
�

�̂
	�1 +

1

�
	

+ �−
�

�̂
+

�2

�̂2

��̂

��
	� . �12�

For simplicity, Eq. �12� neglects the wave number dependent
diffusion term which is additionally stabilizing. The term
W�	�� is a spatial integral over one period of the perturba-
tion function; it selects only the zero wave number compo-
nent of the perturbing function because the other components
must satisfy periodic boundary conditions

W�	�� = �
k=−




1

2L



−L

+L

dy	�ke
ik�y/L, �13�

=�1 for k = 0,

0 for k � 0.

 �14�

Details can be found in Ref. �7�. We will use the term “zero-
mean perturbation” to refer to a perturbing function with a
vanishing k=0 component that does not change the average
value of the underlying function across the width of the
sample.

For a specified externally imposed strain rate q̄=�0V0 /L,
the steady state solution to Eqs. �7� and �8� is �= �̂�q̄�, and
sSS is given by the solution to the algebraic equation 1
=2f�sSS�exp�−1 / �̂�q̄�� / q̄. The Jacobian evaluated at this
steady state is greatly simplified:

J11 =
− 2�*

q̄
e−1/�f��s� , �15�

J12 =
− �*W�	��

�2 , �16�

J21 =
s

c0s0

��̂

�s
, �17�

J22 =
s

c0s0
� ��̂

��
− 1	 . �18�

The upper right entry �J12� vanishes for zero-mean pertur-
bations, so the Jacobian is lower triangular, and the diagonal
values alone specify stability. J11 is strictly negative because
f is a monotonically increasing function of s, and therefore
the system is linearly stable with respect to zero-mean per-
turbations from a homogeneous steady state if J22 is negative
or, equivalently, ��̂ /���1.
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The partial derivative ��̂ /�� can be written as

��̂

��
=

�̂��q�q
�2 , �19�

where �̂�q� is determined by the derivative of Eq. �5�.
This clarifies the physical meaning of the criterion

��̂ /���1. At low strain rates the super-Arrhenius function
�eff ensures that �̂ changes slowly with q and the partial
derivative in Eq. �19� is significantly smaller than unity. In
Ref. �7� we used the approximation that �̂�q� is constant at
low strain rates; in this case ��̂ /�� is trivially zero and the
STZ equations are always stable with respect to perturba-
tions in steady state.

At high strain rates, where �eff is zero and �̂�q�
=A / ln�q0 /q�, it can be shown that ��̂ /��=1 /A. In this re-
gime, the equations are stable with respect to perturbations in
steady state if and only if the normalized activation energy A
is greater than unity.

The material-dependent parameter A is greater than unity
in all homogeneously deforming materials where the steady
state stress increases with increasing imposed strain rate. To
see this, note that Eq. �5� can be rewritten as

�̂�q̄� = −
A*�q̄�

ln�q̄/q*�
, �20�

where A* is an activation energy and q* is a dimensionless
constant. In steady state, �= �̂ everywhere, so inserting Eq.
�20� into Eq. �2� and taking the derivative with respect to q
results in the following equation for s��q̄�, which is the de-
rivative of the steady state stress with respect to the imposed
driving rate:

s��q� = �− 1 + A*�q� + q ln�q/q*�A*��q��


 � q

q*
	−1/A

*
�q� 1

A*�q�f��s�
. �21�

The function f increases monotonically with s. Therefore
s��q� is positive and the steady state stress increases with
increasing imposed strain rate whenever the first factor in Eq.
�21� is positive. In high strain regimes, the activation energy
is a constant A*�q�=A and the material is steady state
strengthening whenever A�1.

In most simulations of disordered disks with hardcore re-
pulsion �including simulation data by Haxton and Liu �9� and
Shi et al. �21��, the steady state stress increases with increas-
ing strain rate, so that ��̂ /�� is less than unity and the system
is stable with respect to zero mean perturbations. Materials
with a steady state stress that increases as a function of driv-
ing rate are called rate strengthening. In contrast, several
experiments that study friction of granular fault gouge find
rate weakening behavior; the steady state stress decreases as
the imposed strain rate increases �22�. These materials might
be susceptible to shear banding even in steady state. In this
paper we focus on shear banding in materials that are rate
strengthening, but rate weakening materials are an interest-
ing avenue of further research.

STZ theory predicts that rate strengthening materials
should continue to deform homogeneously once they attain
steady state. However, for certain initial conditions simulated
rate strengthening materials develop shear bands before they
reach this homogeneous steady state. This leads us to study
the stability of perturbations at each point in time along a
time-varying trajectory, assuming that the system deforms
homogeneously up to that point. This is a “frozen time” sta-
bility analysis.

Due to the integral in Eq. �7�, spatial perturbations to �
with zero mean do not change the equation for ṡ to first order
in 	�: ṡ�s , �̄+	��= ṡ�s , �̄�+O�	�2�. In this case the linear
stability is determined solely by the equation for � and the
sign of J22. Above the yield stress, � and f�s� are strictly
greater than zero and therefore J22 is negative �and the tra-
jectory is linearly stable� whenever the following criterion is
met:

� � �crit =
1

4�̂
�− �̂ + �̂2 + q�̂��q�

+ �8�̂3 + �− �̂ + �̂2 + q�̂�q��2� . �22�

By inserting values for �̂�q� into Eq. �22�, we derive a
linear stability prediction for the boundary between these
two regimes as a function of the average initial effective
temperature �̄ and the applied strain rate q. We choose �̂�q�
to fit the data from Haxton and Liu �8,9�.

Unlike linear stability analysis for steady states, frozen
time stability analysis for time varying trajectories does not
predict the final state of the system. It provides an indication
that a transient instability is possible, but it does not specify
global stability. The frozen time analysis is accurate only
when the perturbations grow rapidly compared to the growth
of the underlying trajectory. We therefore use the more gen-
eral localization ratio R to characterize the transient instabil-
ity. First discussed in Ref. �7�, this ratio compares the growth
rate of perturbations �determined by frozen-time stability
analysis� to the growth of the underlying trajectory

R = 	�
exp�J22�sm,�ini��t/2�J22�sm,��

�̇�sm,��
, �23�

where 	� is the magnitude of the perturbation, �ini is the
initial effective temperature, sm is the approximate maximum
shear stress given by the solution of the equation q̄
=2f�sm�exp�−1 /�ini�, and �t is the approximate time in units
of strain it takes to achieve the stress maximum. Localization
occurs when the rate at which heat is dissipated inside the
band is larger than the rate outside the band; in this case R is
greater than unity.

The localization ratio given by Eq. �23� depends on the
magnitude of the perturbation 	�. In the low strain rate limit,
we have systematically studied the localization ratio R as a
function of perturbation amplitudes and found that it accu-
rately predicts that larger perturbations lead to enhanced lo-
calization �7�. For simplicity, we have chosen 	� to be 5% of
the average value of the effective temperature, which is con-
sistent with perturbations to the potential energy per atom for
a Lennard Jones glass calculated by Shi et al. �21�. System-

MANNING et al. PHYSICAL REVIEW E 79, 016110 �2009�

016110-4



atically studying the effects of perturbation magnitude as a
function of strain rate is beyond the scope of this paper.

Figure 1 is a deformation map that predicts the type of
flow as a function of the initial conditions for the simulated
glassy material studied by Haxton and Liu �9�. The bold line
is the linear stability criterion defined by Eq. �22�. Because a
frozen time analysis does not take into account finite ampli-
tude perturbations or the growth rate of the underlying tra-
jectory, we use the localization ratio R to predict localiza-
tion. Using Eq. �23�, we calculate R for each set of initial
conditions with 	�=0.05
�ini, and �t=0.06=6% strain.
The line marked with crosses in Fig. 1 corresponds to a line
with constant R=1. Localization is expected below this line,
where R�1 and homogeneous flow above it.

III. NUMERICAL SOLUTIONS TO STZ EQUATIONS

To check these analytic predictions, we numerically inte-
grate the STZ partial differential equations �PDEs�. The nu-
merical solutions exhibit three broad categories of deforma-
tion behavior: homogeneous deformation, shear bands, and
melting or failure. This section discusses qualitative features
of each kind of deformation, while Sec. IV develops a defor-
mation map using a quantitative criterion for each category
and discusses macroscopic implications.

To resolve extreme localization, we use an irregular mesh
and a combination of fixed-step and adaptive-step finite dif-
ference methods. For each pair of initial conditions, the av-
erage initial effective temperature �ini and the externally ap-
plied strain rate q̄=�0�V0 /L�, we numerically integrate the
STZ equations �Eqs. �3� and �4�� from 0 to 20 % strain. The
initial effective temperature function �ini�y� is a constant per-

turbed by a hyperbolic secant function of height 	� and
width L /10, normalized so that its average is �ini, and the
initial shear stress is 0.0001. All stresses are in units of the
yield stress sy unless otherwise noted.

For comparison, we also numerically integrate a single
degree of freedom STZ model, where the effective tempera-
ture is constrained to be constant across the width of the
material, and no perturbations are permitted. The system of
ordinary differential equations �ODEs� given by Eqs. �3� and
�4� �with no diffusion� is integrated numerically in time us-
ing the same average initial conditions as the STZ PDE.

The simple ODE model cannot localize and has been used
to describe macroscopic frictional behavior for boundary lu-
brication in thin films �19� and on earthquake faults �23�. The
ODE model is an example of a “rate and state” friction law.
These laws are frequently used in geophysical modeling of
earthquake ruptures, and describe the response of a sheared
frictional interface as a function of the slip rate �or strain
rate� and a single state variable. While the STZ PDE resolves
internal dynamics of the effective temperature within the in-
terface, the STZ ODE is constant across the interface. Com-
paring the two models allows us to study the effect of small
scale dynamics such as strain localization on model predic-
tions for macroscopic behavior.

In some simulations of the full PDE model, the steady
state effective temperature �̂ approaches infinity. Although
the STZ model given by Eqs. �3� and �4� is still well defined
in this limit, the shear heating term becomes considerably
amplified, indicating a situation where the amorphous pack-
ing becomes more and more disordered inside the band. In
every instance where �̂→
, the shear band becomes so thin
that the numerical integration routine fails.

We suggest that this numerical failure corresponds to ma-
terial failure. The smallest length scale in the model is a, the
diffusion length scale which is on the order of the radius of
an STZ. We do not expect the STZ model to hold at length
scales smaller than a, and because our numerical mesh is fine
enough to resolve a band ten times smaller than a, numerical
failure corresponds to a shear band that rapidly becomes so
thin that the model itself breaks down.

Although the simple STZ model developed here does not
specify the rheology at strain rates above this “melting”
point, it does suggest that the solidlike STZ theory must be
replaced by a liquidlike theory �such as mode coupling or
Bagnold scaling� inside these bands. Therefore, integration
of the STZ model indicates that when the disorder tempera-
ture approaches infinity, the material can no longer support a
static shear stress; it liquefies and fails.

In simulations where the effective temperature remains
finite, we numerically track the shear stress s and the effec-
tive temperature field ��y� as functions of time or, equiva-
lently, strain. In each case, the stress first responds elasti-
cally, and then begins to deform plastically above the yield
stress sy. As plastic deformation increases the effective tem-
perature, the material softens and the stress relaxes to its
flowing value sf. The dashed blue line in Fig. 2 is a plot of
the stress vs the strain for a numerical solution to the STZ
PDE model. Initial conditions are such that the material is
highly unstable with respect to shear bands. For comparison,
the dash-dotted �magenta� line in Fig. 2 shows the solution to

0.1
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0.2

0.25

ln(imposed strain rate)

In
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ef
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iv
e
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m
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tu
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crit

R=1
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FIG. 1. �Color online� Predicted deformation map based on ini-
tial conditions only. The solid line marked with circles �black� rep-
resents the frozen time linear stability criterion predicted by Eq.
�22�, which does not take into account finite amplitude perturba-
tions. R is a more accurate generalized stability criterion that takes
into account finite amplitude perturbations. A line with constant
localization ratio R=1 is marked with crosses �blue�. Above the
line, R�1 and homogeneous deformation is predicted, while be-
low the line R�1 and strain localization is predicted. For refer-
ence, the upper dashed line shows the �̂�q� fit to the data from
Haxton and Liu �9�.
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the STZ ODE model, which is a rate andstate law with a
single internal state variable. The STZ PDE solution devel-
ops a shear band and weakens much more rapidly than a rate
and state model with similar initial conditions.

During this initial stress response, the effective tempera-
ture field also evolves in space and time. The effective tem-
perature field is initially constant with a small, centered per-
turbation, and the field remains static during the elastic
response. At the onset of plastic deformation, the effective
temperature begins to rise. In systems that deform homoge-
neously the average value of the effective temperature rises
and the perturbation dissipates, while in systems which de-
velop shear bands the effective temperature rises rapidly in-
side the band and attains a slowly evolving state where the
shear bands diffuse outwards.

Figures 3�a� and 3�b� are a series of plots of the effective
temperature as a function of position for a material that de-
velops a thin shear band �later we will identify the initial
transient as diffusion limited�. Each colored line represents a
different time in units of strain. A small initial perturbation to
the effective temperature is driven by a dynamic instability
to a much higher value, saturating at ��0.22, and the band
then slowly diffuses outward.

The plastic strain rate also evolves during the initial tran-
sient response. We first focus on the average plastic strain
rate, shown in Fig. 4 as a function of time. At early times
when the stress is below the yield stress sy, the system de-
forms elastically and the plastic strain rate is zero every-
where. At the onset of plastic deformation the average plastic
strain rate increases continuously from zero, attains a maxi-
mum, and then relaxes back to the externally imposed strain
rate �in the flowing regime all the deformation is plastic.�
While the plastic strain rate is greater than unity, stored elas-
tic energy is being dissipated.

Although the stress is constant across the width of the
material, regions with a higher effective temperature deform
more rapidly. To effectively compare strain localization at
various strain rates, we plot the dimensionless strain rate,

which is the strain rate at each location divided by the exter-
nally imposed strain rate. In Figs. 5�a� and 5�b�, each colored
line represents a different time in units of strain; plots show
the plastic strain rate as a function of position. Initially the
stress is below the yield stress and the plastic strain rate is
zero �blue line�. Localization of the effective temperature
field results in a very narrow peak in the strain rate field
�green line�. The strain rate in the center of the shear band is
nearly 3000 times larger than the externally imposed strain
rate. As the stress continues to relax, the strain rate becomes
less sharply peaked �red line�. The inset plots magnify the
position axis.
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FIG. 2. �Color online� Shear stress s vs strain calculated by
numerically integrating the STZ equations of motion with initial
conditions �ini=0.0674, and imposed strain rate q̄=1.015
10−6.
The dashed �blue� curve represents the solution to the perturbed
STZ PDE model, while the dash-dotted �magenta� curve represents
a solution to the STZ ODE model with the same average initial
conditions. The colored symbols correspond to the plots shown in
Figs. 3 and 5. At about 2% strain, the perturbed system begins to
localize and weakens much more rapidly than the magenta curve.
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FIG. 3. �Color online� Diffusion-limited shear band. �a� Time
series of the effective temperature as a function of position for a
material with initial conditions �ini=0.0674, and imposed strain rate
q̄=1.015
10−6. Each line represents the effective temperature field
as a function of position at a different time, as indicated by the
legend �all times are in units of strain�. The effective temperature
field is initially a constant with a small perturbation centered in the
middle �blue�. This perturbation grows rapidly �green� and forms a
shear band, which then diffuses outward slowly �red�. �b� The inset
shows the same data on a different scale. The strain associated with
each line is also indicated in Fig. 2; localization coincides with
rapid dynamic weakening of the shear stress.

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

strain

A
ve

ra
ge

pl
as

tic
st

ra
in

ra
te

FIG. 4. Average plastic strain rate �dy�̇�y��0 / q̄ as a function of
strain for the same integration data shown in Fig. 2. Initially the
average plastic strain rate is zero during the material elastic re-
sponse. The average plastic strain rate then rises rapidly during the
stress overshoot, when the system releases stored elastic energy.
Finally, it relaxes back to unity in the flowing regime, when all the
strain must be accommodated plastically.
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Comparing numerical results to analytic predictions re-
quires a method for measuring the degree of localization in a
given numerical simulation. The degree of localization can
be quantified using the Gini coefficient � �24�, defined as

��t� =
1

2n2Dpl�
i

�
j

�Dpl�yi,t� − Dpl�yj,t�� , �24�

where �yi� is a uniform grid of n points in position space. The
Gini coefficient is equal to zero if the material deforms ho-
mogeneously and increases as the plastic strain rate field be-
comes more sharply peaked. A 	 function has a Gini coeffi-
cient of 1. During a given numerical simulation, the Gini
coefficient ��t� starts out as a very small number and then
increases rapidly as the shear band forms. Then, as the shear
band diffuses the Gini coefficient decreases. Because we are
focusing on the initial transient, we first study the maximum
value of the Gini coefficient attained during a given numeri-
cal simulation.

Figure 6�a� is an intensity plot of the maximum value of
the Gini coefficient as a function of the average initial effec-
tive temperature �ini and the natural logarithm of the dimen-
sionless imposed strain rate ln�q�. This deformation map in-
dicates that material deformation gradually changes from
homogeneous flow to shear banding as a function of the
initial conditions. In Fig. 6�a�, black boxes indicate that �̂
approached infinity during a particular numerical integration
and the STZ solidlike description breaks down.

While the Gini coefficient is a direct indicator of localiza-
tion, it is perhaps a less familiar metric. For comparison, Fig.
6�b� shows that maximum plastic strain rate attained in the
band as a function of the initial conditions. A larger plastic
strain rate is attained in a thinner, more localized band, and
therefore Fig. 6�b� is very similar to Fig. 6�a�. Again, black

boxes correspond to shear bands where the plastic strain rate
reaches the melting point and the model breaks down.

IV. DEFORMATION MAP AND MACROSCOPIC
IMPLICATIONS

Numerical solutions presented in the previous section
show that transient dynamics can lead to inhomogeneous
flows. We would like to understand how to characterize these
flows. What type of deformation occurs as a function of the
initial conditions? If shear bands form, what sets their thick-
ness? What are the implications of inhomogeneous flows for
macroscopic system response?
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FIG. 5. �Color online� Diffusion-limited shear band. �a� Time
series of the normalized plastic strain rate �̇�0 / q̄ as a function of
position. The plastic strain rate is initially zero �during elastic de-
formation� but rises at the onset of plastic deformation and becomes
very sharply peaked �green�. This shear band is extremely narrow
with a thickness of about 0.015, which is approximately the same as
the diffusion length scale a. As the stress relaxes the strain rate also
relaxes, and the shear band becomes wider and less sharply peaked
�red�. �b�The inset shows magnified position and strain rate axes.
Although the maximum strain rate in the band decays significantly
with time, it remains large ��25 times the imposed strain rate�.
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FIG. 6. �Color online� A diagram showing the degree of local-
ization found in by numerically integrating the STZ equations. �a�
The maximum Gini coefficient �color bar�, Eq. �24�, as a function of
the average initial effective temperature and the externally imposed
strain rate. A higher Gini coefficient indicates more localization. �b�
The natural logarithm of the maximum plastic strain rate attained in
the band �color bar� divided by the externally imposed strain rate. In
both figures, black boxes correspond to numerical simulations
where the magnitude of the strain rate was so large that �̂→
, as
discussed in the text. The solid white line corresponds to the pre-
dicted localization ratio R=1: Localization is expected for initial
conditions below this line. See, e.g., results for �ini=0.0674, q̄
=1.015
10−6 in Fig. 4.
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A. Shear band thickness

As mentioned earlier, the stress appears to achieve a
steady state quickly—after less than 7% strain all numerical
STZ solutions have achieved a steady stress that changes by
less than 5% over the course of the remaining simulation
�200% strain�. In comparison, the effective temperature field
often remains highly localized for t�20% strain, and broad-
ens over much longer time scales than the stress.

The goal of this section is to calculate shear band thick-
ness as a function of initial conditions within the STZ model,
and determine what sets the thickness of the shear bands in
this model. Because localized strain states are transient—the
bands diffuse outward over time—we study the model pre-
dictions for how shear band thickness evolves over large
�20%� strains. Importantly, many initial conditions lead to
numerical simulations and experimental materials that fail
before reaching large strains. The following analysis identi-
fies these events as well.

We calculate the shear band thickness for each numerical
solution at two times: the time tq max at which the strain rate
in the shear band attains its peak and the shear band thick-
ness is minimized, and at a later time t=20% strain where
the stress appears to be in steady state. For systematic study,
we specify initial conditions that generate only a single shear
band—multiple shear bands are often found experimentally
at higher strain rates and will be a topic of future study.

We first study the shear bands at a time when the plastic
strain rate is most highly localized. Let qmax�y� be the nor-
malized plastic strain rate �̇�y , t��0 / q̄ evaluated at the time
tq max when the strain rate achieves its absolute maximum.
sq max is the shear stress at tq max. The thickness wq max of the
shear band in a numerical solution is defined to be the frac-
tion of the real line between −1 and 1 where the function
qmax�y� is sufficiently large:

wq max = 

I

dy . �25�

The region I is defined as follows:

I = �y � �− 1,1��qmax�y� � 1 + h sup
y

qmax�y�� , �26�

where h is an arbitrary fraction. Although we choose h
=1 /10, in most cases the calculated thickness is insensitive
to the value of h because the strain rate function is sharply
peaked. When the system deforms homogeneously, the thick-
ness wq max is not well defined. In this case Eq. �25� becomes
extremely sensitive to the fraction h and is no longer accu-
rate.

Figure 7 is a plot of the shear band thickness at the time
of maximum strain rate wq max as a function of the initial
conditions. White boxes in Fig. 7 correspond to solutions
where the maximum Gini coefficient is less than 0.35. These
homogeneously deforming solutions do not have a well-
defined value wq max.

The discussion in the previous paragraphs analyzes shear
bands at their peak, when the plastic strain rate is maxi-
mized. This generally occurs at less than 7% strain. Figure 8
shows the shear band thickness at at 20% strain. In each case

the shear bands have become wider, as expected. �Note that
the maximum thickness shown in this plot is 0.3, as com-
pared to 0.2 in Fig. 7.� Although these systems do not
achieve a stationary state, the slowly evolving shear band
thickness is observable, and has been seen in molecular dy-
namics simulations �21� where periodic boundary conditions
allow the system to be studied at very large strains.

Perhaps the most interesting feature of Figs. 7 and 8 is
that the system exhibits no obviously preferred length
scale—the shear band thickness varies continuously from
about O�a��0.015 to O�1� �homogeneous flow�. Moreover,
the shear band thickness increases with time. Both of these
observations are a consequence of the fact that localized
states are transient solutions to the equations of motion rather
than steady state solutions.
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FIG. 7. �Color online� Shading indicates the shear band thick-
ness at the time of maximum strain rate wq max, Eq. �29�, for nu-
merical STZ solutions as a function of the initial conditions �ini and
ln�q̄�. The black boxes correspond to initial conditions for which
�→
 during an integration, while the white boxes correspond to
initial conditions for which the flow is homogeneous �the maximum
Gini coefficient �max�0.35�. The color scale is set such that the
maximum thickness is 0.2.
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FIG. 8. �Color online� Shading indicates shear band thickness at
20% strain for numerical STZ solutions as a function of the initial
conditions �ini and ln�q̄�. The black boxes correspond to initial con-
ditions for which �→
 during an integration, while the white
boxes correspond to initial conditions for which the flow is homo-
geneous �the Gini coefficient at 20% strain ��t=0.2��0.35�. Note
that the scale for this plot is larger than that in Fig. 7—the shear
bands are significantly wider at 20% strain than at tq max.
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Although there is no preferred shear band length scale, the
shear band thickness is reproducible; the STZ model gener-
ates shear bands of the same thickness given the same aver-
age initial conditions, even if the perturbations are random
�7�. In addition, simulations of Lennard Jones glasses gener-
ate reproducible shear band thicknesses as a function of time
�21� and experiments on bulk metallic glasses find a charac-
teristic shear band thickness �11�. These results suggest that
on a given observational time scale, the system does pick out
a specific shear band thickness. Because it is observable and
reproducible, the shear band thickness must evolve very
slowly compared to the stress relaxation time scale. We ex-
ploit this feature, showing that the STZ model singles out
three different deformation profiles that evolve slowly in
time and which should therefore describe observable defor-
mation modes. In addition, we discuss another state—
material failure—where a parameter in the STZ model di-
verges and the model fails.

We analyze Eq. �8� to determine what deformation pro-
files generate the smallest change in the effective tempera-
ture. Because the stress is nearly stationary, flows with the
smallest average values for �̇ are the longest-lived transients
and are easily observable. We show deformation profiles for
these states and develop a deformation map at tq max and t
=20% strain. This provides an explanation for observed
shear band thicknesses.

B. Relaxation toward homogeneous deformation

The first and simplest state minimizes �̇ everywhere and
is “homogeneous deformation.” The effective temperature
field is constant everywhere and equal to �̂�q̄�, where q̄ is the
externally imposed dimensionless strain rate. Since both the
shear heating and diffusion terms are zero in Eq. �8�, this is a
true steady state that persists forever. The dashed blue line in
Fig. 9 is a plot of the stress as a function of time for the full
STZ model with a small initial perturbation to the effective
temperature field, but the initial conditions are such that the
deformation relaxes toward homogeneous flow. The simple
ODE model stress solution, shown in magenta, lies on top of
the PDE stress solution—the macroscopic stress response is
the same for both models. The colored symbols correspond
to plots in Figs. 10�a� and 10�b�.

Homogeneous deformation is characterized by the dissi-
pation of perturbations to the effective temperature field. The
effective temperature as a function of position is shown in
Fig. 10�a�, and each colored line represents the state of the
system a different time. A small initial perturbation to the
effective temperature dissipates as a function of time, al-
though the average value of the effective temperature in-
creases as plastic work is dissipated. The effective tempera-
ture never varies more than 5% from its average value.

A similar plot for the plastic strain rate is shown in Fig.
10�b�. The plastic strain rate is zero during the elastic re-
sponse, and although the perturbation to the effective tem-
perature generates a small perturbation to the strain rate at
the onset of plastic deformation, the strain rate relaxes to-
wards a homogeneous state. The maximum plastic strain rate
is remains within 20% of its average value.

C. Diffusion limited shear bands and failure

A second slowly evolving state, called “diffusion limited
localization,” occurs when the shear heating and diffusion
terms in Eq. �8� balance. In this case the effective tempera-
ture field is far from its steady state value �̂ at all points in
space, so that the factor �1−� / �̂� is close to unity and the
shear heating term s� / �s0c0�, which is of order 1, balances
the diffusion term a2. The balance is not perfect, and �̇ is not
exactly zero, so the band continues to diffuse slowly out-
ward.

This type of deformation is important because it sets the
minimum length scale for shear bands O�a��0.015, in nu-
merical STZ solutions. Although a subset of initial condi-
tions generates shear bands that become thinner than this
length scale, the local strain rate in these bands becomes so
large that the steady state effective temperature �̂ approaches
infinity. In other words, s� / �s0c0� is too large inside the
band, the diffusive flux cannot balance it, resulting in a run-
away heating process. This failure is not an artifact of our
numerical methods; it signifies a break down in the STZ
model that occurs when the effective temperature increases
without bound. We associate this runaway process with a
third state, the onset of material failure, because the solidlike
STZ description fails as the material liquefies.

Although we cannot track the thickness of the band below
the grid resolution during this runaway process, we do ob-
serve that just prior to failure the effective temperature in
these simulations is elevated significantly above its average
in a region of thickness a. In other words, the diffusion
length scale appears to be an upper bound on the size of the
region where structural changes occur during these shear
failure events.

Excluding material failure, the thinnest shear bands pos-
sible in this model are diffusion limited. These types of shear
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FIG. 9. �Color online� Deviatoric stress s vs strain calculated by
numerically integrating the STZ equations of motion with initial
conditions �ini=0.0674, q̄=1.015
10−6. The dashed �blue� curve
represents the solution to the perturbed system, while the dash-
dotted �magenta� curve represents a homogeneous solution where
the effective temperature is constrained to be constant inside the
material. In this plot the two curves are indistinguishable. The col-
ored symbols correspond to the plots shown in Fig. 10. Because �ini

is large, the system begins with a large number of plasticity carriers
and therefore the stress peak is negligible. This system does not
localize.
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band persist for long times in STZ simulations for earth-
quake faults, where the parameters are highly rate weakening
and chosen to reproduce the rate dependence observed in
granular fault gouge experiments �25�. Diffusion also limits
the initial thickness of shear bands in several of the numeri-
cal simulations performed in this paper, although these shear
bands continue to diffuse outward at larger strains.

Diffusion limited shear bands can be identified by their
narrow thickness, which is of order a, although the exact
value varies with the stress overshoot and specific heat c0. In
this 2D model, we use the term “thickness” to refer to the
extent of the shear band in the direction orthogonal to the
slip plane, which is similar to the meaning of this term in
three-dimensional systems �2�. Although diffusion of poten-
tial energy �and presumably effective temperature� has been
seen in simulations �21�, the length scale a associated with
this diffusion constant is relatively unconstrained by simula-

tions or experiments. A reasonable postulate is that a is on
the same order as the radius of an STZ, or equivalently, a few
particle radii. This suggests that diffusion limited shear bands
are very narrow.

The stress vs strain curve for a material that develops a
diffusion limited shear band is given by the dashed blue line
in Fig. 2. The stress weakens very rapidly as the diffusion
limited shear band forms. For comparison, the dash-dotted
magenta curve in Fig. 2 is the stress response of the ODE
rate and state model with the same average initial conditions.
This illustrates that thin shear bands drastically change the
macroscopic system response, and that this dynamic weak-
ening is not captured by a single degree of freedom rate and
state model. As discussed in Sec. III, Figs. 3 and 5 show the
time evolution of a shear band which is initially diffusion
limited.

D. Disorder limited shear band

The fourth “disorder limited” localized state is less intu-
itively obvious, but occurs frequently in our numerical STZ
solutions. Neglecting the diffusion term, the right-hand side
of Eq. �8� is proportional to the product of two factors
exp�−1 /�� and �1−� / �̂�. The former is very close to zero
whenever � is significantly less than �0, and the latter is zero
when �= �̂. The disorder limited state occurs exactly when
the small-� condition is met outside the shear band and �
= �̂ inside the band, so that �̇ in Eq. �8� is always small.
However, it is never zero, so that the disorder limited shear
bands are also transient solutions that diffuse outward with
time. This type of shear band was first described in Ref. �7�,
and captures features of shear bands observed in simulations
by Shi et al. �21�. Figure 11 is a plot of the shear stress s vs
strain for a system that develops a disorder-limited shear
band. This plot is calculated by numerically integrating the
STZ equations of motion with initial conditions �ini
=0.1042 and q̄=8.7
10−6. The blue curve represents the
solution to the perturbed system, while the magenta curve
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FIG. 10. �Color online� Relaxation to homogeneous flow. �a�
Effective temperature and �b� normalized plastic strain rate
�̇�y��0 / q̄ as a function of position, for a material with initial con-
ditions �dy��y , t=0�=�ini=0.20, and imposed strain rate q̄=1.015

10−6. Different �colored� lines represent different times. A small
initial perturbation to the effective temperature dissipates, although
the average effective temperature increases. �The effective tempera-
ture scale is much smaller than Fig. 3�a��. Initially the deformation
is purely elastic and the plastic deformation is zero, and at the onset
of plastic deformation the average plastic strain rate increases rap-
idly. Although the plastic strain rate is perturbed at this point, the
perturbation decays.
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FIG. 11. �Color online� Shear stress s vs strain calculated by
numerically integrating the STZ equations. The dashed �blue� curve
represents the solution to the STZ PDE, while the dash-dotted �ma-
genta� curve represents a solution where the effective temperature is
constant inside the material. The colored symbols correspond to the
plots shown in Fig. 12. Although the localized system weakens
slightly faster than the homogeneous system, the effect is small and
on this scale the two curves are indistinguishable.
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represents a homogeneous solution where the effective tem-
perature is constant as a function of position inside the ma-
terial. The colored symbols correspond to the plots shown in
Fig. 12. Although the localized system weakens slightly
faster than the homogeneous system, the effect is small and
on this scale the two curves are indistinguishable.

We show the effective temperature and strain rate fields
for a numerical solution that exhibits a disorder limited shear
band in Figs. 12�a� and 12�b�. The perturbation to the effec-
tive temperature field grows very slowly at first, then more
rapidly as �→ �̂, and finally the peak begins to diffuse
slowly outward. Similarly, the normalized plastic strain rate
begins at zero �blue�, then rises quickly �green� and relaxes
slightly �red�.

The thickness of disorder limited bands is not set by a
simple internal length scale such as a. Instead, the thickness
is determined dynamically by the externally imposed strain
rate and the initial conditions.

Assume for the moment that a single shear band forms in
the material. This is explicitly enforced for the numerical
integration in this paper because the initial hyperbolic secant
perturbation at y=0 leads to a single shear band at that po-
sition. In addition, a single shear band is observed in simu-
lations �21� and numerical integration of the STZ model with

random perturbations to the initial effective temperature �7�
at low strain rates.

Under this assumption, almost all of the deformation is
accommodated in a band of thickness w:

q̄ = �0V0/L � �0�w/L��̇band. �27�

Using Eqs. �2� and �27� we derive the following relationship
between the stress s, the thickness of the shear band w and
the externally imposed strain rate q̄:

q̄2L

w
� 2f�s�exp�−

1

�̂�q̄2L/w�� . �28�

This is not a prediction for the thickness of the shear band,
because the final stress, s is not specified. Unfortunately, we
can not derive an approximate value for s because it depends
on the entire history of deformation in the material. In addi-
tion, the final value of s is generally close to the yield stress,
and f�s� is very sensitive to s in this regime. However, in the
next section we will check to see if the shear bands in a
given numerical simulation satisfy the criterion given by Eq.
�28�.

E. Deformation map at the time
of maximum deformation rate

We now determine which of these states occur and persist
as a function of the initial conditions in the numerically in-
tegrated solutions. First, we use the following categories to
characterize the deformation at the time tmax: homogeneous
deformation, diffusion limited shear band, disorder limited
shear band, or material failure. This categorization is some-
what arbitrary because none of the states are stationary; all
perturbed states will eventually decay towards homogeneous
flow. However, by identifying these different regions in
phase space we hope to identify length scales and features
that are observable in experiments.

To determine if a shear band thickness is consistent with
disorder limited deformation, we rearrange Eq. �28�, insert-
ing wq max and sq max:

ln� q̄2L

2f�sq max�wq max
	 +

1

�̂�q̄2L/wq max�
= 0. �29�

A shear band in a numerical solution is said to be “disor-
der limited” if Eq. �29� is satisfied to within 8%, �i.e., the
left-hand side equals 0�0.08.� Similarly, a shear band is
“diffusion limited” if its thickness is approximately equal to
the diffusion length scale a �i.e., 0�wq max�0.03�, and ho-
mogeneous if the maximum Gini coefficient is less than 0.5.
These cutoffs are chosen to ensure that deformation regions
are nonoverlapping, which is a strong constraint. Finally, a
material is said to fail if �̂ approaches infinity during the
course of integration. Transition regions are expected when
an inhomogeneous flow does not fit into one of these catego-
ries. Figure 13 is a deformation map that indicates where
each of these criteria are satisfied.

F. Deformation map at 20% strain

The same criteria for deformation categories that were
used at tq max in Fig. 13 can also be used to categorize shear
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FIG. 12. �Color online� Disorder limited shear band. �a� Nor-
malized plastic strain rate �̇�y��0 / q̄ and �b� effective temperature as
a function of position �y�, for a material with initial conditions
�ini=0.1042, and imposed strain rate q̄=8.7
10−6. Different �col-
ored� lines represent different times; cooler colors �blue� correspond
to earlier times, while warmer colors �red� correspond to later times.
The plastic strain rate in the band increases significantly �about
800%�, although much less than in the diffusion limited shear band.
The thickness of this band at its peak is about 0.2, much larger than
the thickness of a diffusion limited shear band.
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bands at 20% strain. Inhomogeneous flows which were in a
“transition regime” at tq max should broaden quickly toward
one of the slowly varying categories. This is seen in Fig. 14,
which shows deformation categories at 20 % strain. The tran-
sition region between disorder limited shear bands and fail-
ure has shrunk considerably. However, all of the diffusion
limited flows have transitioned to disorder limited bands, and
some disorder limited shear bands have transitioned toward
homogeneous flows. This highlights the fact that shear band
thickness and deformation type depend significantly on the
amount of strain. Most experiments are limited to small
strains and therefore can not see this time evolution.

This analysis of the STZ model shows that for a large
range of initial conditions, shear bands are a robust feature
that persist for long times. STZ theory indicates that shear
band thickness evolves slowly over very large strains and
suggests that the thickness is determined dynamically by the
initial and boundary conditions. STZ theory predicts that the
minimum thickness of the bands is set by an effective tem-
perature diffusion parameter a, but a continuum of other
thicknesses is also possible and dynamically determined.

While we predict that the types of deformation mapped in
Figs. 13 and 14 will occur in a wide range of amorphous
solids, the exact location of boundaries between types and
the longevity of each type are likely material dependent.
These deformation maps depend on the definition of the
steady state effective temperature �̂�q�.

All deformation maps in this work apply specifically to
the model glass simulated by Haxton and Liu because we

used a function �̂�q� that fits their data for simulated repul-
sive disks; different materials may have slightly different
steady state effective temperatures, although it is also pos-
sible that �̂�q� is universal. The steady state effective tem-
perature can be measured in simulations by comparing the
fluctuations and linear response of an observable such as the
pressure; this input is all that is needed to generate a defor-
mation map for a new material using STZ theory.

In the analysis, we have assumed a single shear band.
Experiments and simulations of bulk metallic glasses show
that the material develops multiple shear bands at higher
strain rates �11,21�. Developing a model for the number and
spacing between shear bands is beyond the scope of this
paper, but the STZ model should provide an excellent start-
ing place for these analyses.

V. CONCLUSIONS

We have analyzed the stability of the STZ model with a
strain-rate-dependent effective temperature, and found that
the details of the rate dependence specify the steady state
stability of homogeneous flows. Most simulated glasses ex-
hibit rate strengthening, where the steady state stress in-
creases as a function of strain rate, and we have shown that
these materials are stable with respect to perturbations in
steady state. In contrast, rate weakening materials, such as
granular fault gouge, are unstable with respect to shear bands
in steady state.

� � � � � � � � 	 
 � � � 
 � � � 
 � 	 �

�
�

	
�



�

	
�

�
�

�
�



�

	
�

�
	

�
�

�
�

	
�

	
�

�
	

�



�
�

�
	

� � � �

� � � �

� � �

� � � �

� � � �

� � � �

� � � �

� � �

� � � � �

� 	 � 	 � � �

� � � � � � � � � �

� � � � � 	 


� � 
 � � � � � � �

� 	 � � � �

� � 
 � � � � � � �

� 	 � � � �

� � � � � 
 	 � �

� � � � � 	 


 
 � � � � 	

FIG. 13. �Color online� Deformation map that uses the thickness
shown in Fig. 7 to determine if the deformation at time tq max is
diffusion or disorder limited localization. Diffusion limited shear
bands �very dark gray �dark red�� and failure �black� occur where
0�w�0.035, and disorder limited shear bands �medium gray �or-
ange�� occur where the left-hand side of Eq. �29� is less than 0.7.
The very light gray �light yellow� region indicates homogeneous
flow. Because this is a snapshot of the the deformation types at t
= tq max, for some initial conditions the system is transitioning be-
tween two types of flows. The red region represents a transition
regime between diffusion limited and disorder limited shear bands,
while dark yellow represents a transition between disorder limited
shear bands and homogeneous flow. Blue outline boxes indicate
initial conditions detailed in Figs. 3, 10, and 12.
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FIG. 14. �Color online� Deformation map at 20% strain, that
uses the thicknesss shown in Fig. 8 to determine the type of defor-
mation. Failure �black� occurs where �̂→
 during a numerical
simulation, and disorder limited shear bands �medium gray �or-
ange�� occur where the left-hand side of Eq. �29� is less than 0.7.
The very light gray �light yellow� region indicates homogeneous
flow. At t=0.2, the dark gray �red� transition region in Fig. 13 has
disappeared—the shear bands have widened to become disorder
limited shear bands. In addition, the diffusion limited shear bands
have also widened to become disorder limited, and some of the
shear bands which were disorder limited in Fig. 13 have transi-
tioned towards homogeneous flow �light gray �dark yellow��.
Blue outline boxes indicate initial conditions detailed in Figs. 3, 10,
and 12.
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Perhaps surprisingly, shear bands develop even in rate
strengthening materials. They result from an instability that
develops during a transient stress response, when a material
is driven from rest or driven at a new velocity. Although the
perturbations are unstable only for small strains, the resulting
inhomogeneous effective temperature profiles ��y� are nearly
stationary states of the model equations of motion and there-
fore these shear bands persist for long times.

By including information about the rate dependence of the
steady state effective temperature �̂�q�, we show that the
STZ model generates a deformation map that includes homo-
geneous deformation, thick “disorder limited” shear bands,
thin “diffusion limited” shear bands, as well as the onset of
material failure.

The shear bands that emerge spontaneously in the STZ
model capture several important features seen in simulations
and experiments. First, the STZ model predicts that shear
band formation coincides with stress relaxation after the ini-
tial stress overshoot in start-up flows. In cases where the
material does not fail, the model predicts that shear bands
gradually broaden over large ��20% � strains.

For a fixed initial effective temperature, the STZ model
predicts that the shear bands become thinner and that their
internal structure becomes more disordered as the strain rate
increases. This is similar to the “ductile to brittle” transition
seen in amorphous materials as a function of the strain rate
�11�. At lower strain rates the material deforms nearly homo-
geneously and appears ductile, but at higher strain rates all
the deformation is localized in a thin shear band or mode II
crack.

At very high strain rates and low initial effective tempera-
tures, the effective temperature approaches infinity at the
center of the band during the transient response and the sys-
tem “melts.” The liquefied region is very thin and failure
occurs near the maximum stress overshoot, which is consis-
tent with material failure via shear banding seen at high
strain rates in bulk metallic glasses.

The model predicts that for materials that fail via this
shear banding mechanism, the apparent shear band thickness
should be at most the diffusion length scale a. Although a
has not been measured experimentally, a reasonable assump-
tion is that it is on the order of an STZ radius. In bulk
metallic glasses this scale should be at most 30 atomic radii,
on the order of 10 nm �1�, which is much smaller than the
thermal diffusion length scale �100–240 nm �6��, and this
could explain the shear band thickness measured in these
materials. While the STZ radius has not been estimated in
granular fault gouge, this mechanism could provide an ex-
planation for the scale of the prominent fracture surface,
which is orders of magnitude smaller than other length scales
in earthquake faults.

We have also shown that these localization dynamics can
not be captured by a single degree of freedom rate and state
friction law, and that analyzing steady state model dynamics
can often be misleading. This is because the structural de-
grees of freedom parametrized by ��y� evolve much more
slowly than the stress dynamics, so that the microstructure
continues to evolve although the stress appears to have
reached a steady state. This insight is particularly important
for materials that develop highly localized shear bands, as

the friction law based on homogeneous dynamics is vastly
different from one that accounts for transient shear band de-
velopment. We suggest that localization may play a role in
dynamic weakening seen at high shear speeds in granular
materials, and that the STZ PDE model generates a useful
friction law in this case.

While this is an exciting starting point for studying defor-
mation and failure for amorphous materials, many funda-
mental questions remain. We discuss a few of them below.

What is �̂�q� for various amorphous materials? Through-
out this paper, we have used a fit to data generated by Haxton
and Liu �9� as the definition for �̂�q�. Haxton and Liu simu-
late a 2D amorphous packing of harmonically repulsive discs
at thermal temperatures above and below the glass transition
temperature, and used FDT to extract an effective tempera-
ture at each thermal temperature and strain rate. To our
knowledge, this is the only such data set. It would be very
interesting to use FDT to extract effective temperatures from
simulations of other types of amorphous packings, such as
the Lennard Jones glass studied by Shi et al. �21�, foams,
amorphous silicon, or bulk metallic glasses. Is �̂�q� similar
for all of these materials? Is the effective glass transition
temperature �0 universal?

One possibility is that the transition from glassy behavior
to simply activated behavior should occur when q=1, �i.e.,
when the strain rate is the same as the internal rate 1 /�0�.
However, it is also possible that in complicated materials
such as bulk metallic glasses, the transition occurs at slower
rates than 1 /�0, since the STZs in these systems are large,
multicomponent regions that likely evolve more slowly than
the phonon frequency.

Are there other ways to measure �̂�q�, such as looking at
the behavior of a tracer harmonic oscillator inside a simula-
tion box? Is it possible to define the effective temperature by
quantifying the change in configurational entropy as a func-
tion of the potential energy? Numerical results from Ono et
al. suggest that this type of calculation is possible, but they
were not able to sample enough low probability states to
state conclusively that the FDT and entropic definitions gen-
erate the same effective temperature. These are important
questions because it is very difficult to measure fluctuations
in position or stress precisely enough in experiments to ex-
tract an effective temperature using FDT.

What are the effects of geometry and boundary condi-
tions? We have so far restricted ourselves to the simplest
possible shear geometry and symmetric, no conduction
boundary conditions on the effective temperature. The
boundary conditions on the effective temperature help deter-
mine the location of shear bands within the material as well
as the steady states of the system. In many experiments and
in some earthquake faults, shear bands tend to localize along
the boundary �26�. Why does this occur?

Different geometries can be modeled in STZ theory by
adjusting the boundary conditions on the effective tempera-
ture. For example, a crystalline solid boundary might impose
a constant, more ordered boundary condition on the effective
temperature, while a rough, jammed solid might do the op-
posite. It would be very interesting to investigate the effects
of these conditions on shear band evolution.

In addition, many engineering materials are tested under
tension and compression, or a “notch” is placed on the sur-
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face of the material. In these cases there is a free boundary
which can deform, leading to a coupling between deforma-
tion and stress. The necking instability has been investigated
using earlier STZ models �27�—it would be interesting to
repeat this analysis with our improved understanding of the
coupling between structure and deformation.

What is the connection between stick slip instabilities and
shear banding? In Sec. II, we showed that the steady-state
stability of homogeneous flow was dependent on whether the
material was rate strengthening or rate weakening—rate
weakening materials were unstable with respect to shear
bands. Interestingly, in rate-and-state �ODE� friction models,
stick-slip instabilities can only occur when the system is rate
weakening �28�. In addition, formation of a shear band coin-
cides with what looks like a slip event in the macroscopic
stress-strain curve. Can a shear band be understood as the
PDE analog of a slip event in a single degree of freedom
ODE? Is is possible for the transient shear bands seen in
ostensibly rate strengthening materials to generate stick-slip-
like behavior? Preliminary numerical solutions suggest that
the transient shear bands can not generate stick slip behavior,
but more work is needed on this avenue of research.

Is the localized state weaker in absolute terms than the
homogeneous state? Does this matter? Recently, researchers
studying friction in fault gouge have found that the shear
stress supported by the gouge weakens rapidly at high driv-
ing rates �29�. Strain localization in the STZ model generi-
cally leads to a rapid decrease in the shear stress, and has
been suggested as a mechanism for this experimental obser-
vation �25�. However, in most numerical solutions to the
STZ equations �e.g., Fig. 2�, the final stress state in the lo-
calized system is equal to or higher than the stress in the
homogeneous system, except in the special case where the
initial effective temperature perturbation is a step function
�25�. In absolute terms, the localized system is stronger �or at
least no weaker� than the homogeneous system, which is
counterintuitive.

There are several ways to reconcile this information with
intuition. First, we note that the rate at which the localized
system weakens is much more rapid than the homogeneous
system. For dynamic phenomena, such as stick-slip instabili-
ties and stop-start experiments, the weakening rate and the
total stress drop help determine the dynamic response. Is the
rapid weakening seen in systems that localize large enough
to cause stick slip? Another possibility is that many of these
systems attain strain rates at which the STZ solidlike descrip-
tion breaks down. Although we do not explicitly model this
here, it seems likely that the liquidlike material in the band
possess a vastly reduced strength compared to the solid out-
side the band.

Finally, dynamic weakening is important because it might
help resolve a “heat flow” paradox for earthquake faults.
Theories that assume friction on a fault is the same as that
measured in laboratory experiments at smaller strain rates
predict values for the heat flow around a fault that are much
higher than the observed flux. However, theories that incor-
porate dynamic weakening at high strain rates predict less
heat dissipation around the fault.

In addition to dynamic weakening due to shear banding,
the STZ model also predicts that a fraction of the stress

power can be dissipated as “cold work,” which increases the
effective temperature instead of the thermal temperature and
therefore reduces the predicted thermal heat flux. Work is
ongoing to study the STZ model predictions for thermal heat
flux as a function of space and time.
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APPENDIX: STZ MODEL DETAILS

A mean field theory for shear transformation zones has
been developed in a series of papers �16,30–32�, and we use
this theory as a general model for a wide range of amorphous
solids. In analyzing the dynamics of shear transformation
zones, we develop equations of motion for five internal vari-
ables: the deviatoric stress s, the pressure p, the density of
STZs oriented parallel and perpendicular to the principal
stress directions n� and the effective temperature �. Here the
model is developed for two-dimensional problems, although
it can be generalized to simple three-dimensional geometries
�17�.

In a simple shear geometry at low temperatures, the
model can be further simplified so that the state of the system
is entirely specified by s and � alone. The following sections
review the STZ equations and specify the parameters and
simplifications used in this paper.

1. Overview of equations of motion

In the slowly sheared materials we are modeling, the
speed of sound in the material is very fast compared to the
rate of plastic deformation. In this case the stress gradients
equilibrate very quickly, and we take the zero density limit of
the momentum conservation equations. This results in static
elastic equations for the stress

��ij

�xj
= 0. �A1�

The rate of deformation tensor is the sum of elastic and plas-
tic parts

Dij
total =

1

2
� �vi

�xj
+

�v j

�xi
	 =

D
Dt

�−
p

2K
	ij +

sy

2�
sij	 + Dij

plast,

�A2�

where D /Dt is the material or corotational derivative. To
simplify notation, the deviatoric stress has been nondimen-
sionalized by an effective shear modulus sy that specifies the
stiffness of the STZs. The stress scale sy also characterizes
the stress at which the material begins to deform plastically.
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This yield stress is distinct from the maximum stress attained
sm and the steady state flow stress sf, both of which are
sometimes also referred to as the yield stress in the literature.

The plastic rate of deformation tensor can be written in
terms of dynamical variables from STZ theory. We postulate
that under shear stress, each STZ deforms to accommodate a
certain amount of shear strain, and cannot deform further in
the same direction. This is modeled by requiring that each
STZ be in one of two states: oriented along the principal
stress axis in the direction of applied shear, which we will
denote “�” or in the perpendicular direction “�.”

Under applied strain, the STZ will flip in the direction of
strain, from “�” to “�.” Under shear stress in the opposite
direction, the STZs can revert to their original configura-
tions, which corresponds to a flip from “�” to “�.” We
assume that the STZ density is small and each STZ interacts
with other STZs through continuum fields such as the stress.
Therefore the rearrangements or flips occur at a rate R�s� /�0,
which depends on the stress and a characteristic attempt fre-
quency 1 /�0.

Because each STZ can flip at most once in the direction of
applied strain, STZs must be created and annihilated to sus-
tain plastic flow. Based on these considerations, the number
density of STZs in each direction n� obeys the following
differential equation:

�0ṅ� = R��s�n� − R��s�n� + ��n


2
e−1/� − n�	 ,

�A3�

where R��s� /�0 is the rate of switching per STZ as a func-
tion of stress, � is the rate at which energy is dissipated per
STZ, and n
e−1/� is the steady state density of STZs in equi-
librium.

The plastic rate of deformation tensor is given by the rate
at which STZs flip

Dpl =
�0

n
�0
�R�s�n− − R�− s�n+� , �A4�

where �0 is a strain increment of order unity and n
 is a
density roughly equal to the inverse of the volume per par-
ticle.

The first two terms in Eq. �A3� correspond to STZs
switching from “�” to “�” states and vice versa, while the
last term enforces detailed balance: STZs are created at a rate
proportional to n
e−1/� and annihilated at a rate proportional
to their density. The creation rate is proportional to the prob-
ability of a configurational fluctuation that corresponds to an
STZ. As discussed in the introduction, this probability is
exp�−1 /��, where � is an internal state variable that charac-
terizes the configurational disorder. To close the system of
equations, the model requires an equation of motion for �.

Ono et al. �13� and Haxton and Liu �9� show that a driven
amorphous system possesses a well-defined steady state ef-
fective temperature �̂ at each value of the imposed strain
rate. In these simulations, a thermostat ensures homogeneous
deformation within the glass and the particles are sheared for
long periods of time before the steady state measurement is
taken.

To model deformation in time varying systems, such as
start-up flows, we have to estimate how the effective tem-
perature changes in time. As detailed in Ref. �17�, we assume
that the heat content in the configurational degrees of free-
dom is driven by two independent sources, mechanical work
and thermal fluctuations. Therefore we make the simplest
assumption: the mechanical heat drives the effective tem-
perature towards �̂ according to the conventional linear law
of heating. The rate of heat per unit volume that enters the
configurational degrees of freedom is Qc=Teff�dSc /dt�mech.

In addition, we postulate that the heat produced by ther-
mal fluctuations QT=Teff�dSc /dt�therm, drives the effective
temperature towards the thermal equilibrium bath tempera-
ture � according to the linear law of cooling. The resulting
equation of motion for � is

�̇ =
1

CeffTz
�Teff�dSc

dt
	

mech
�1 −

�

�̂
� + Teff�dSc

dt
	

therm


�1 −
�Tz

T
�
 + D

�2�

�y2 , �A5�

where Ceff is a specific heat, Tz=Ez /kB is the STZ formation
energy in temperature units, and the last term represents dif-
fusion of effective temperature.

Because the effective temperature governs the configura-
tional degrees of freedom, only configurational rearrange-
ments, i.e., plastic events, permit diffusion of the effective
temperature. This suggests that the diffusivity should vary
with strain rate, so that D=a2��̇pl�, where a is a length scale
that corresponds to the radius of an STZ.

2. Simplifying assumptions

Pechenik �33� generalized Eqs. �A3� and �A4� to the case
where the principal axes of the STZ orientation tensor nij are
not aligned with principal axes of the stress tensor sij. These
generalized equations can be written in terms of two new
variables � and m, which appear often in literature on STZs

� � ntot/n
, �A6�

mij � nij/n
, �A7�

where ntot is the tensorial generalization of �n++n−� and nij is
the tensorial generalization of �n+−n−�. The scalar � is the
total density of zones in a sample, while the tensor m corre-
sponds to the STZ orientational bias.

In this paper we focus on materials in a 2D simple shear
geometry, so that the diagonal terms in the deviatoric stress
tensor �sxx ,syy� and STZ orientational bias �mxx ,myy� are sig-
nificantly smaller than off-diagonal terms and can be ne-
glected. Let s=sxy =syx and m=mxy =myx. In this geometry
the pressure p does not change with time and Dp /Dt in Eq.
�A2� is zero.

As noted in Ref. �32� the density of STZs �0� is neces-
sarily small. In a simple shear geometry, the equations of
motion for the stress s and the effective temperature � each
contain this factor in their numerators, and they equilibrate
very slowly compared to m and �. Therefore we replace �
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and m by their steady state values. Combining Eqs. �A3�,
�A6�, and �A7�, we find that the steady state value of � is
exp�−1 /��, and that m exchanges between two steady states
�elastic vs plastic deformation� near s=sy. Below the yield
stress the deformation is almost entirely elastic because all
the existing STZs are already flipped in the direction of
stress. Above the yield stress STZs are continuously created
and annihilated to sustain plastic flow. Details can be found
elsewhere �17�.

We also make the simplifying assumption that the mate-
rial is below the thermal glass transition temperature T0, so
that particle rearrangements are not activated by thermal
fluctuations. In this case the thermal entropy contribution to
the effective temperature equation of motion �dSc /dt�therm in
Eq. �A5�, is zero. This is always true, for example, in granu-
lar materials. In addition, we make the approximation that at
very low temperatures the STZs do not flip in a direction
opposite the direction of applied stress R�−�s��=0.

The functional form of �, the energy dissipated per STZ
that appears in Eq. �A3�, is considerably simplified for T
�T0. Under the assumption that an STZ does not flip in a
direction opposite to the direction of applied stress, no en-
ergy can be stored in the plastic degrees of freedom. This
means that the plastic work is equal to the energy dissipated:

Dij
plsij = �̇s = Q . �A8�

Following Pechenik �33�, we postulate that the total energy
dissipation rate Q is proportional to �:

Q = s0
�0

�0
�� , �A9�

where s0 is a stress scale we return to below.
Combining Eqs. �A4�, �A8�, and �A9� results in the fol-

lowing expression for �:

��s� =
2

s0�0
sf�s� , �A10�

where the function f�s�, which also appears in Eq. �2�, is
defined as follows:

f�s� = �0

R�s�
2

�1 − m�s�� . �A11�

In simple shear below the thermal glass transition, the two
steady states of the equation of motion for the STZ bias are
also very simple:

m�s� → �1 for s � sy ,

s0/s for s � sy ,

 �A12�

and s0=sy is the yield stress—the stress at which the two
stability branches intersect.

We now turn to the parameters in Eq. �A5�. In Ref. �17�
the rate at which configurational entropy is being produced
by mechanical deformation �dSc /dt�mech is assumed to be
proportional to the product of the STZ density and the STZ
creation rate

�dSc

dt
	

mech
=

kB�Z

�

�0

�0
�� , �A13�

where � is a volume per molecule and kB�Z is the entropy
per STZ �17�.

Putting everything together, we arrive at an equation of
motion for the effective temperature

d�

d�
=

2s�

c̃0s0q̄
f�s�e−1/��1 −

�

�̂�q�
	 + a2�̇pl

�2�

�y2 , �A14�

where � is strain, q̄ is the imposed strain rate times the STZ
time scale, �V0 /L��0, and c̃0=Ceff� / �kB�z�. Inserting Eq. �2�
into the equation for the rate of deformation tensor, Eq. �A2�,
and integrating across the width of the material �in the y
direction� results in a second equation for the stress dynam-
ics:

ds

d�
= �*�1 −

2

q̄
f�s��̄	 , �A15�

where �* is the ratio of the elastic modulus to the yield

stress, and �̄ is the spatial average of the STZ density �
=exp�−1 /��.

Determining an exact function R�s� from first principles is
a difficult many body problem. However, we do know how
R�s� behaves in the limits of very small and very large
stresses, and we choose a function that smoothly interpolates
between these two regimes. R�s� exhibits Eyring-like behav-
ior far below the yield stress, and power law behavior above
the yield stress:

R�s� = exp�−
TE

T
e−s/�̃��1 + � s

s1
	2�n/2

. �A16�

The first factor on the right-hand side of Eq. �A16� is the
Eyring rate in a form similar to that used in Ref. �16�, where
the exponential function of s / �̃ causes the rate to saturate at
large s. Here, TE is the height of the Eyring activation barrier
in units of temperature. The exponent n in Eq. �A16� speci-
fies the large stress power law behavior; possible values are
discussed in Ref. �8�. Analysis of simulation and experimen-
tal data suggest that n=1 is valid for bulk metallic glasses
�17� but in this paper we use n=1 /2, which is relevant for
purely repulsive harmonic disks �8�.
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