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We present a thermodynamic theory of the Kovacs effect based on the idea that the configurational
degrees of freedom of a glass-forming material are driven out of equilibrium with the heat bath by
irreversible thermal contraction and expansion. We assume that the slowly varying configurational
subsystem, i.e. the part of the system that is described by inherent structures, is characterized by an
effective temperature, and contains a volume-related internal variable. We examine mechanisms by
which irreversible dynamics of the fast, kinetic-vibrational degrees of freedom can cause the entropy
and the effective temperature of the configurational subsystem to increase during sufficiently rapid
changes in the bath temperature. We then use this theory to interpret the numerical simulations
by Mossa and Sciortino (MS), who observe the Kovacs effect in more detail than is feasible in
laboratory experiments. Our analysis highlights two mechanisms for the equilibration of internal
variables. In one of these, an internal variable first relaxes toward a state of quasi-equilibrium
determined by the effective temperature, and then approaches true thermodynamic equilibrium as
the effective temperature slowly relaxes toward the bath temperature. In the other mechanism, an
internal variable directly equilibrates with the bath temperature on intermediate timescales, without
equilibrating with the effective temperature at any stage. Both mechanisms appear to be essential
for understanding the MS results.

I. INTRODUCTION

The Kovacs effect reveals some of the most subtle and
important nonequilibrium features of glassy dynamics.
In particular, it provides detailed information about the
ways in which glassy materials deform irreversibly and
remember their histories of deformation [1–4]. Here, we
develop a thermodynamic theory of the Kovacs effect,
motivated in large part by the molecular-dynamics sim-
ulations of Mossa and Sciortino (MS)[5].

In a Kovacs experiment, the volume of a glass-forming
system is measured at fixed pressure as the temperature
is varied. A sample is first quenched from a high tem-
perature Th to a temperature T` low enough – i.e. near
enough to the glass temperature Tg – that some inter-
nal degrees of freedom fall out of equilibrium with the
heat bath. The system is then aged at T`, for times
insufficient to reach thermal equilibrium, and finally is
heated abruptly and held at a temperature Tf such that
T` < Tf < Th. The crucial observation is that, in this
last stage of the Kovacs protocol, the volume does not
increase monotonically as a function of time, but goes
through a maximum before decreasing slowly to its equi-
librium value at Tf . The fact that the system can exist in
two different states, on the upward and downward sides
of the Kovacs volume peak, at the same temperature,
pressure and volume, indicates that these are not states
of thermal equilibrium. It is important to understand
how to characterize them.

The Kovacs effect originally was observed in polyvinyl
acetate [1], but since then it has been observed in many
other glassy polymers, see for example [6] for measure-
ments in polystyrene. Qualitatively similar memory ef-

fects have been observed in many other glassy systems
such as colloidal glasses [7, 8], ferroelectrics [9, 10],
gelatin gels [11], granular materials [12], superparamag-
nets and superspin glasses [13]. It also has been the sub-
ject of various recent theoretical investigations [14–20].

In this paper, we look at the Kovacs effect from the
point of view of our recent attempts to develop a first-
principles, statistical formulation of nonequilibrium ther-
modynamics [21–23]. Generally speaking, our goal is to
reinterpret the analysis of Kovacs et al. [2] in terms of
specific molecular processes. Our work differs from that
of Nieuwenhuizen, Leuzzi, and coworkers [15, 19, 20], for
example, in that we start from a fundamental, statistical
statement of the second law of thermodynamics and use
it to derive equations of motion for relevant internal state
variables as well as for an effective temperature. We dif-
fer also from Bertin et al [14], who have solved specific
models and have shown how phenomena analogous to the
Kovacs effect emerge in interesting ways.

As in [22], our starting point is the assumption that
a glass-forming material consists of two weakly inter-
acting subsystems. The configurational (C) subsystem
is specified by the set of mechanically stable molecular
positions, that is, the inherent structures [24, 25]. The
kinetic-vibrational (K) subsytem is specified by all the
other degrees of freedom – the kinetic energies, the dis-
placements of the molecules from their stable positions,
and, in the case of more complex molecules such as those
relevant to the Kovacs effect, the internal degrees of free-
dom of these molecules. The physical rationale for this
separation is the distinction between the time scales for
dynamic processes in the two subsystems. In situations
where the system is driven by external forces, these two
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subsystems can fall out of thermodynamic equilibrium
with each other. The fast, K-subsystem remains in equi-
librium with the heat bath at temperature T ; the slower
C-subsystem, at least transiently, has an effective tem-
perature χ (in energy units) that is different from kB T .

We propose that any model of the Kovacs effect should
include three essential ingredients. First, and most
obviously, we need to specify the configurational (C-
subsystem) degrees of freedom that fall out of thermal
equilibrium as the whole system is quenched into the
vicinity of its glass temperature. These degrees of free-
dom must describe structural features that change via
slow molecular rearrangements and thus do not keep
up with more rapid variations of the bath temperature.
Since we are interested in volume changes, the simplest
choice of this internal variable is a population of vacancy-
like defects; but other internal degrees of freedom that
couple to the volume might serve our purposes equally
well.

Second, we need to ensure that the equations of motion
for this out-of-equilibrium but statistically significant de-
fect population are consistent with the laws of thermody-
namics. We have argued in [22] that the natural way to
do this is to use the effective temperature of the configu-
rational subsystem, in direct analogy with Gibbsian sta-
tistical mechanics, to determine the states of maximum
probability through which the configurational degrees of
freedom are moving. These configurational degrees of
freedom have well defined energies UC and entropies SC ;
thus they have an effective temperature χ = ∂UC/∂SC ,
and their equations of motion must be based on their
effective thermodynamics.

Third, and least obviously, we need mechanisms by
which variations of the ordinary temperature of the K-
subsystem can produce changes in the effective temper-
ature of the C-subsystem. This means that we must
understand how, and under what circumstances, ordi-
nary thermal expansion and contraction become irre-
versible phenomena that can increase the entropy of
the system as a whole. Our nonequilibrium thermo-
dynamic formulation suggests that there are two dis-
tinct thermo-viscoelastic mechanisms that can be rele-
vant here. The first is a Kelvin-Voigt-type mechanism
in which the K-subsystem exhibits a bulk viscosity aris-
ing directly from fast molecular interactions. The second
is a somewhat slower Maxwell-type mechanism involving
volume-related internal degrees of freedom that equili-
brate directly with the ordinary temperature T rather
than the effective temperature χ. (Our main reference
for models of thermo-viscoelasticity is Maugin’s book on
The Thermomechanics of Nonlinear Irreversible Behav-
iors, [26]).

The work Mossa and Sciortino [5] offers a unique op-
portunity to test the ideas described above. These au-
thors performed molecular dynamics simulations of a Ko-
vacs experiment using the Lewis and Wahnström model
[27] of ortho-terphenyl (OTP), in which the molecules are
rigid isosceles triangles interacting via a Lennard-Jones

potential. Their crucial result is that, when T is increased
from T` to Tf , both the volume and the inherent struc-
ture energy increase and go through maxima. This result
tells us that the effective temperature and the vacancy
population also increase and go through maxima, and
that the thermal expansion driven by the change in the
bath temperature is partially irreversible. More precisely,
during thermal expansion or contraction at nonzero pres-
sure, the system exchanges mechanical energy with its
surroundings. Some of that energy is dissipated, produc-
ing configurational entropy.

One of the most remarkable results of Mossa and
Sciortino [5] is shown in their Fig. 4. There they demon-
strate that, after the volume and the inherent structure
energy go through maxima, the system can be described
by states of quasi-equilibrium fully characterized by the
effective temperature. During the earlier stages, how-
ever, this is clearly not the case. There, something else is
happening that challenges our understanding of nonequi-
librium thermodynamics. That “something else” is the
central theme of the present investigation.

The scheme of this paper is as follows. In Sec. II,
we describe our two-subsystem model and comment on
its physical ingredients. The thermodynamic equations
of motion for this model are derived in Sec. III, where
we show how the two mechanisms of irreversible thermo-
viscoelasticity emerge from our nonequilibrium statistical
analysis. Section IV is devoted to identifying appropriate
dimensionless variables and making first estimates of the
parameters that appear in the scaled equations.

In Sec. V, we compare the predictions of our theory
with the numerical simulations of Mossa and Sciortino
[5], and confirm that each of our three ingredients of
a Kovacs model is, indeed, essential for understanding
their data. During the reheating stage, as T rises quickly
from T` to Tf , both the fast Kelvin-Voigt-type and the
somewhat slower Maxwell-type mechanisms are needed
as sources of configurational entropy. These sources in-
crease the volume on short and intermediate timescales
and drive an increase in the effective temperature χ. The
volume continues to rise as the vacancy population grows
toward a quasi-equilibrium value determined by the in-
creased χ. After this quasi-equilibrium is established, at
about the time that the volume reaches its Kovacs peak,
the vacancies remain in equilibrium with χ as the system
slowly ages toward a final state with χ=kB Tf . In short,
we recover the results of Mossa and Sciortino and fully
agree with their interpretation of them.

II. INGREDIENTS OF A TWO-SUBSYSTEM
MODEL

Denote the total, extensive, internal energy of the two-
subsystem model by

Utot = UC (SC , Vel, Nv) + UK(SK , Vel, Na). (2.1)
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The configurational (C-subsystem) energy, UC , is a func-
tion of the configurational entropy SC , an elastic volume
Vel that is common to both subsystems, and an exten-
sive number of vacancy-like defects Nv whose energies
and excess volumes are ev and vv respectively. Similarly,
the kinetic-vibrational (K-subsystem) energy, UK , is a
function of the kinetic-vibrational entropy SK , Vel, and
the number Na of what we call “misalignment” defects
with energies ea and excess volumes va.

Assume that a fixed number of molecules, say N0, oc-
cupies the elastic volume Vel, which does not include the
excess volume of the defects. Then the total volume of
the system is

Vtot = Vel + Nv vv + Na va. (2.2)

Our picture of the vacancy-like defects in the C-
subsystem is a slight oversimplification but seems con-
ceptually simple. In contrast, the misalignment defects
require more discussion. The triangular geometry of an
ortho-terphenyl molecule means that its volume and its
energy depend on its orientation with respect to its neigh-
bors. Thus, even in the absence of the vacancy-like de-
fects that may characterize the slowly fluctuating con-
figurational subsystem of OTP, there are local misalign-
ment defects that couple to the volume and can partic-
ipate in energetically irreversible processes. If the for-
mation energies of these defects are not too large, and if
the energy barriers that resist their transitions from one
orientation to another are small enough, then these de-
fects equilibrate quickly with the bath temperature and
can legitimately be included in the kinetic-vibrational K-
subsystem. For simplicity, we have assumed in Eqs. (2.1)
and (2.2) that there is only one kind of misalignment de-
fect.

The assumption that the misalignment defects belong
in the fast K-subsystem is not trivial. Our model is sim-
ilar to one studied by Ilg and Barrat [28], who show that
the equilibration rate for a similar class of dynamical
inclusions in a driven glass former depends sensitively
on the strengths of the thermal noise sources that acti-
vate their transitions across internal barriers. We will
show, however, that the high-temperature assumption
works well for present purposes, and that these inter-
nal, orientational degrees of freedom produce a model
of bulk thermo-viscoelasticity that is consistent with the
MS data.

The temperature of the K-subsystem is

θ = kB T =
(

∂UK

∂SK

)

Vel,Na

. (2.3)

We assume that the K-subsystem, in addition to having
its own internal dynamics, plays the role of a thermal
reservoir, so that θ is the temperature that is being con-
trolled as a function of time during a Kovacs experiment.
The effective temperature of the C-subsystem (in energy

units) is

χ =
(

∂UC

∂SC

)

Vel,Nv

. (2.4)

Define the partial-pressure functions:

pC(χ, Vel) = −
(

∂FC

∂Vel

)

χ,Nv

; (2.5)

and

pK(θ, Vel) = −
(

∂FK

∂Vel

)

θ,Na

; (2.6)

where the free energies F are the Legendre transforms
of the U ’s. Note, however, that we do not immediately
identify pC +pK as the total applied pressure. We do,
however, assume strictly linear elasticity by writing

FC(χ, Vel)
V0

=
λC

2 V 2
0

[
Vel − VC(χ)

]2

+ fC(χ), (2.7)

where V0 is a reference volume, λC is a compression
modulus, VC(χ) is the relaxed C-subsystem volume, and
fC(χ) is a volume-independent free-energy density. Sim-
ilarly,

FK(θ, Vel)
V0

=
λK

2 V 2
0

[
Vel − VK(θ)

]2

+ fK (θ). (2.8)

The temperature dependent reference volumes VC(χ) and
VK(θ) are different from each other. The elastic energy
of the C-subsystem has its minimum at a relatively small
volume VC(χ), because that system is cohesive at zero
pressure. In contrast, the energy of the K-subsystem
decreases as the volume increases, because the kinetic
energy is fixed and the vibrational modes become softer
as the spacing between the molecules increases. Thus,
strictly speaking, VK(θ) must actually be defined at a
positive reference pressure; but, since we are considering
only linear elasticity, there is no need to be specific about
this definition. In any case, the partial pressures defined
in Eqs. (2.5) and (2.6) are different from each other and
most likely have opposite signs, i.e. pC <0<pK . This is
indeed the case in the simulations of MS [5].

III. THERMODYNAMIC EQUATIONS OF
MOTION

A. First and Second Laws

The first law of thermodynamics is

− p V̇tot = U̇tot, (3.1)

where p is the applied pressure. With Eqs. (2.2), (2.3),
(2.4), (2.5) and (2.6), Eq.(3.1) becomes

χ ṠC +

[
p vv +

(
∂UC

∂Nv

)

SC ,Vel

]
Ṅv + θ ṠK
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+

[
p va +

(
∂UK

∂Na

)

SK ,Vel

]
Ṅa

+
[
p − pC(χ, Vel) − pK(θ, Vel)

]
V̇el = 0. (3.2)

The second law is

Ṡtot = ṠC + ṠK ≥ 0. (3.3)

Using Eq.(3.2) to eliminate ṠC , we write Eq.(3.3) in the
form:

−

[
p va +

(
∂UK

∂Na

)

SK ,Vel

]
Ṅa (3.4)

−

[
p v0 +

(
∂UC

∂Nv

)

SC,Vel

]
Ṅv

−
[
p − pC(χ, Vel) − pK(θ, Vel)

]
V̇el − (θ − χ) ṠK ≥ 0.

Following the procedure described in [21, 22], we rec-
ognize that Eq.(3.4) consists of four separate inequalities
associated with the independently variable quantities Ṅa,
Ṅv, V̇el, and ṠK , and therefore we must satisfy four sep-
arate inequalities. In the next paragraphs, we look at
these in reverse order of their appearance here.

B. Aging Rate

The inequality proportional to ṠK is satisfied by writ-
ing

θ ṠK = −A(χ, θ)
(
1 − χ

θ

)
, (3.5)

where A(χ, θ) is a non-negative thermal transport coeffi-
cient. θ ṠK is the rate at which heat is flowing from the
C-subsystem to the K-subsystem. Since we assume that
the coupling between the C and K-subsystems is weak,
we expect A(χ, θ) to be small. This is the term that con-
trols the rate at which the system ages in the absence of
external driving.

C. Kelvin-Voigt-Type Thermo-Viscoelasticity

Next, consider the part of the inequality proportional
to V̇el. Use the definitions of the partial pressures in Eqs.
(2.5) and (2.6), plus the elastic free energies in Eqs. (2.7)
and (2.8), to write

p−pC(χ, Vel)−pK (θ, Vel) =
λ̄

V0

[
Vel−V eq

el (χ, θ, p)
]
, (3.6)

where λ̄ = λC + λK , and

V eq
el (χ, θ, p) =

1
λ̄

[
λK VK(θ) + λC VC(χ) − p V0

]
. (3.7)

The inequality in Eq.(3.4) is satisfied by writing an equa-
tion of motion for Vel:

τ0 V̇el = − γ
[
Vel − V eq

el (χ, θ, p)
]
, (3.8)

where τ0 is a molecular time scale and τ0/γ is a bulk vis-
cosity. According to Maugin [26], this is a Kelvin-Voigt-
type thermo-viscoelasticity. When rewritten in terms of
the pressures, Eq.(3.8) says that the driving force p is
equal to an elastic term, pC +pK , plus a viscous force
proportional to V̇el.

To see in more detail what is happening here, interpret
the first-law in Eq.(3.2) as an equation for χ ṠC , and note
that the contribution to the configurational heating rate
from the term proportional to V̇el is

−
[
p−pC(χ, Vel)−pK(θ, Vel)

]
V̇el =

γ λ̄

V0

[
Vel−V eq

el (χ, θ, p)
]2

.

(3.9)
Ordinarily, this term is negligible. In the absence of a
slow, internal, dissipative mechanism, the viscosity τ0/γ
is microscopically small. Suppose that some quantity on
the right-hand side of Eq.(3.8), perhaps p or θ, is var-
ied at an experimentally feasible rate, say ν/τ0 � γ/τ0.
By dimensional analysis of Eq.(3.8), we find that ν/γ ∼
(Vel−V eq

el )/V0. If we then integrate the right-hand side
of Eq.(3.9) over a time of the order of ν−1, we find that
the change in the total heat energy is of the order of
λ̄ V0 ν/γ, which vanishes when ν/γ → 0. In this limit,
the system becomes thermodynamically reversible. The
solution of Eq.(3.8) is accurately p = pK +pC , which is
the usual thermodynamic identity. In other words, we
have recovered a special example of the general rule that
equilibrium thermodynamics is valid when systems are
driven quasistatically.

But the Kovacs effect is an exception to this rule. The
original Kovacs observations were made with a glassy
polymer, where the internal timescales τ0/γ are long, so
that it is possible to change temperatures and pressures
relatively rapidly. It is also quite easy to do this in molec-
ular dynamics simulations, which is what happens in the
MS computations. We will see in Sec. V that the Kelvin-
Voigt-type dissipation is an important driving force for
the Kovacs effect.

D. Maxwell-Type Thermo-Viscoelasticity

We turn finally to the terms proportional to Ṅa and
Ṅv in Eq.(3.4). These terms produce a Maxwell-type
thermo-viscoelasticity, according Maugin [26]. To see
this, look at the time derivative of the expression for
the total volume in Eq.(2.2). If there is no Kelvin-Voigt-
type viscous pressure proportional to V̇el, then the total
deformation rate V̇tot is the sum of an elastic term V̇el =
−V0 ṗ/λ̄, and a viscoelastic term va Ṅa + vv Ṅv. Our
problem reduces to finding an expression for va Ṅa+vv Ṅv
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that will serve as a constitutive relation for the viscoelas-
tic (viscoplastic) part of the deformation rate. To solve
this problem, we follow steps outlined in [21].

Start with the K-subsystem. Assume that the entropy
and energy of this system consist of separate, additive
contributions, first from the defects and, second, from all
the other degrees of freedom:

SK(UK , Vel, Na) = S0(Na) + S1(U1, Vel); (3.10)

UK(SK , Vel, Na) = Na ea + U1(S1, Vel); (3.11)

where, for simple defects without internal structure of
their own,

S0(N ) = N0 ln N0 − N ln N − (N0 − N ) ln(N0 − N ),
(3.12)

and N0, as defined earlier, is the total number of
molecules. Then,

UK(SK , Vel, Na) = Na ea+U1

[
SK−S0(Na), Vel

]
, (3.13)

so that
(

∂UK

∂Na

)

SK ,Vel

= ea + θ
dS0

dNa
. (3.14)

The inequality associated with the Ṅa term in Eq.(3.4)
has the form of a Clausius-Duhem relation [26], enforcing
non-negative entropy production:

−

[
p va +

(
∂UK

∂Na

)

SK ,Vel

]
Ṅa = −

(
∂GK

∂Na

)

θ,p

Ṅa ≥ 0,

(3.15)
where

GK(θ, p, Na) = ha Na − θ S0(Na); (3.16)

and ha = ea + p va. We satisfy Eq.(3.15) by writing

τ0 Ṅa = ΓK [N eq
a (θ, p) − Na] , (3.17)

where ΓK is a dimensionless rate factor and τ0 is the
same molecular time scale that we introduced in Eq.(3.8).
N eq

a (θ, p) is the equilibrium value of Na determined by
(

∂GK

∂Na

)

θ,p

= 0 at Na = N eq
a (θ, p); (3.18)

which means that

N eq
a (θ, p) =

N0

eha/θ + 1
. (3.19)

The same analysis pertains to the vacancy-like defects
in the C-subsystem. The equation of motion for Nv is
the same as Eq.(3.17), but with vv and ev replacing va

and ea, with χ instead of θ, and with a new rate factor
ΓC :

τ0 Ṅv = ΓC [N eq
v (χ, p) − Nv] . (3.20)

We assume that the entropy associated with Nv is the
same function S0(Nv) that we introduced in Eq.(3.12);
therefore

N eq
v (χ, p) =

N0

ehv/χ + 1
, (3.21)

where hv = ev + p vv. We note that the idea that
an internal variable can be transiently driven out of
quasi-equilibrium with the effective temperature, as in
Eq.(3.20), was introduced earlier in [29], where it was
used to describe the internal dynamics of deforming, sim-
ulated, amorphous silicon.

E. Equation of Motion for the Effective
Temperature χ

Putting these pieces together, we rewrite Eq.(3.2) as
an expression for the heat flow into the C-subsystem:

χ ṠC =−
[
hv−χ

∂S0(Nv)
∂Nv

]
Ṅv−

[
ha − θ

∂S0(Na)
∂Na

]
Ṅa

+
γ λ̄

V0

[
Vel−V eq

el (χ, θ, p)
]2

+A(χ, θ)
(
1− χ

θ

)
. (3.22)

The first three of these terms are non-negative rates of
configurational heat production; the last term is the (or-
dinarily negative) rate at which heat flows from the K-
subsytem into the C-subsystem.

To convert this result into an equation of motion for
χ, write

χ ṠC = χ
∂SC

∂χ
χ̇ + χ

∂SC

∂Nv
Ṅv + χ

∂SC

∂Vel
V̇el

= Ceff χ̇ + χ
∂S0

∂Nv
Ṅv + χ

∂pC

∂χ
V̇e. (3.23)

The second term exactly cancels the term proportional
to ∂S0/∂Nv on the right-hand side of Eq.(3.22), which
becomes

Ceff χ̇ = −hv Ṅv − χ
∂pC

∂χ
V̇e −

[
ha − θ

∂S0(Na)
∂Na

]
Ṅa

+
γ λ̄

V0

[
Vel − V eq

el (χ, θ, p)
]2

+A(χ, θ)
(
1− χ

θ

)
. (3.24)

IV. SCALING AND APPROXIMATIONS

We have arrived at a complex set of equations with
many variables and parameters. Before using these equa-
tions for data analysis, we rewrite them in terms of di-
mensionless quantities and, where possible, identify phys-
ically motivated estimates for some of the parameters.

To start, rescale the time so that τ0 = 1. Then define
the defect densities:

nv =
Nv

N0
; na =

Na

N0
; (4.1)
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and the volume fractions:

φtot =
Vtot

V0
; φel =

Vel

V0
; φeq

el =
V eq

el

V0
. (4.2)

We also need to express the defect volumes in units of
the volume per molecule:

φv =
N0

V0
vv; φa =

N0

V0
va. (4.3)

Therefore

φtot = φel + φa na + φv nv; (4.4)

and

φ̇el = − γ (φel − φeq
el ). (4.5)

Measure χ in units of the vacancy enthalpy:

χ̃ =
χ

hv
; (4.6)

thus,

ṅv = ΓC

(
1

e1/χ̃ + 1
− nv

)
≈ ΓC

(
e−1/χ̃ − nv

)
, (4.7)

where the last approximation is valid in the low-density
limit, χ̃�1. For comparison with experimental data, it is
convenient to express θ in units of absolute temperature
T , so that

ṅa = ΓK

(
1

eTa/T + 1
− na

)
, (4.8)

where kB Ta≡ha.
For simplicity, assume that the relaxed volume of the

C-subsystem, VC(χ), is independent of χ, and write

φeq
el (T, p) ∼= φ0 + φ1(T ), (4.9)

where φ0 = 1−p/λ̄, and φ1(T ) describes the ordinary
thermal expansion and contraction that drive the Kovacs
experiment. In general, φ1(T ) is a nonlinear function
over the range of temperature jumps used by MS, and
we will need to use their data to evaluate it.

The equation of motion for χ̃, i.e. Eq.(3.24), now reads

c̃eff ˙̃χ = − ṅv − β

[
1 +

T

Ta
ln

(
na

1 − na

)]
ṅa

+ γ b
[
φel − φeq

el (T, p)
]2

+ ΓA(χ̃, T )
(

T

Tv
− χ̃

)
. (4.10)

Here, c̃eff = Ceff/N0, kB Tv = hv, β = ha/hv = Ta/Tv,
b=(λ̄ V0/hv N0) and ΓA(χ̃, T )=A(χ, θ)/(N0 kB T ).

We can make rough estimates for some of these pa-
rameters using known properties of the OTP model sim-
ulated by MS. For example, taking parameters from their

Lennard-Jones potential, we estimate the molecular vi-
bration period to be about 1.5 picoseconds. Therefore, it
is convenient to choose our unit of time to be τ0 = 1
ps. Similarly, from the characteristic energy scale of
this potential, we estimate that hv ∼ 0.1 eV, so that
Tv ∼ 1300 K. The misalignment defects must have sub-
stantially smaller formation energies. If we guess that
the difference is roughly a factor of ten, then Ta∼130 K;
so that these defects are far from being frozen out at the
lowest temperatures used by MS, i.e. at T` =150 K. This
same estimate of hv, combined with V0/N0 ∼ 0.4 nm3,
and an estimate for the bulk modulus λ̄ ∼ 4 GPa, tells
us that b∼ 50, which means that the heating rate asso-
ciated with the Kelvin-Voigt-type term in Eq.(4.10) may
be substantial.

These estimates have interesting implications for our
choices of the rate factors. Clearly, with Ta∼130 K, the
transition rate for the misalignment defects is not appre-
ciably limited by an activation barrier; so ΓK must be
only moderately slower than the molecular rate γ, which
by definition cannot be significantly different from unity.
Our first guess is that ΓK is in the range 10−2 to 10−1.
On the other hand, ΓC should contain an effective ther-
mal activation factor of the form exp (− ∆̃C/χ̃), where
∆̃C is the excess barrier, in units of hv, that the system
must surmount in either creating or annihilating a va-
cancy. If we assume that the system is fully equilibrated
at T = Th = 400 K, then the initial value of χ̃ is equal
to kB Th/hv ∼ 0.33. Assuming that ∆̃C is not too much
smaller than unity, we conclude that ΓC may be smaller
than ΓK by a factor of ten or so.

The more interesting rate factor is ΓA, which, un-
like ΓC in Eq.(4.7), is not the prefactor in a creation-
rate formula that already contains an activation factor
exp (− 1/χ̃). In other circumstances, such as a calcula-
tion of the α relaxation rate or the shear viscosity in
a glass forming material that is moving so slowly that
χ≈ kBT , the analog of ΓA would be a super-Arrhenius
function of T . Here, although we are talking about the
slow aging part of a Kovacs experiment, we are looking at
the early transient stage where χ̃ is still somewhat bigger
than T/Tv in Eq.(4.10). Accordingly, we assume that this
rate at which the two weakly coupled subsystems equili-
brate with each other is limited by a substantial energy
barrier, say ∆̃A≥1; and we write

ΓA(χ̃, T ) ∼= Γ(0)
A (T ) e− ∆̃A/χ̃. (4.11)

If the super-Arrhenius analogy is valid, Γ(0)
A (T ) will be a

rapidly varying function of T that becomes vanishingly
small below Tg . At constant T , while χ̃>T/Tv, Eq.(4.11)
implies that the aging rate slows exponentially as χ̃ de-
creases.
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V. COMPARISONS WITH THE DATA OF
MOSSA AND SCIORTINO

In their molecular dynamics experiments, MS are able
to resolve dynamic variations in their model of ortho-
terphenyl on time scales as small as tens of picoseconds.
In addition to observing volume changes, they can ob-
serve the energy, the pressure, and the shape factor (a
measure of the width of the energy basins) of the inher-
ent structures throughout the Kovacs protocol. Thus,
they probe the Kovacs phenomena to a depth that seems
impossible for laboratory experiments.

There are, however, compromises that must be made in
such a procedure. MS simulate a system of only 343 OTP
molecules. Although they average their results over hun-
dreds of initial configurations, it is hard to rule out effects
of numerical noise, especially in the low-temperature ag-
ing calculations that must be dominated by very rare
events.

Moreover, to control temperature and pressure, MS
use a thermostat and a barostat with a time constant of
20 ps; and they state that their systems are too far out
of equilibrium for the data to be meaningful on shorter
time scales following the initial quench or the reheating
step. In spite of these uncertainties, we decided to try
to model the complete Kovacs data reported by MS. We
computed the values of the volume, the effective temper-
ature, and the defect densities at the end of the aging
stage, and used these values as the initial conditions for
the reheating stage. Note that the interesting features of
the Kovacs effect are very small; i.e. the fractional vol-
ume change associated with changes in χ near the Ko-
vacs peak is only of the order of 10−3. Therefore, in some
places, we have adjusted the values of our parameters to
three or more significant figures in order to make quan-
titative comparisons with the MS data.

Our data fitting procedure for the results presented
here started by choosing

φeq
el (T = 400 K) = φ0 = 1 − p/λ̄ = 0.9947, (5.1)

which was based on the estimate p = 16 MPa and λ̄ =
3 GPa. We then estimated Tv =1300 K, Ta =130 K, vv =
0.07 nm3, and va =0.007 nm3. Assuming full equilibrium
at Th = 400 K, χ̃ = Th/Tv, we computed nv and na at
that temperature. MS report that their total volume per
molecule at 400 K is 0.378 nm3. These numbers uniquely
determine V0/N0=0.374 nm3.

From here on, we chose parameters in accord with our
rough estimates at the end of Sec. IV, and refined these
estimates to improve the agreement with the data. In
addition to those cited in the last paragraph, the fol-
lowing numbers were used throughout the calculations:
b = 30, ∆̃A = 3.5, ΓK = 10−1.75, and ΓC = 10−2.25.
Our best-fit values for the elastic volume fractions at
T = 150 K and 280 K were φeq

el (T = 150 K) = 0.9037 and
φeq

el (T =280 K)=0.9323.
In Figs. 1 and 2, we show theory and data for the MS

instantaneous quench from Th = 400 K directly to Tf =
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FIG. 1: Aging at T` = 280 K after an instantaneous quench
from Th =400 K. Upper panel: time evolution of the theoret-
ical volume per molecule V0/N0 (solid line) compared to the
simulation data (open circles) extracted from MS Fig. 1(c)
[5]. The parameters used for the theoretical curve can be
found in the text. Lower panel: the corresponding reduced
effective temperature χ̃=χ/hv.
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FIG. 2: na, nv and φel corresponding to Fig. 1.

280 K and subsequent aging as functions of the time after
quench te. (All times are stated in picoseconds.) The
theoretical parameters were γ =10−1.13 and Γ(0)

A =101.8.
We need a Kelvin-Voigt-type viscosity with a small γ
because the elastic part of the volume initially relaxes on
a time scale of the order of γ− 1 ∼ 15 ps. The resulting
dissipation drives a rapid increase in χ; and then both
na and nv participate in the change of the total volume
on time scales determined, respectively, by ΓK and ΓC .

Next consider the quench from Th = 400 K to T` =
150 K and subsequent aging at the latter temperature.
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FIG. 3: The same as Fig. 1, but for T` = 150 K, after a
smooth quench from Th = 400 K according to Eq.(5.2). See
text for the parameters used. The simulation data extracted
from MS Fig. 1(c) [5].

In this case, MS have told us that they used a smooth,
thermostatically controlled decrease in the temperature,
and started to measure the volume at about 30 ps after
the quench was started [30]. Accordingly, we have shifted
our time scale by 30 ps; and we have modeled the initial
temperature dependence by writing

T (te) = T` + (Th − T`) exp
(
− te

τth

)
, (5.2)

with τth = 4 ps. To use this equation for values of T be-
tween Th and T`, we have made a linear interpolation of
φeq

el (T ) between the values given above for φeq
el (Th) and

φeq
el (T`). We used γ = 1 and Γ0

A = 10− 0.2. The results
are shown in Figs. 3 and 4, along with the MS data
for the volume. With the more gradual quench and the
larger value of γ, the Kelvin-Voigt-type effect is less pro-
nounced but still present. The important feature here
is the very slow aging at long times, associated with
the smaller value of Γ0

A and the controlling effect of the
effective-temperature activation barrier ∆̃A.

The principal Kovacs effect occurs during and after
reheating from T` =150 K to Tf =280 K, starting at the
end of the aging period t = te. Because MS increased T
smoothly during reheating, we have used

T (t) = Tf − (Tf − T`) exp
(
−

t − te
τth

)
, (5.3)

again with τth = 4 ps, and with a linear interpolation
between the lower and upper values of φeq

el (T ). For this
stage, we have used the same values of γ and Γ(0)

A that we
used for aging at 280 K. The results for a waiting time of
te =25 ns (equivalent to the nominal MS value of 25 ns on
our shifted time scale) are shown in Figs. 5 and 6, along
with the MS data for the volume. Again, we find that we
need all three irreversible mechanisms to understand the
observed behavior. The effective temperature increases

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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FIG. 4: na, nv and φel corresponding to Fig. 3.

quickly, due to the combination of both Kelvin-Voigt-
type and Maxwell-type mechanisms. The density of K-
subsystem defects, na, rises toward equilibrium with Tf

at a rate ΓK ; then the vacancy density nv rises toward
equilibrium with χ at a rate ΓC ; and finally nv, now at
its quasi-equilibrium value as a function of χ, decreases
as χ decreases slowly toward kB Tf .

Figure 7 shows the Kovacs peak from Fig. 5 and the
comparable peak for a shorter waiting time, te = 1 ns,
along with the MS data for both cases. The agreement
seems excellent in view of the fact that we computed
the second curve only after having determined all of the
parameters from the preceding calculations.

Finally, in Fig. 8, we show the inherent-structure en-
ergy eIS for the reheating stage shown in Fig. 5. To fit
the MS data, we have used

eIS
∼=

λ̄ V0

2 N0

[
φel − φeq

el (T`)
]2

+ nakB Ta + nv kB Tv

+ ēIS + ē′IS kB Tv χ̃ , (5.4)

with ēIS = − 84.32 kJ/mol and ē′IS = 0.08. Note
that our inherent-structure energy eIS contains not only
UC(SC , Vel, Nv), but also a contribution from the mis-
alignment defects Na that we earlier argued belong to
UK for thermodynamic reasons. The conventional, static
definition of the inherent-structure energy requires this
interpretation of eIS . We use the canonical variables T
and χ in Eq.(5.4) instead of the entropies that we used
in the micro-canonical formulation in Eq.(2.1). Inter-
estingly, the position of the peak in eIS (t) seems to be
determined most strongly by the time dependence of the
configurational vacancy term, i.e. nv kB Tv, as opposed
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FIG. 5: The same as Fig. 1, but for reheating from T` =150 K
to Tf =280 K according to Eq.(5.3), and after an aging time
log10(te) = 4.4 (equivalent to the nominal MS value of 25 ns
on our shifted time scale). See text for the parameters used.
The data in the upper panel are extracted from MS Fig. 2
[5]. The Kovacs peak appears to be small because the vertical
scale includes the initial thermal expansion. See Fig. 7 for a
closer look at the peak.
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FIG. 6: na, nv and φel corresponding to Fig. 5.

to being determined predominantly by other configura-
tional degrees of freedom and thus more directly related
to the time dependence of χ̃.

VI. CONCLUDING REMARKS

In their own concluding remarks, Mossa and Sciortino
[5] summarize their results by saying that, instead of
moving a system along a sequence of quasi-equilibrium
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FIG. 7: The same as the upper panel of Fig. 5, but after an
aging time log10(te)=3 (equivalent to the nominal MS value
of 1 ns on our shifted time scale). The upper panel of Fig. 5
is copied here for comparison. See legend for more details.

configurations, their “aging dynamics propagates the sys-
tem through a sequence of configurations never explored
in equilibrium, and it becomes impossible to associate the
aging system to a corresponding liquid configuration.”
They go on to ask whether “a thermodynamic descrip-
tion can be recovered [by] decomposing the aging system
in a collection of substates, each of them associated with
a different fictive T ... or if the glass ... is trapped in
some highly stressed configuration which can never be
associated with a liquid state.”

We seem to be arriving at a related but different inter-
pretation. By focusing on internal state variables – in this
case, the density of different kinds of defects in both the
configurational and kinetic-vibrational subsystems – in
addition to the effective temperature, we naturally gen-
erate states in which the system as a whole departs from
both ordinary thermal equilibrium with the bath tem-
perature and from quasi-equilibrium with the effective
temperature. Our technique for making this calculation
is the one we described in [21, 22]. We think that this
technique goes at least part of the way toward answer-
ing the questions posed by Mossa and Sciortino, but we
recognize that it encounters conceptual problems that
eventually must be addressed.

The most obvious such problem, in our opinion, is the
one that we found when deciding to include the misalign-
ment defects among the fast degrees of freedom in the
kinetic-vibrational subsystem. The results of Ilg and Bar-
rat [28] imply that some such internal variables may be
neither completely fast nor completely slow but, rather,
their dynamics might be activated by an intermediate
temperature or noise strength. This possibility might
be loosely related to the MS conjecture about “different
fictive [temperatures];” but the conjectures are intrinsi-
cally different from each other. Neither we nor Ilg and
Barrat are contemplating more than one effective tem-
perature. So far as we can tell, no complication of either
kind is needed for understanding the Kovacs effect as ob-
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FIG. 8: The theoretical inherent structure energy eIS of
Eq.(5.4) (solid line) compared to the simulation data (open
circles) extracted from MS Fig. 3(b).

served by MS, nor do we seem to need it for shear flow in
amorphous systems [23] or in polycrystals [31]. Neverthe-
less, we appear to be encountering some of the deepest
and most important open questions in nonequilibrium
physics.
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