

INSTRUCTION MANUAL

INTRODUCTION	5
WARNING	5
QUICK SETUP	6
ASSEMBLY	0
Assembling the NexStar	
Setting Up The Tripod	
Adjusting the Tripod Height	
Attaching the NexStar to the Tripod Attaching the Hand Control	
Adjusting the Flutha Control	
The Star Diagonal	
The Symplece	
The Finderscope	
Finderscope Installation.	
Aligning the Finderscope	
Powering the NexStar	
HAND CONTROL	
Hand Control Operation	
Alignment Procedures	
GPS Alignment	
Auto-Align	
Two Star Alignment	
Quick-Align	
Quick-Align	
EQ North / EQ South Alignment	
NexStar Re-Alignment	
Object Catalog	
Selecting an Object	
Slewing to an Object	
Finding Planets	
Tour Mode Direction Buttons	
Rate Button	
Setup Procedures	
Tracking Mode	
Tracking Rate	
Date/Time	
User Defined Objects	
Get RA/DEC	
Goto R.A/Dec	
Scope Setup Features	
Steup Time-Site	
Anti-backlash	
Slew Limits	
Filter Limits	
Direction Buttons	
Goto Approach	
Autoguide Rates	
Cordwrap	
Utility Features GPS On/Off	
Compass	
Alt Sensor	
Wedge Align	
Periodic Error Correction	
Light Control	
Factory Settings	

Version	
Get Alt-Az	
Goto Alt-Az	
TELESCOPE BASICS	28
Image Orientation	
Focusing	
Calculating Magnification	
Determining Field of View	
General Observing Hints	
ASTRONOMY BASICS	
The Celestial Coordinate System	31
Motion of the Stars	
Polar Alignment (with optional Wedge)	
Wedge Align	
Finding the North Celestial Pole	
Declination Drift Method of Polar Alignment	
CELESTIAL OBSERVING	
CELESTIAL OBSERVING	
Observing the Moon	
Lunar Observing Hints	
Observing the Planets	
Planetary Observing Hints	
Observing the Sun	
Solar Observing Hints	
Observing Deep Sky Objects	
Seeing Conditions	
Transparency	
Sky Illumination	
Seeing	
CELESTIAL PHOTOGRAPHY	
Short Exposure Prime Focus Photography	
Eyepiece Projection	
Long Exposure Prime Focus Photography	
Periodic Error Correction (PEC)	
Using Periodic Error Correction	
Terrestrial Photography	
Metering	
Reducing Vibration	
CCD Imaging	
Fastar F/2 Imaging	
F/6.3 with Reducer/Corrector	
Auto Guiding	47
TELESCOPE MAINTENANCE	
Care and Cleaning of the Optics	18
Collimation	
OPTIONAL ACCESSORIES	
APPENDIX A - TECHNICAL SPECIFICATIONS	
APPENDIX B - GLOSSARY OF TERMS	54
APPENDIX C – LONGITUDES AND LATITUDES	
AFFENDIA U – LUNGI I UDES AND LATI I UDES	
APPENDIX D – RS-232 CONNECTION	
Communication Protocol:	

APPENDIX E – TIME ZONE MAP	
SKY MAPS	
OBSERVATIONAL DATA SHEET	

Congratulations on your purchase of the Celestron NexStar GPS telescope! The NexStar GPS ushers in the next generation of computer automated telescopes. The NexStar GPS series, for the first time ever in a commercial telescope, uses GPS (Global Positioning System) technology to take the guesswork and effort out of aligning and finding celestial objects in the sky. Simple and easy to use, the NexStar with its on-board GPS, is up and running after locating just two alignment stars. It's so advanced that once you turn it on, the integrated GPS and digital compass system automatically pinpoints your exact location and points to your first alignment star. No need to enter the date, time, longitude and latitude or even know the position of north.

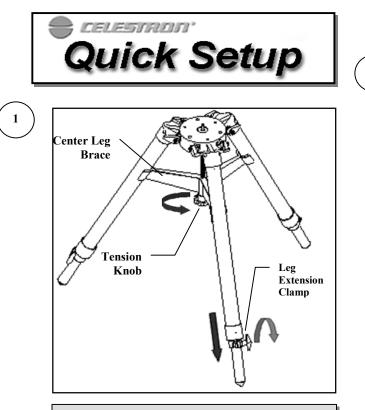
If you are new to astronomy, you may wish to start off by using the NexStar's built-in Sky Tour feature, which commands the NexStar to find the most interesting objects in the sky and automatically slews to each one. Or if you are an experienced amateur, you will appreciate the comprehensive database of over 40,000 objects, including customized lists of all the best deep-sky objects, bright double stars and variable stars. No matter at what level you are starting out, the NexStar will unfold for you and your friends all the wonders of the Universe.

Some of the many standard features of the NexStar include:

- Integrated Global Positioning System and electronic compass for hands free alignment.
- Fully enclosed optical encoders for position location.
- Ergonomically designed hand controller built into the side of the fork arm.
- Database filter limits for creating custom object lists.
- Storage for programmable user defined objects; and

Many other high performance features!

The NexStar's deluxe features combine with Celestron's legendary Schmidt-Cassegrain optical system to give amateur astronomers the most sophisticated and easy to use telescopes available on the market today.

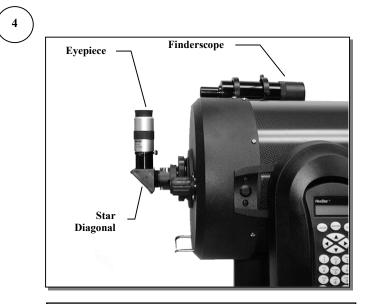

Take time to read through this manual before embarking on your journey through the Universe. It may take a few observing sessions to become familiar with your NexStar, so you should keep this manual handy until you have fully mastered your telescope's operation. The NexStar hand control has built-in instructions to guide you through all the alignment procedures needed to have the telescope up and running in minutes. Use this manual in conjunction with the on-screen instructions provided by the hand control. The manual gives detailed information regarding each step as well as needed reference material and helpful hints guaranteed to make your observing experience as simple and pleasurable as possible.

Your NexStar telescope is designed to give you years of fun and rewarding observations. However, there are a few things to consider before using your telescope that will ensure your safety and protect your equipment.

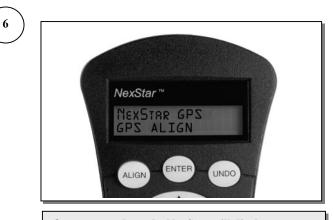
Warning

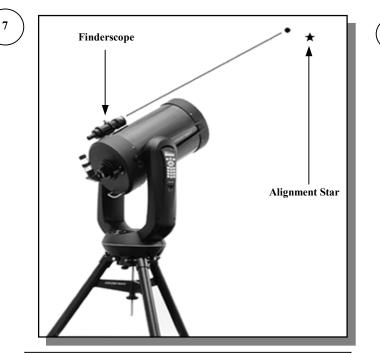
- □ Never look directly at the sun with the naked eye or with a telescope (unless you have the proper solar filter). Permanent and irreversible eye damage may result.
- Never use your telescope to project an image of the sun onto any surface. Internal heat build-up can damage the telescope and any accessories attached to it.
- Never use an eyepiece solar filter or a Herschel wedge. Internal heat build-up inside the telescope can cause these devices to crack or break, allowing unfiltered sunlight to pass through to the eye.
- □ Never leave the telescope unsupervised, either when children are present or adults who may not be familiar with the correct operating procedures of your telescope.

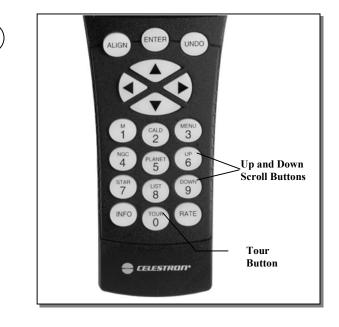
Place the center leg brace between the tripod legs and tighten the tension knob so that the brace pushes out against the legs. Loosen the extension clamp at the end of each tripod leg and slide down the inner portion of the leg to the desired height. Tighten the extension clamp to hold the legs in place.


3

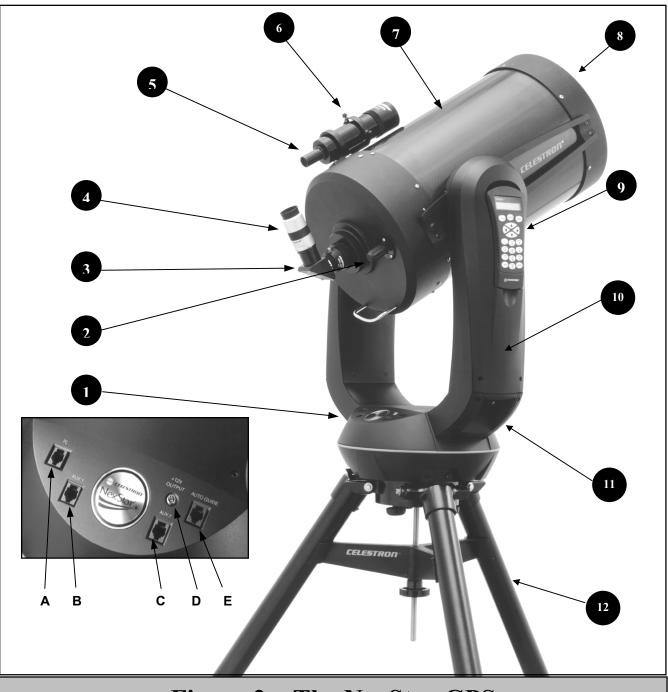
Loosen the Altitude Clutch Lock Lever and rotate the telescope tube upwards until it is level with the ground. Tighten the Lock Lever.


With the tripod set up outside, lift the telescope by the carrying handle on each fork arm and carefully lower it onto the tripod head. Make sure that the hole in the bottom of the drive base goes over the positioning pin in the center of the tripod head. Rotate the base until the holes line-up with the mounting holes on the tripod. Thread the three mounting bolts from underneath the tripod head into the bottom of the telescope base.


Attach the included accessories (eyepiece, diagonal and finderscope) and remove the front lens cover. Align the finderscope on a distant object. (For instructions on aligning the finderscope, see the *Assembly* section of the manual).


Plug-in the supplied 12v AC adapter into the outlet on the bottom portion of the drive base. Before powering the NexStar, point the tube down towards the ground and lock both the altitude and azimuth clutches. Power the NexStar by flipping the "On/Off" switch to the "On" position.

Once powered on, the NexStar will display NexStar GPS, press ENTER to select GPS alignment. The NexStar will automatically find its North and Level position and retrieve information from the GPS satellites.



The NexStar will automatically pick an alignment star and slew the telescope close to that star. Once there, the display will ask you to use the arrow buttons to aim the finderscope at the star. If the star is not visible (perhaps behind a tree), press UNDO to select a new star. Next, center the star in the eyepiece and press ALIGN. Repeat these steps for the second star alignment. When complete, the display will read "Alignment Successful".

8

Press the TOUR button on the hand control. The hand control will display a list of celestial objects that are currently visible. Press INFO to read information about the object displayed. Press the DOWN scroll key to display the next object. Press ENTER to slew to (go to) the displayed object.

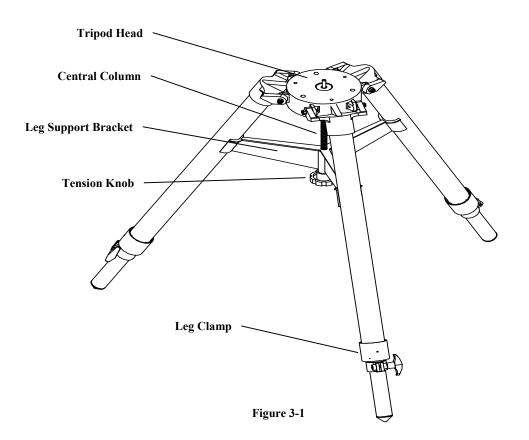
Figure 2 – The NexStar GPS

1	Control Panel (see below)	7	Optical Tube
2	Focus Knob	8	Schmidt Corrector Lens
3	Star Diagonal	9	Hand Control
4	Eyepiece	10	Fork Arm
5	Finderscope	11	Carrying Handle
6	Finderscope Adjustment Screw	12	Tripod
	CONTROL PANEL	С	Auxiliary Port 2
Α	PC Interface Port	D	12v Output Jack
В	Auxiliary Port 1	Е	Auto Guider Port

The NexStar comes completely pre-assembled and can be operational in a matter of minutes. The NexStar and its accessories are conveniently packaged in one reusable shipping carton while the tripod comes in its own box. Included with your NexStar are the following:

- 40mm Eyepiece 1¹/₄"
- 1¹/₄" Star Diagonal
- 9x50 Finderscope and Mounting Bracket
- 1¹/₄" Visual Back
- AC adapter (car battery adapter is included with some models)
- Heavy Duty Tripod
- Vibration Suppression Pads
- Bolt Pack

Assembling the NexStar


Start by removing the telescope and tripod from their shipping cartons and set the telescopes round base on a sturdy flat surface. Always carry the telescope by holding it from the lower portion of the fork arm on the hand control side and from the handle on the opposite side. Remove all of the accessories from their individual boxes. Remember to save all of the containers so that they can be used to transport the telescope. Before attaching the visual accessories, the telescope should be mounted on the tripod and the tube should be positioned horizontal to the ground.

Setting Up The Tripod

For maximum rigidity, the Celestron Heavy Duty Tripod has a leg support bracket. This bracket fits snugly against the tripod legs, increasing stability while reducing vibration and flexure. However, the tripod is shipped with each arm of the leg support bracket in between the legs so the tripod legs can collapse. To set up the tripod:

- 1. Hold the tripod with the head up and the legs pointed toward the ground.
- 2. Pull the legs away from the central column until they will not separate any further. A small stop on the top of each tripod leg presses against the tripod head to indicate maximum separation.
- 3. Rotate the tension knob (located underneath the support bracket on the central column) clockwise until it is close to the bottom of the central column.
- 4. Turn the leg support bracket until the cups on the end of each bracket are directly underneath each leg.
- 5. Rotate the tension knob counterclockwise until the bracket is secure against the tripod legs. Do not over tighten.

The tripod will now stand by itself. Once the telescope is attached to the tripod, readjust the tension knob to ensure that the leg support bracket is snug. Once again, do not over tighten!

Adjusting the Tripod Height

The tripod that comes with your NexStar telescope is adjustable. To adjust the height at which the tripod stands:

- 1. Loosen the extension clamp on one of the tripod legs (see figure 3-1).
- 2. Extend the leg to the desired height.
- 3. Tighten the extension clamp to hold the leg in place.
- 4. Repeat this process for each of the remaining legs.


You can do this while the tripod legs are still folded together.

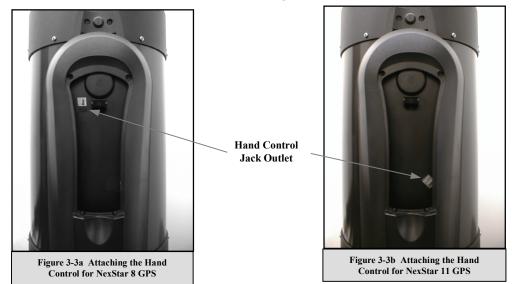
Remember that the higher the tripod legs are extended, the less stable it is. For casual observing, this may not pose a problem.

However, if you plan on doing photography, the tripod should be set low to ensure stability. A recommended height is to set the tripod in such a manner that you can look directly into the eyepiece on the telescope with a diagonal while seated.

Attaching the NexStar to the Tripod

After the tripod is set up, you are now ready to attach the telescope. The bottom of the NexStar base has three threaded holes that mount to the tripod head and one hole in the center that goes over the positioning pin on the tripod head.

- 1. Place the center hole in the bottom of the telescope base over the positioning pin in the center of the tripod plate.
- 2. Rotate the telescope base until the threaded holes align with the holes in the tripod head.
- 3. Thread the three mounting bolts from underneath the tripod head into the bottom of the telescope base. Tighten all three bolts. Warning: Never insert bolts with threads longer than 3/8" into the NexStar base. It can cause damage to the internal motors.

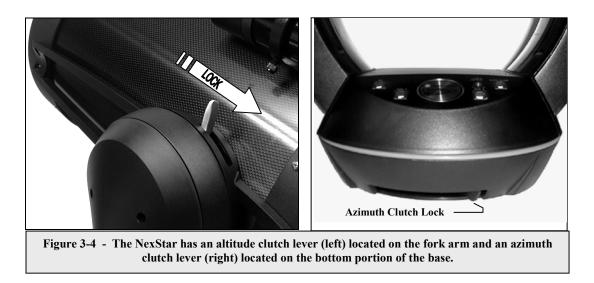

You are now ready to attach the included visual accessories onto the telescope optical tube.

Attaching the Hand Control

In order to protect your NexStar telescope during shipping, the hand control unit has been packaged along with the other telescope accessories and will need to be attached to the fork arm of your telescope. The hand control cable has a phone jack style connector that will plug into the jack outlet located on the inside of the fork arm (see figure 3-3). To connect the hand control to the fork arm:

- Insert the hand control connector so that the pins are facing the inside of the fork arm.
- Push the connector into the jack until it clicks into place.

The hand control can now rest in the fork arm of the telescope.


Helpful Hint

As an alternative to plugging the hand control into the fork arm, the hand control can also be plugged into either of the *aux ports* located on the drive base. This can be useful especially when using your NexStar on an equatorial wedge, in which the hand control may be difficult to access when the fork arm is rotated towards the ground.

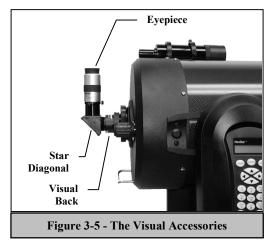
Adjusting the Clutches

The NexStar GPS has a dual axis clutch system. This allows you to move the telescope manually even when the telescope is not powered on. However, both clutches need to be tightened down for the telescope to be aligned for "goto" use. Any manual movement of the telescope will invalidate your telescope's alignment.

Note: When transporting your telescope, make sure that both clutches are somewhat loose; this will diminish the load placed on the worm gear assemblies and protect them from damage.

The Star Diagonal

The star diagonal diverts the light at a right angle from the light path of the telescope. For astronomical observing, this allows you to observe in positions that are more comfortable than if you were to look straight through. To attach the star diagonal:


- 1. Turn the thumbscrew on the visual back until its tip no longer extends into (i.e., obstructs) the inner diameter of the visual back.
- 2. Slide the chrome portion of the star diagonal into the visual back.
- 3. Tighten the thumbscrew on the visual back to hold the star diagonal in place.

If you wish to change the orientation of the star diagonal, loosen the thumbscrew on the visual back until the star diagonal rotates freely. Rotate the diagonal to the desired position and tighten the thumbscrew.

The Eyepiece

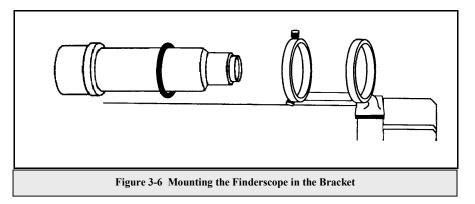
The eyepiece, or ocular, is the optical element that magnifies the image focused by the telescope. The eyepiece fits into either the visual back directly or the star diagonal. To install the eyepiece:

- 1. Loosen the thumbscrew on the star diagonal so it does not obstruct the inner diameter of the eyepiece end of the diagonal.
- 2. Slide the chrome portion of the eyepiece into the star diagonal.
- 3. Tighten the thumbscrew to hold the eyepiece in place.

To remove the eyepiece, loosen the thumbscrew on the star diagonal and slide the eyepiece out.

Eyepieces are commonly referred to by focal length and barrel diameter. The focal length of each eyepiece is printed on the eyepiece barrel. The longer the focal length (i.e., the larger the number) the lower the eyepiece power or magnification; and the shorter the focal length (i.e., the smaller the number) the higher the magnification. Generally, you will use low-to-moderate power when viewing. For more information on how to determine power, see the section on "Calculating Magnification."

Barrel diameter is the diameter of the barrel that slides into the star diagonal or visual back. The NexStar uses eyepieces with a standard 1-1/4" barrel diameter.


The Finderscope

The NexStar GPS comes with a 9x50 finderscope which has an 5.8° field-of-view. The specifications for a finderscope stand for the magnification and the aperture, in millimeters, of the scope. So, a 9x50 finder magnifies objects nine times and has a 50mm objective lens

Finderscope Installation

- 1. Find the two holes in the rear cell of the telescope on the top left, when looking from the back of the tube.
- 2. Remove any tape covering the two holes. The tape is there to prevent dust and moisture from entering the optical tube before the finder is installed.
- 3. Place the finder bracket over the two holes. Orient the bracket so that the rings that hold the finder are over the telescope tube, not the rear cell.
- 4. Insert the screws through the bracket and into the rear cell.

WARNING: If you remove the finderscope, do not thread the screws back into the rear cell of the telescope. The screws are long enough to obstruct the movement of, and possibly damage the primary mirror.

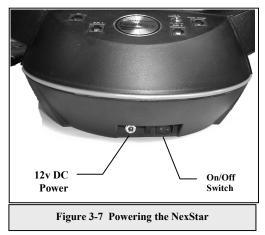
With the bracket firmly attached to the telescope, you are ready to attach the finder to the bracket.

- 1. Thread the three nylon screws into the front ring of the finder bracket. Tighten the screws until the nylon heads are flush with the inner diameter of the bracket ring. Do NOT thread them in completely or they will interfere with the placement of the finder.
- 2. Slide the eyepiece end of the finderscope into the front of the bracket.
- 3. Slide the O-Ring over the back of the finder and position it on the finderscope body toward the eyepiece end.
- 4. Push the finder back until the O-Ring is snug inside the back ring of the finder bracket.
- 5. Hand tighten the three nylon thumbscrews until snug.

Aligning the Finderscope

To make the alignment process a little easier, you should perform this task in the daytime when it is easier to locate objects in the telescope without the finder. To align the finder:

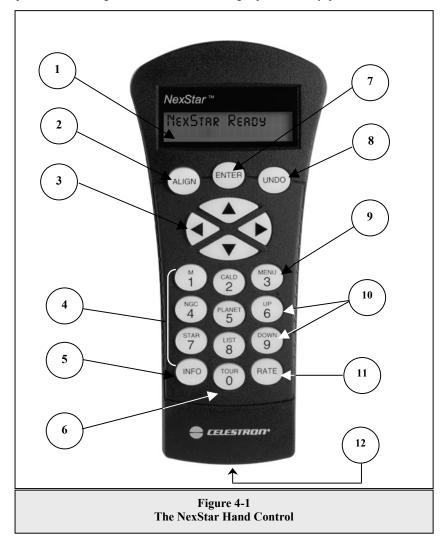
- 1. Choose a conspicuous object that is in excess of one mile away. This will eliminate any possible parallax effect between the telescope and the finder.
- 2. Point your telescope at the object you selected and center it in the main optics of the telescope.
- 3. Lock the azimuth and altitude clamps to hold the telescope in place.
- 4. Check the finder to see where the object is located in the field of view.
- 5. Adjust the nylon thumb screws on the finder bracket, tightening one while loosening another, until the cross hairs are centered on the target.
- 6. Tighten each thumb screw a quarter of a turn to ensure that they will not come loose easily.


The image orientation through the finder is inverted (i.e., upside down and reversed from left-to-right). Because of this, it may take a few minutes to familiarize yourself with the directional change each screw has on the finder

Powering the NexStar

The NexStar can be powered by the supplied 12v AC adapter or optional car battery adapter (see Optional Accessories

section in the back of this manual). Use only the AC adapter supplied by Celestron. Using any other adapter may damage the electronics and will void your manufacturer's warranty.


- 1. To power the NexStar with the 12v AC adapter (or car battery adapter), simply plug the round post into the 12v outlet on the bottom portion of the drive base and plug the adapter into a wall outlet (or cigarette lighter outlet for the car battery adapter).
- 2. Turn on the power to the NexStar by flipping the switch, located next to the 12v outlet, to the "On" position.

The NexStar has a removable hand controller built into the side of the fork arm designed to give you instant access to all the functions the NexStar has to offer. With automatic slewing to over 40,000 objects, and common sense menu descriptions, even a beginner can master its variety of features in just a few observing sessions. Below is a brief description of the individual components of the NexStar hand controller:

- 1. **Liquid Crystal Display (LCD) Window:** Has a dual-line, 16 character display screen that is backlit for comfortable viewing of telescope information and scrolling text.
- 2. Align: Instructs the NexStar to use a selected star or object as an alignment position.
- 3. **Direction Keys:** Allows complete control of the NexStar in any direction. Use the direction keys to move the telescope to the initial alignment stars or for centering objects in the eyepiece.

4. **Catalog Keys:** The NexStar has keys on the hand control to allow direct access to each of the catalogs in its database. The NexStar contains the following catalogs in its database:

Messier – Complete list of all Messier objects. *NGC* – Complete list of all the deep-sky objects in the Revised New General Catalog. *Caldwell* – A combination of the best NGC and IC objects. Planets - All 8 planets in our Solar System plus the Moon.

Stars – A compiled list of the brightest stars from the SAO catalog.

List – For quick access, all of the best and most popular objects in the NexStar database have been broken down into lists based on their type and/or common name:

Named Stars Named Objects	Common name listing of the brightest stars in the sky. Alphabetical listing of over 50 of the most popular deep sky objects.
Double Stars	Numeric-alphabetical listing of the most visually stunning double, triple and quadruple stars in the sky.
Variable Stars	Select list of the brightest variable stars with the shortest period of changing magnitude.
Asterisms	A unique list of some of the most recognizable star patterns in the sky.
CCD Objects	A custom list of many interesting galaxy pairs, trios and clusters that are well suited for CCD imaging with the NexStar telescope.
IC Objects Abell Objects	A complete list of all the Index Catalog deep-sky objects. A complete list of all the Abell Catalog deep-sky objects.

- 5. **Info:** Displays coordinates and useful information about objects selected from the NexStar database.
- 6. **Tour:** Activates the tour mode, which seeks out all the best objects for the current date and time, and automatically slews the NexStar to those objects.
- 7. Enter: Pressing *Enter* allows you to select any of the NexStar functions and accept entered parameters.
- 8. **Undo:** *Undo* will take you out of the current menu and display the previous level of the menu path. Press *Undo* repeatedly to get back to a main menu or use it to erase data entered by mistake.
- 9. Menu: Displays the many setup and utilities functions such as tracking rate and user defined objects and many others.
- 10. Scroll Keys: Used to scroll up and down within any of the menu lists. A double-arrow will appear on the right side of the LCD when there are sub-menus below the displayed menu. Using these keys will scroll through those sub-menus.
- 11. Rate: Instantly changes the rate of speed of the motors when the direction buttons are pressed.
- 12. **RS-232 Jack**: Allows you to interface with a computer and control the NexStar remotely.

Hand Control Operation

This section describes the basic hand control procedures needed to operate the NexStar. These procedures are grouped into three categories: Alignment, Setup and Utilities. The alignment section deals with the initial telescope alignment as well as finding objects in the sky; the setup section discusses changing parameters such as tracking mode and tracking rate; finally, the last section reviews all of the utilities functions such as the slew limits, PEC and backlash compensation.

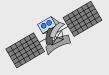
Alignment Procedures

In order for the NexStar to accurately point to objects in the sky, it must first be aligned to two known positions (stars) in the sky. With this information, the telescope can create a model of the sky, which it uses to locate any object with known coordinates. There are many ways to align the NexStar with the sky depending on what information the user is able to provide: **GPS Align Mode** allows the NexStar to acquire all the necessary information needed to point itself to the required alignment stars; **AutoAlign** will ask the user to input date and location information in order to locate the alignment stars; **Two-Star Alignment** does not require the user to input date and location data, but does require the user to identify and manually slew the telescope to the two alignment stars. **Quick-Align** will ask you to input all the same information as you would for the AutoAlign procedure. However, instead of slewing to two alignment stars for centering and alignment, the telescope bypasses this step and simply models the sky based on the information given. Finally, **EQ North and EQ South** alignments are designed to assist you in aligning the NexStar when polar aligned using an equatorial wedge. Each alignment method is discussed in detail below.

Definition

"Altazimuth" or "Alt-Az" refers to a type of mounting that allows a telescope to move in both altitude (up and down) and azimuth (left and right) with respect to the ground. This is the simplest form of mounting in which the telescope is attached directly to a tripod without the use of an equatorial wedge.

GPS Alignment


GPS Align must be used with the telescope mounted in altazimuth. With GPS Align mode, the NexStar automatically levels the optical tube, its built-in electronic compass points the telescope in the direction of the northern horizon, while the GPS receiver links with and acquires information from 3 of the orbiting GPS satellites. With this information, the built-in GPS system calculates the scope's location on Earth with an accuracy of a few meters and calculates universal time down to the second. After quickly making all these calculations and automatically entering the information for you, the NexStar GPS orients itself with the sky, slews to an alignment star and asks you to position the star in the center of the eyepiece. The NexStar is then ready to start finding and tracking any of the objects in its 40,000+ object database. Before the telescope is ready to be aligned, it should be set up in an outside location with all accessories (eyepiece, diagonal and finderscope) attached and lens cover removed as described in the Assembly section of the manual. Before turning on the NexStar, make sure that the tube is pointed downward and both the altitude and azimuth clutches are locked down. To begin the GPS alignment:

- Power on the NexStar by flipping the switch located on the bottom portion of the drive base, to the "on" position. Once turned on the hand control display will say NexStar GPS. Press ENTER to choose GPS Align or use the UP/Down scroll keys (10) to select a different mode of alignment. Pressing the ALIGN key will bypass the other alignment options and the scrolling text and automatically begins GPS Align.
- 2. Once *GPS Align* has been selected, the telescope will begin to move to its north and level position. While the NexStar is positioning itself, the GPS receiver automatically begins to establish a link with the GPS satellites orbiting the Earth. The hand control screen will display the message GPS Linking to let you know that it is linking with the satellites.
- 3. Once the NexStar has established a link with the required satellites, the hand control display will read GPS Linked. The GPS satellites will then report the current time and position directly to your NexStar. The NexStar now has all the necessary data to make a virtual model of the sky, select two bright stars for alignment and begin slewing to the first star.
- 4. When the NexStar has finished slewing to its first alignment star, the hand control display will ask you to use the arrow buttons to center the alignment star in the cross hairs of the finderscope. At this point the telescope is only roughly aligned, so the alignment star should only be close to the field of view of the finderscope. Once centered in the finderscope, press ENTER. If for some reason the chosen star is not visible (perhaps behind a tree or building) you can press the UNDO button to have the NexStar select and slew to a different star.
- 5. If the finderscope has been properly aligned with the telescope tube, the alignment star should now be visible inside the field of view of the eyepiece. The NexStar will ask that you center the bright alignment star in the center of the eyepiece and press the ALIGN button. This will accept the star as the first alignment position. (There is no need to adjust the slewing rate of the motors after each alignment step. The NexStar automatically selects the best slewing rate for aligning objects in both the finderscope and the eyepiece).

A Few Words on GPS:

The NexStar GPS uses an on-board GPS to take the guesswork out of aligning your telescope with the sky. Once GPS Align is selected, the NexStar automatically initiates the internal GPS module. However, there are a few things you should be aware of in order to get the full use of its many capabilities:

- GPS alignment will only work when the telescope is set-up outdoors with an unobstructed view of the sky. If the NexStar is set-up in a location that has a limited horizon in any direction, the GPS alignment may still work, however it will take much longer for the telescope to find and link with the needed satellites.
 - When using GPS alignment for the first time, it may take 3-5 minutes for the NexStar to link-up with its satellites. Once the telescope is successfully linked, leave the telescope powered on for at least 20 minutes. During this time the NexStar will download the complete almanac of orbital elements (called the ephemeris) for the orbiting GPS satellites. Once this information is received it will be stored for future alignments.
 - If your NexStar is transported over a long distance (say from the northern to the southern hemisphere) it may take as long as one hour to establish a satellite link from its new location. Observers wishing to travel long distances with their telescope are advised to begin the GPS alignment in advance to allow the unit to acquire the necessary data.

After the first alignment star has been recorded, the NexStar will automatically slew to a second alignment star 6. and have you repeat the alignment process for that star. When the telescope has been aligned to both stars, the display will read "Alignment Successful" and you are now ready to find your first object.

Observing Tip

For the best possible pointing accuracy, always center the alignment stars using the up arrow button and the right arrow button. Approaching the star from this direction when looking through the evepiece will eliminate much of the backlash between the gears and assure the most accurate alignment possible.

Auto-Align

Alternatively, if you are observing at a location where it is difficult to establish a link with the proper satellites, AutoAlign will allow the user to input the necessary information needed to align the telescope. After choosing AutoAlign and moving the telescope into the north and index position, the NexStar will ask you to input first the date and time information then it will ask for your location. Just like with GPS align, once this information is received, NexStar will automatically choose a bright alignment star and automatically slew to it. Follow the steps below to AutoAlign the NexStar:

- 1. Once the NexStar is powered on, Press ENTER to begin alignment.
- 2. Use the Up and Down scroll keys (10) to select *AutoAlign* and press ENTER.
- 3. The hand control will display the last time and location information that was entered or downloaded from the GPS. Use the Up and Down buttons to scroll through the information. If any of the parameters need to be updated, press the UNDO button and edit the displayed information. If all the information is correct, press ENTER to accept the displayed information. The following information will be displayed:

Time - Enter the current local time for your area. You can enter either the local time (i.e. 08:00), or you can enter military time (i.e. 20:00).

- Select PM or AM. If military time was entered, the hand control will bypass this step.
- Choose between Standard time or Daylight Savings time. Use the Up and Down scroll buttons (10) to toggle between options.
- Select the time zone that you are observing from. Again, use the Up and Down buttons (10) to scroll through the choices. Refer to Time Zone map in Appendix E for more information.
- Enter the month, day and year of your observing session. Date -

If the wrong information has been input into the hand control, the UNDO button will act as a backspace allowing the user to re-enter information.

- 4. Finally, you must enter the longitude and latitude of the location of your observing site. Use the table in Appendix C to locate the closest longitude and latitude for your current observing location and enter those numbers when asked in the hand control, pressing ENTER after each entry. Remember to select "West" for longitudes in North America and "North" for latitudes in the North Hemisphere. For international cities, the correct hemisphere is indicated in the Appendix listings.
- 5. The hand control will then prompt you to move the optical tube to its *north and index* position:
 - Use the up and down arrow keys (3) keys to rotate the • telescope tube until the index marker that moves with the optical tube is lined up with the stationary index marker on the fork arm. See figure 4.2
 - Use the left and right arrow keys to point the front of the telescope towards north. North can be found by finding the direction of the North Star (Polaris) or by using a compass. You do not need to point at the North Star, only the north horizon. Alignment only needs to be approximate, however a close alignment will make the auto alignment more accurate. Once the telescope is in the *North and Index* position, press ENTER



Figure 4-2 – The Altitude Index Marker

Helpful Hint

Based on this information, the NexStar will automatically select a bright star that is above the horizon and slew towards it. Once finished slewing, the display will ask you to use the arrow buttons to align the selected star with the cross hairs in the center of the finderscope. If for some reason the chosen star is not visible (perhaps behind a tree or building) you can press UNDO to select and slew to a different star. Once centered in the finder, press ENTER. The display will then instruct you to center the star in the field of view of the eyepiece. When the star is centered, press ALIGN to accept this star as your first alignment star. After the first alignment star has been entered the NexStar will automatically slew to a second alignment star and have you repeat this procedure for that star. When the telescope has been aligned to both stars the display will read Alignment Successful, and you are now ready to find your first object.

Trouble Shooting

> Helpful Hint

If the wrong star was centered and aligned to, the NexStar display will read Alignment Failed and scroll the message, "*the positions of the alignment stars did not match the database*". Should this occur, press the UNDO button and re-align the telescope. Remember the alignment star will always be the brightest star nearest the field of view of the finder.

Two Star Alignment

With the two-star alignment method, the NexStar requires the user to know the positions of only two bright stars in order to accurately align the telescope with the sky and begin finding objects. Here is an overview of the two-star alignment procedure:

- 1. Once the NexStar is powered on, use the Up and Down scroll keys (10) to select Two-Star Align, and press ENTER.
- 2. The NexStar display the message *Set Alt to Index*. Use the Up and Down direction keys (3) and rotate the telescope tube until the index marker that moves with the optical tube is lined up with the stationary index marker on the fork arm (See figure 5-2). Press ENTER.
- 3. The SELECT STAR 1 message will appear in the top row of the display. Use the Up and Down scroll keys (10) to select the star you wish to use for the first alignment star. Press ENTER.
- 4. NexStar then asks you to center in the eyepiece the alignment star you selected. Use the direction buttons to slew the telescope to the alignment star and carefully center the star in the eyepiece.

In order to accurately center the alignment star in the eyepiece, it will be necessary to decrease the slew rate of the motors for fine centering. This is done by pressing the RATE key (11) on the hand controller then selecting the number that corresponds to the speed you desire. (9 = fastest, 1 = slowest).

- 5. Once the alignment star is centered in the field of view of the eyepiece, press the ALIGN key (2) to accept this position.
- 6. NexStar will then ask you to select and center a second alignment star and press the ALIGN key. It is best to choose alignment stars that are a good distance away from one another. Stars that are at least 40° to 60° apart from each other will give you a more accurate alignment than stars that are close to each other.

Once the second star alignment is completed properly, the display will read Alignment Successful, and you will hear the tracking motors turn-on and begin to track.

Quick-Align

Quick-Align allows you to input all the same information as you would for the AutoAlign procedure. However, instead of slewing to two alignment stars for centering and alignment, the NexStar bypasses this step and simply models the sky based on the information given. This will allow you to roughly slew to the coordinates of bright objects like the moon and planets and gives the NexStar the information needed to track objects in altazimuth in any part of the sky. Quick-Align is not meant to be used to accurately locate small or faint deep-sky objects or to track objects accurately for photography.

To use Quick-Align:

- 1. Select Quick-Align from the alignment options.
- 2. The hand control will then ask you to input all the same time and location information as you would for the AutoAlign procedure.
- 3. Use the direction buttons to move the telescope to its *north and index* position and press ENTER.
- 4. Once in position, the NexStar will model the sky based on this information and display Alignment Successful.

Note: Once a Quick-Align has been done, you can use the Re-alignment feature (see next page) to improve your telescopes pointing accuracy.

EQ North | EQ South Alignment

EQ North and EQ South Alignments assist the user in aligning the telescope when polar aligned on an optional equatorial wedge. Just as with the Altazimuth alignments described earlier, the EQ alignments gives you the choice of performing an AutoAlign or a Two-Star alignment.

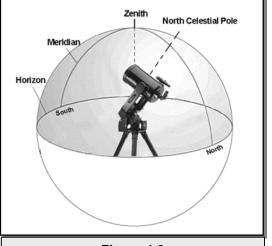
- The EQ AutoAlign follows many of the same steps as the Alt-Az AutoAlign, except instead of asking you to position the scope towards north, it will ask you to position the tube so that the index markers are aligned, and then rotate the telescope base until the tube is pointed towards the Meridian (see figure 4-3).
- The EQ Two-Star Align requires the user to locate and align the telescope on two bright stars. When selecting alignment stars it is best to choose stars that, a) have a large separation in azimuth and b) both are either positive or negative in declination. Following these two guidelines will result in a more accurate EQ Two-Star alignment.

NexStar Re-Alignment

The NexStar has a re-alignment feature which allows you to replace either of the two original alignment stars with a new star or celestial object. This can be useful in several situations:

- If you are observing over a period of a few hours, you may notice that your original two alignment stars have drifted towards the west considerably. (Remember that the stars are moving at a rate of 15° every hour). Aligning on a new star that is in the eastern part of the sky will improve your pointing accuracy, especially on objects in that part of the sky.
- If you have aligned your telescope using the Quick-Align method, you can use *re-align* to align to two actual objects in the sky. This will improve the pointing accuracy of your telescope without having to re-enter addition information.

To replace an existing alignment star with a new alignment star:


- 1. Select the desired star (or object) from the database and slew to it.
- 2. Carefully center the object in the eyepiece.
- 3. Once centered, press the UNDO button until you are at the main menu.
- 4. With NexStar GPS displayed, press the ALIGN key on the hand control.
- 5. The display will then ask you which alignment star you want to replace. Use the UP and Down scroll keys to select the alignment star to be replaced. It is usually best to replace the star closest to the new object. This will space out your alignment stars across the sky.

Daytime Observing Tip!

6. Press ALIGN to make the change.

Since many planets and bright stars can be observed in the daytime, the realign feature can also be useful for aligning your telescope during the day. Daytime alignments require the use of a proper solar filter for your telescope (see Optional Accessories section of the manual). <u>Never look directly at the sun with the naked eve or with a telescope (unless you have the proper solar filter). Permanent and irreversible eve damage may result</u>. In order to align the NexStar in the daytime, you will need to perform a Quick Align as described earlier in this section and then use the Sun as your alignment star. Follow these steps to align your NexStar in the daytime:

- 1. Perform a *Quick Align* as discussed earlier in this chapter.
- 2. With the proper solar filter attached, manually move the telescope to the Sun and center it in the eyepiece.
- 3. Once centered, press the UNDO button until you are at the main menu.
- 4. With *NexStar GPS* displayed, press the ALIGN key on the hand control
- 5. The display will then ask you which alignment star you want to replace. Use the UP and Down scroll keys to select the alignment star to be replaced. Since you did a *Quick-Align* it does not matter which star you select.
- 6. Press the ZERO button on the hand control.
- 7. The hand control will then prompt you to "Center the Sun" and "Press Align"

Figure 4-3

The Meridian is an imaginary line in the sky that starts at the North celestial pole and ends at the South celestial pole and passes through the zenith. If you are facing South, the meridian starts from your Southern horizon and passes directly overhead to the North celestial pole.

- 8. For your second star alignment, do one of the following
 - Select a bright star or planet from the database and slew to it. If it is visible in the eyepiece, use that object to realign to, replacing the remaining star when asked to choose.
 - Wait approximately 10 minutes, and go through steps 2-7 above and again use the Sun as the second alignment object. Replace the remaining star when asked to choose.

Object Catalog

Selecting an Object

Now that the telescope is properly aligned, you can choose an object from any of the catalogs in the NexStar's extensive database. The hand control has a key (4) designated for each of the catalogs in its database. There are two ways to select objects from the database: scrolling through the named object lists and entering object numbers.

Helpful Hint

Pressing the LIST key on the hand control will access all objects in the database that have common names or types. Each list is broken down into the following categories: Named Stars, Named Object, Double Stars, Variable Stars, Asterisms and CCD Objects. Selecting any one of these catalogs will display a numeric-alphabetical listing of the objects under that list. Pressing the Up and Down keys (10) allows you to scroll through the catalog to the desired object.

When scrolling through a long list of objects, holding down either the Up or Down key will allow you to scroll through the catalog at a rapid speed.

Pressing any of the other catalog keys (M, CALD, NGC, or STAR) will display a blinking cursor below the name of the catalog chosen. Use the numeric key pad to enter the number of any object within these standardized catalogs. For example, to find the Orion Nebula, press the "M" key and enter "042".

Slewing to an Object

Once the desired object is displayed on the hand control screen, choose from the following options:

- **Press the INFO Key**. This will give you useful information about the selected object such as R.A. and declination, magnitude size and text information for many of the most popular objects.
- Press the ENTER Key. This will automatically slew the telescope to the coordinates of the object.

Caution: Never slew the telescope when someone is looking into the eyepiece. The telescope can move at fast slew speeds and may hit an observer in the eye.

If you slew to an object that is below the horizon, NexStar will notify you by displaying a message reminding you that you have selected an object outside of your slew limits (see Slew Limits in the Utility Features section of the manual). Press UNDO to go back and select a new object. Press ENTER to ignore the message and continue the slew.

Object information can be obtained without having to do a star alignment. After the telescope is powered on, pressing any of the catalog keys allows you to scroll through object lists or enter catalog numbers and view the information about the object as described above.

Finding Planets

The NexStar can located all 8 of our solar systems planets plus the Moon. However, the hand control will only display the solar system objects that are above the horizon (or within its slew limits). To locate the planets, press the PLANET key on the hand control. The hand control will display all solar system objects that are above the horizon:

- Use the **Up and Down** keys to select the planet that you wish to observe.
- Press INFO to access information on the displayed planet.
- Press ENTER to slew to the displayed planet.

Tour Mode

The NexStar includes a tour feature which automatically allows the user to choose from a list of interesting objects based on the date and time in which you are observing. The automatic tour will display only those objects that are within your set filter limits (see *Filter Limits* in the *Setup Procedures* section of the manual). To activate the Tour mode, press the TOUR key (6) on the hand control. The NexStar will display the best objects to observe that are currently in the sky.

- To see information and data about the displayed object, press the INFO key.
- To slew to the object displayed, press ENTER.
- To see the next tour object, press the Up key.

Direction Buttons

The NexStar has four direction buttons (3) in the center of the hand control which control the telescope's motion in altitude (up and down) and azimuth (left and right). The telescope can be controlled at nine different speed rates.

Rate Button

Pressing the RATE key (11) allows you to instantly change the speed rate of the motors from high speed slew rate to precise guiding rate or anywhere in between. Each rate corresponds to a number on the hand controller key pad. The number 9 is the fastest rate (3° per second, depending on power source) and is used for slewing between objects and locating alignment stars. The number 1 on the hand control is the slowest rate (.5x sidereal) and can be used for accurate centering of objects in the eyepiece and photographic guiding. To change the speed rate of the motors:

- Press the RATE key on the hand control. The LCD will display the current speed rate.
- Press the number on the hand control that corresponds to the desired speed. The number will appear in the upper-right corner of the LCD display to indicate that the rate has been changed.

The hand control has a "double button" feature that allows you to instantly speed up the motors without having to choose a speed rate. To use this feature, simply press the arrow button that corresponds to the direction that you want to move the telescope. While holding that button down, press the opposite directional button. This will increase the slew rate to the maximum slew rate.

When pressing the Up and Down arrow buttons in the slower slew rates (6 and lower) the motors will move the telescope in the opposite direction than the faster slew rates (7 thru 9). This is done so that an object will move in the appropriate direction when looking into the eyepiece (i.e. pressing the Up arrow button will move the star up in the field of view of the eyepiece). However, if any of the slower slew rates (rate 6 and below) are used to center an object in the finderscope, you may need to press the opposite directional button to make the telescope move in the correct direction.

$1 = .5x^{*}$	6 = 64x
2 = 1x (sidereal)*	$7 = .5^{\circ}/sec$
3 = 4x	$8 = 2^{\circ}/sec$
4 = 8x	$9 = 3^{\circ}/sec$
5 = 16x	
Nine available slew speeds	

*Rate 1 and 2 are photographic guide rates and are meant to be used when the telescope is set up on a wedge in equatorial mode. These rates can be used while set up in altazimuth, however the actual speed rate may differ slightly.

Setup Procedures

The NexStar contains many user defined setup functions designed to give the user control over the telescope's many advanced features. All of the setup and utility features can be accessed by pressing the MENU key and scrolling through the options:

- *Tracking Mode* This allows you to change the way the telescope tracks depending on the type of mount being used to support the telescope. The NexStar has three different tracking modes:
 - Alt-Az This is the default tracking rate and is used when the telescope is placed on a flat surface or tripod without the use of an equatorial wedge. The telescope must be aligned with two stars before it can track in altazimuth (Alt-Az).
 - **EQ North** Used to track the sky when the telescope is polar aligned using an equatorial wedge in the Northern Hemisphere.
 - **EQ South** Used to track the sky when the telescope is polar aligned using an equatorial wedge in the Southern Hemisphere.
 - **Off** When using the telescope for terrestrial (land) observation, the tracking can be turned off so that the telescope never moves.
- *Tracking Rate* In addition to being able to move the telescope with the hand control buttons, the NexStar will continually track a celestial object as it moves across the night sky. The tracking rate can be changed depending on what type of object is being observed:
 - **Sidereal** This rate compensates for the rotation of the Earth by moving the telescope at the same rate as the rotation of the Earth, but in the opposite direction. When the telescope is polar aligned, this can be accomplished by moving the telescope in right ascension only. When mounted in Alt-Az mode, the telescope must make corrections in both R.A. and declination.
 - Lunar Used for tracking the moon when observing the lunar landscape.
 - Solar Used for tracking the Sun when solar observing.

View Time-Site - Displays the current time and longitude/latitude downloaded from the GPS receiver. It will also display other relevant time-site information like time zone, daylight saving and local sidereal time. Local sidereal time (LST) is useful for knowing the right ascension of celestial objects that are located on the meridian at that time. *View Time-Site* will always display the last saved time and location entered while it is linking with the GPS. Once current information has been received, it will update the displayed information. If GPS is switched off, the hand control will only display the last saved time and location.

User Defined Objects	- The NexStar can store up to 400 different user defined objects in its memory. The objects can be daytime land objects or an interesting celestial object that you discover that is not included in the regular database. There are several ways to save an object to memory depending on what type of object it is:
Save Sky Object:	The NexStar stores celestial objects to its database by saving its right ascension and declination in the sky. This way the same object can be found each time the telescope is aligned. Once a desired object is centered in the eyepiece, simply scroll to the "Save Sky Obj" command and press ENTER. The display will ask you to enter a number between 1-200 to identify the object. Press ENTER again to save this object to the database.
Save Land Object:	The NexStar can also be used as a spotting scope on terrestrial objects. Fixed land objects can be stored by saving their altitude and azimuth relative to the location of the telescope at

	the time of observing. Since these objects are relative to the location of the telescope, they are only valid for that exact location. To save land objects, once again center the desired object in the eyepiece. Scroll down to the "Save Land Obj" command and press ENTER. The display will ask you to enter a number between 1-200 to identify the object. Press ENTER again to save this object to the database.
Enter R.A Dec:	You can also store a specific set of coordinates for an object just by entering the R.A. and declination for that object. Scroll to the "Enter RA-DEC " command and press ENTER. The display will then ask you to enter first the R.A. and then the declination of the desired object.
GoTo Object:	To go to any of the user defined objects stored in the database, scroll down to either GoTo Sky Obj or Goto Land Obj and enter the number of the object you wish to select and press ENTER. NexStar will automatically retrieve and display the coordinates before slewing to the object.

To replace the contents of any of the user defined objects, simply save a new object using one of the existing identification numbers; NexStar will replace the previous user defined object with the current one.

Get RA/DEC - Displays the right ascension and declination for the current position of the telescope.

Goto R.A/Dec - Allows you to input a specific R.A. and declination and slew to it.

Helpful Hint To store a set of coordinates (R.A./Dec) permanently into the NexStar database, save it as a *User Defined Object* as described above.

Scope Setup Features

Setup Time-Site - Allows the user to customize the NexStar display by changing time and location parameters (such as time zone and daylight savings).

Anti-backlash - - All mechanical gears have a certain amount of backlash or play between the gears. This play is evident by how long it takes for a star to move in the eyepiece when the hand control arrow buttons are pressed (especially when changing directions). The NexStar's anti-backlash features allows the user to compensate for backlash by inputting a value which quickly rewinds the motors just enough to eliminate the play between gears. The amount of compensation needed depends on the slewing rate selected; the slower the slewing rate the longer it will take for the star to appear to move in the eyepiece. There are two values for each axis, positive and negative. Positive is the amount of compensation applied when you press the button, in order to get the gears moving quickly without a long pause. Negative is the amount of compensation applied when you release the button, winding the motors back in the other direction to resume tracking. You will need to experiment with different values (from 0-99); a value between 20 and 50 is usually best for most visual observing, whereas a higher value may be necessary for photographic guiding.

To set the anti-backlash value, scroll down to the *anti-backlash* option and press ENTER. While viewing an object in the eyepiece, observe the responsiveness of each of the four arrow buttons. Note which directions you see a pause in the star movement after the button has been pressed. Working one axis at a time, adjust the backlash settings high enough to cause immediate movement without resulting in a pronounced jump when pressing or releasing the button. Now, enter the same values for both positive and negative directions. If you notice a jump when releasing the button, but setting the values lower results in a pause when pressing the button, go with the higher value for positive, but use a lower value for negative. NexStar will remember these values and use them each time it is turned on until they are changed.

Slew Limits – Sets the limits in altitude that the telescope can slew without displaying a warning message. By default the slew limits are set to 0° to 90° and will only display a warning message if an object is below the horizon. However, the slew limits can be customized depending on your needs. For example, if you have certain photographic accessories attached to your telescope preventing it from pointing straight-up, you can set the maximum altitude limit to read 80° , thus preventing the telescope from pointing to any objects that are greater than 80° in altitude without warning.

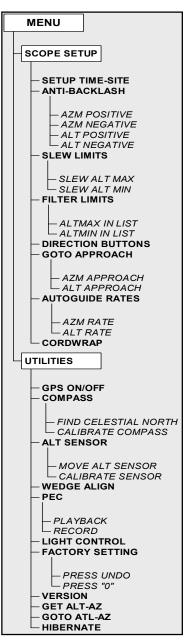
Filter Limits – When an alignment is complete, the NexStar automatically knows which celestial objects are above the horizon. As a result, when scrolling through the database lists (or selecting the Tour function), the NexStar hand control will display only those objects that are known to be above the horizon when you are observing. You can customize the object database by selecting altitude limits that are appropriate for your location and situation. For example, if you are observing from a mountainous location where the horizon is partially obscured, you can set your minimum altitude limit to read $+20^{\circ}$. This will make sure that the hand control only displays objects that are higher in altitude than 20° . If you manually enter an object that is below the horizon using the numeric keypad, the hand control will display a warning message before slewing to the object.

Observing Tip! If you want to explore the entire object database, set the maximum altitude limit to 90° and the minimum limit to –90°. This will display every object in the database lists regardless of whether it is visible in the sky from your location.

Direction Buttons –The direction a star moves in the eyepiece varies depending on the accessories being used. This can create confusion when guiding on a star using an off-axis guider versus a straight through guide scope. To compensate for this, the direction of the drive control keys can be changed. To reverse the button logic of the hand control, press the MENU button and select *Direction Buttons* from the Utilities menu. Use the Up/Down arrow keys (10) to select either the azimuth (left and right) or altitude (up and down) button direction and press ENTER. Pressing ENTER again will reverse the direction of the hand control buttons from their current state. Direction Buttons will only change the eyepiece rates (rate 1-6) and will not affect the slew rates (rate 7-9).

Goto Approach - lets the user define the direction that the telescope will approach when slewing to an object. This allows the user the ability to minimize the effects of backlash For example, if your telescope is back heavy from using heavy optical or photographic accessories attached to the back, you would want to set your altitude approach to the negative direction. This would ensure that the telescope always approaches an object from the opposite direction as the load pulling on the scope. Similarly, if using the NexStar polar aligned on a wedge, you would want to set the azimuth approach to the direction that allows the scope to compensate for different load level on the motors and gears when pointing in different parts of the sky.

To change the goto approach direction, simply choose *Goto Approach* from the *Scope Setup* menu, select either Altitude or Azimuth approach, choose positive or negative and press Enter.


Autoguide Rate – Allows the user to set an autoguide rate as a percentage of sidereal rate. This is helpful when calibrating your telescope to a CCD autoguider for long exposure photography.

Cordwrap - - Cord wrap safeguards against the telescope slewing more than 360° in azimuth and wrapping accessory cables around the base of the telescope. This is useful when autoguiding or any time that cables are plugged into the base of the telescope. By default, the cord wrap feature is turned off when the telescope is aligned in altazimuth and turn on when aligned on a wedge.

Utility Features

Scrolling through the MENU (9) options will also provide access to several advanced utility functions within the NexStar such as; Compass Calibration, Periodic Error Correction, Hibernate as well as many others.

GPS On/Off - Allows you to turn off the GPS module. When aligning the telescope using AutoAlign, the NexStar still receives information, such as current time, from the GPS. If you want to use the NexStar database to find the coordinates of a celestial object for a future date you would need to turn the GPS module off in order to manually enter a date and time other than the present.

Compass – These compass features allow you to automatically move your telescope to the north position and calibrate north for increased accuracy of future alignments.

- Find Celestial North Automatically finds and moves the telescope to its true north position.
- **Calibrate Compass** After completing a successful GPS Alignment, use the Calibrate Compass feature to compensate for magnetic declination errors and local anomalies. This will greatly improve the accuracy of your initial star alignments the next time you align your telescope.

Alt Sensor - Here you have leveling features that allows you to automatically move your telescope to its level position and calibrate level for increased accuracy.

- Move Alt Sensor Automatically finds and moves the telescope to its level position.
- **Calibrate Sensor** After completing a successful Altazimuth alignment this utility function calibrates the level inside the GPS accessory with the actual position of the optical tube. This level position is then stored and used to improve the accuracy of future Altazimuth alignments.

Wedge Align – The NexStar has two equatorial wedge alignment modes (one for the northern hemisphere and one for the southern) that will help you polar align your telescope when using an optional equatorial wedge. See the Astronomy Basics section of the manual for more information on the Wedge Align feature.

Periodic Error Correction (PEC) - PEC is designed to improve photographic quality by reducing the amplitude of the worm gear errors and improving the tracking accuracy of the drive. This feature is for advanced astrophotography and is used when your telescope is polar aligned with the optional equatorial wedge. For more information on using PEC, see the section on "Celestial Photography".

Light Control – This feature allows you to turn off both the red key pad light and LCD display for daytime use to conserve power and to help preserve your night vision.

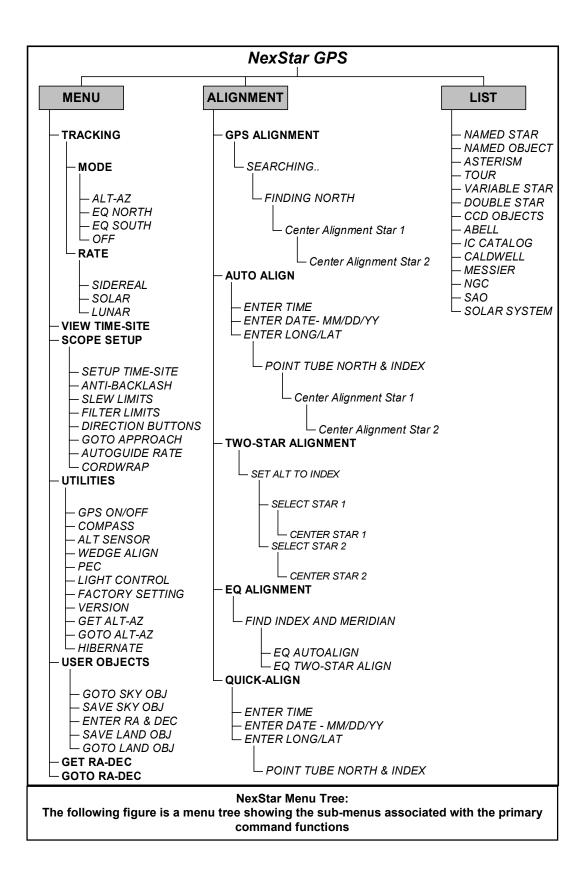
Factory Setting – Returns the NexStar hand control to its original factory setting. Parameters such as backlash compensation values, initial date and time, longitude/latitude along with slew and filter limits will be reset. However, stored parameters such as PEC and user defined objects will remain saved even when *Factory Settings* is selected. The hand control will ask you to press the "0" key before returning to the factory default setting.

Version - Selecting this option will allow you to see the current version number of the hand control, motor control and GPS software. The first set of numbers indicate the hand control software version. For the motor control, the hand control will display two sets of numbers; the first numbers are for azimuth and the second set are for altitude. On the second line of the LCD, the GPS and serial bus versions are displayed.

Get Alt-Az - Displays the relative altitude and azimuth for the current position of the telescope.

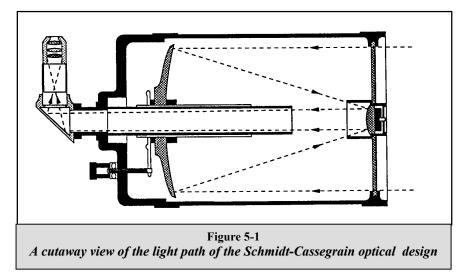
Goto Alt-Az - Allows you to enter a specific altitude and azimuth position and slew to it.

Hibernate - Hibernate allows the NexStar to be completely powered down and still retain its alignment when turned back on. This not only saves power, but is ideal for those that have their telescopes permanently mounted or leave their telescope in one location for long periods of time. To place your telescope in Hibernate mode:


- 1. Select Hibernate from the Utility Menu.
- 2. Move the telescope to a desire position and press ENTER.
- 3. Power off the telescope. Remember to never move your telescope manually while in Hibernate mode.

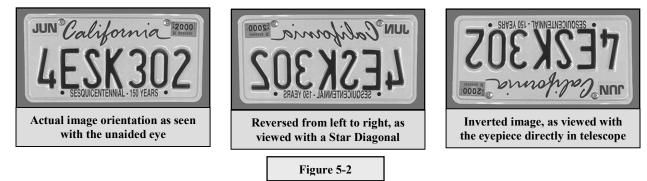
Once the telescope is powered on again the display will read Wake Up. After pressing Enter you have the option of

scrolling through the time/site information to confirm the current setting. Press ENTER to wake up the telescope.


Pressing UNDO at the Wake Up screen allows you to explore many of the features of the hand control without waking the telescope up from hibernate mode. To wake up the telescope after UNDO has been pressed, select Hibernate from the Utility menu and press ENTER. Do not use the direction buttons to move the telescope while in hibernate mode.

Helpful Hint

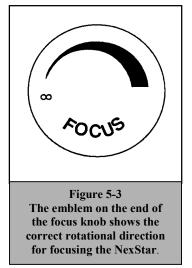
A telescope is an instrument that collects and focuses light. The nature of the optical design determines how the light is focused. Some telescopes, known as refractors, use lenses. Other telescopes, known as reflectors, use mirrors. The Schmidt-Cassegrain optical system (or Schmidt-Cass for short) uses a combination of mirrors and lenses and is referred to as a compound or catadioptric telescope. This unique design offers large-diameter optics while maintaining very short tube lengths, making them extremely portable. The Schmidt-Cassegrain system consists of a zero power corrector plate, a spherical primary mirror, and a secondary mirror. Once light rays enter the optical system, they travel the length of the optical tube three times.



The optics of the NexStar have Starbright coatings - enhanced multi-layer coatings on the primary and secondary mirrors for increased reflectivity and a fully coated corrector for the finest anti-reflection characteristics.

Inside the optical tube, a black tube extends out from the center hole in the primary mirror. This is the primary baffle tube and it prevents stray light from passing through to the eyepiece or camera.

Image Orientation


The image orientation changes depending on how the eyepiece is inserted into the telescope. When using the star diagonal, the image is right-side-up, but reversed from left-to-right (i.e., mirror image). If inserting the eyepiece directly into the visual back (i.e., without the star diagonal), the image is upside-down and reversed from left-to-right (i.e., inverted). This is normal for the Schmidt-Cassegrain design.

Focusing

The NexStar's focusing mechanism controls the primary mirror which is mounted on a ring that slides back and forth on the primary baffle tube. The focusing knob, which moves the primary mirror, is on the rear cell of the telescope just below the star diagonal and eyepiece. Turn the focusing knob until the image is sharp. If the knob will not turn, it has reached the end of its travel on the focusing mechanism. Turn the knob in the opposite direction until the image is sharp. Once an image is in focus, turn the knob clockwise to focus on a closer object and counterclockwise for a more distant object. A single turn of the focusing knob moves the primary mirror only slightly. Therefore, it will take many turns (about 30) to go from close focus (approximately 60 feet) to infinity.

For astronomical viewing, out of focus star images are very diffuse, making them difficult to see. If you turn the focus knob too quickly, you can go right through focus without seeing the image. To avoid this problem, your first astronomical target should be a bright object (like the Moon or a planet) so that the image is visible even when out of focus. Critical focusing is best accomplished when the focusing knob is turned in such a manner that the mirror moves against the pull of gravity. In doing so, any mirror shift is minimized. For astronomical observing, both visually and photographically, this is done by turning the focus knob counterclockwise.

Calculating Magnification

You can change the power of your telescope just by changing the evepiece (ocular). To determine the magnification of your telescope, simply divide the focal length of the telescope by the focal length of the eyepiece used. In equation format, the formula looks like this:

Magnification =

Focal Length of Telescope (mm) Focal Length of Eyepiece (mm)

Let's say, for example, you are using the 40mm Plossl eyepiece. To determine the magnification you simply divide the focal length of your telescope (the NexStar 11 for example has a focal length of 2800mm) by the focal length of the evepiece, 40mm. Dividing 2800 by 40 yields a magnification of 70 power.

Although the power is variable, each instrument under average skies has a limit to the highest useful magnification. The general rule is that 60 power can be used for every inch of aperture. For example, the NexStar 11 GPS is 11 inches in diameter. Multiplying 11 by 60 gives a maximum useful magnification of 660 power. Although this is the maximum useful magnification, most observing is done in the range of 20 to 35 power for every inch of aperture which is 220 to 385 times for the NexStar 11 telescope.

Determining Field of View

Determining the field of view is important if you want to get an idea of the angular size of the object you are observing. To calculate the actual field of view, divide the apparent field of the eyepiece (supplied by the eyepiece manufacturer) by the magnification. In equation format, the formula looks like this:

Apparent Field of Eyepiece

Magnification

As you can see, before determining the field of view, you must calculate the magnification. Using the example in the previous section, we can determine the field of view using the same 40mm eyepiece. The 40mm Plossl eyepiece has an apparent field of view of 46°. Divide the 46° by the magnification, which is 70 power. This yields an actual field of .66°, or two-thirds of a full degree.

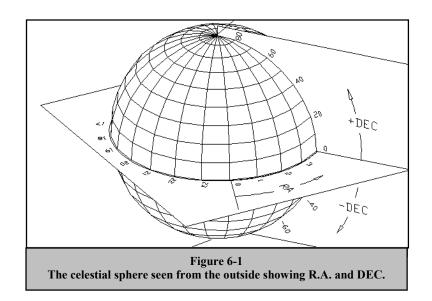
To convert degrees to feet at 1,000 yards, which is more useful for terrestrial observing, simply multiply by 52.5. Continuing with our example, multiply the angular field .66° by 52.5. This produces a linear field width of 34.7 feet at a distance of one

thousand yards. The apparent field of each eyepiece that Celestron manufactures is found in the Celestron Accessory Catalog (#93685).

General Observing Hints

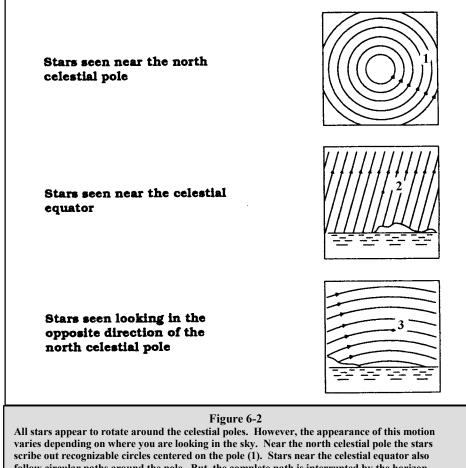
When working with any optical instrument, there are a few things to remember to ensure you get the best possible image.

- Never look through window glass. Glass found in household windows is optically imperfect, and as a result, may vary in thickness from one part of a window to the next. This inconsistency can and will affect the ability to focus your telescope. In most cases you will not be able to achieve a truly sharp image, while in some cases, you may actually see a double image.
- Never look across or over objects that are producing heat waves. This includes asphalt parking lots on hot summer days or building rooftops.
- Hazy skies, fog, and mist can also make it difficult to focus when viewing terrestrially. The amount of detail seen under these conditions is greatly reduced. Also, when photographing under these conditions, the processed film may come out a little grainier than normal with lower contrast and underexposed.
- If you wear corrective lenses (specifically glasses), you may want to remove them when observing with an eyepiece attached to the telescope. When using a camera, however, you should always wear corrective lenses to ensure the sharpest possible focus. If you have astigmatism, corrective lenses must be worn at all times.


Up to this point, this manual covered the assembly and basic operation of your NexStar telescope. However, to understand your telescope more thoroughly, you need to know a little about the night sky. This section deals with observational astronomy in general and includes information on the night sky and polar alignment.

The Celestial Coordinate System

To help find objects in the sky, astronomers use a celestial coordinate system that is similar to our geographical coordinate system here on Earth. The celestial coordinate system has poles, lines of longitude and latitude, and an equator. For the most part, these remain fixed against the background stars.


The celestial equator runs 360 degrees around the Earth and separates the northern celestial hemisphere from the southern. Like the Earth's equator, it bears a reading of zero degrees. On Earth this would be latitude. However, in the sky this is referred to as declination, or DEC for short. Lines of declination are named for their angular distance above and below the celestial equator. The lines are broken down into degrees, minutes of arc, and seconds of arc. Declination readings south of the equator carry a minus sign (-) in front of the coordinate and those north of the celestial equator are either blank (i.e., no designation) or preceded by a plus sign (+).

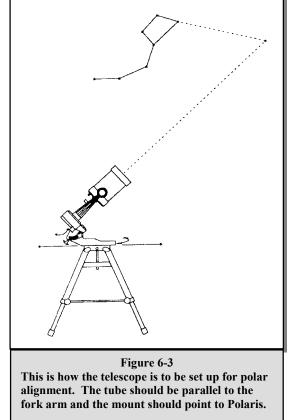
The celestial equivalent of longitude is called Right Ascension, or R.A. for short. Like the Earth's lines of longitude, they run from pole to pole and are evenly spaced 15 degrees apart. Although the longitude lines are separated by an angular distance, they are also a measure of time. Each line of longitude is one hour apart from the next. Since the Earth rotates once every 24 hours, there are 24 lines total. As a result, the R.A. coordinates are marked off in units of time. It begins with an arbitrary point in the constellation of Pisces designated as 0 hours, 0 minutes, 0 seconds. All other points are designated by how far (i.e., how long) they lag behind this coordinate after it passes overhead moving toward the west.

Motion of the Stars

The daily motion of the Sun across the sky is familiar to even the most casual observer. This daily trek is not the Sun moving as early astronomers thought, but the result of the Earth's rotation. The Earth's rotation also causes the stars to do the same, scribing out a large circle as the Earth completes one rotation. The size of the circular path a star follows depends on where it is in the sky. Stars near the celestial equator form the largest circles rising in the east and setting in the west. Moving toward the north celestial pole, the point around which the stars in the northern hemisphere appear to rotate, these circles become smaller. Stars in the mid-celestial latitudes rise in the northeast and set in the northwest. Stars at high celestial latitudes are always above the horizon, and are said to be circumpolar because they never rise and never set. You will never see the stars complete one circle because the sunlight during the day washes out the starlight. However, part of this circular motion of stars in this region of the sky can be seen by setting up a camera on a tripod and opening the shutter for a couple hours. The processed film will reveal semicircles that revolve around the pole. (This description of stellar motions also applies to the southern hemisphere except all stars south of the celestial equator move around the south celestial pole.)

follow circular paths around the pole. But, the complete path is interrupted by the horizon. These appear to rise in the east and set in the west (2). Looking toward the opposite pole, stars curve or arc in the opposite direction scribing a circle around the opposite pole (3).

Polar Alignment (with optional Wedge)

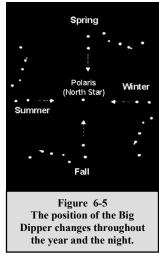

Even though the NexStar can precisely track a celestial object while in the Alt-Az position, it is still necessary to align the

polar axis of the telescope (the fork arm) to the Earth's axis of rotation in order to do long exposure astrophotography. To do an accurate polar alignment, the NexStar requires an optional equatorial wedge between the telescope and the tripod. This allows the telescope's tracking motors to rotate the telescope around the celestial pole, the same way as the stars. Without the equatorial wedge, you would notice the stars in the eyepiece would slowly rotate around the center of the field of view. Although this gradual rotation would go unnoticed when viewing with an eyepiece, it would be very noticeable on film.

Polar alignment is the process by which the telescope's axis of rotation (called the polar axis) is aligned (made parallel) with the Earth's axis of rotation. Once aligned, a telescope with a clock drive will track the stars as they move across the sky. The result is that objects observed through the telescope appear stationary (i.e., they will not drift out of the field of view). If not using the clock drive, all objects in the sky (day or night) will slowly drift out of the field. This motion is caused by the Earth's rotation.

Wedge Align

The NexStar has two equatorial wedge alignment modes (one for the northern hemisphere and one for the southern) that will help you polar align your telescope when using an optional equatorial wedge. After performing either an EQ AutoAlign or Two-Star Alignment, Wedge Align will slew the telescope to where Polaris should be. By using the tripod and wedge to center Polaris in the eyepiece, the fork arm (polar axis) will then be pointing towards the actual North Celestial Pole. Once Wedge Align is complete, you must re-align your telescope using either the EQ Two-Star or EQ AutoAlign methods. Follow these steps to Wedge Align the NexStar in the Northern Hemisphere:


- 1. With the telescope set up on an optional equatorial wedge and roughly positioned towards Polaris, align the NexStar using either the EQ AutoAlign or Two-Star Alignment method.
- 2. Select *Wedge Align* from the Utilities menu and press Enter.

Based on your current alignment, the NexStar will slew to where it thinks Polaris should be. Use the tripod and wedge adjustments to place Polaris in the center of the eyepiece. Do not use the direction buttons to position Polaris. Once Polaris is centered in the eyepiece press ENTER; the polar axis should then be pointed towards the North Celestial Pole.

Finding the North Celestial Pole

In each hemisphere, there is a point in the sky around which all the other stars appear to rotate. These points are called the celestial poles and are named for the hemisphere in which they reside. For example, in the northern hemisphere all stars move around the north celestial pole. When the telescope's polar axis is pointed at the celestial pole, it is parallel to the Earth's rotational axis.

Many methods of polar alignment require that you know how to find the celestial pole by identifying stars in the area. For those in the northern hemisphere, finding the celestial pole is not too difficult. Fortunately, we have a naked eye star less than a degree away. This star, Polaris, is the end star in the handle of the Little Dipper. Since the Little Dipper (technically called Ursa Minor) is not one of the brightest constellations in the sky, it may be difficult to locate from urban areas. If this is the case, use the two end stars in the bowl of the Big Dipper (the pointer stars). Draw an imaginary line through them toward the

Little Dipper. They point to Polaris (see Figure 6-6). The position of the Big Dipper changes during the year and throughout the course of the night (see Figure 6-5). When the Big Dipper is low in the sky (i.e., near the horizon), it may be difficult to locate. During these times, look for Cassiopeia (see Figure 6-6). Observers in the southern hemisphere are not as fortunate as those in the northern hemisphere. The stars around the south celestial pole are not nearly as bright as those around the north. The closest star that is relatively bright is Sigma Octantis. This star is just within naked eye limit (magnitude 5.5) and lies about 59 arc minutes from the pole.

Definition

The north celestial pole is the point in the northern hemisphere around which all stars appear to rotate. The counterpart in the southern hemisphere is referred to as the south celestial pole.

Declination Drift Method of Polar Alignment

This method of polar alignment allows you to get the most accurate alignment on the celestial pole and is required if you want to do long exposure deep-sky astrophotography through the telescope. The declination drift method requires that you monitor the drift of selected stars. The drift of each star tells you how far away the polar axis is pointing from the true celestial pole and in what direction. Although declination drift is simple and straight-forward, it requires a great deal of time and patience to complete when first attempted. The declination drift method should be done after any one of the previously mentioned methods has been completed.

To perform the declination drift method you need to choose two bright stars. One should be near the eastern horizon and one due south near the meridian. Both stars should be near the celestial equator (i.e., 0° declination). You will monitor the drift of each star one at a time and in declination only. While monitoring a star on the meridian, any misalignment in the east-west direction is revealed. While monitoring a star near the east/west horizon, any misalignment in the north-south direction is revealed. It is helpful to have an illuminated reticle eyepiece to help you recognize any drift. For very close alignment, a Barlow lens is also recommended since it increases the magnification and reveals any drift faster. When looking due south, insert the diagonal so the eyepiece points straight up. Insert the cross hair eyepiece and align the cross hairs so that one is parallel to the declination axis and the other is parallel to the right ascension axis. Move your telescope manually in R.A. and DEC to check parallelism.

First, choose your star near where the celestial equator and the meridian meet. The star should be approximately within 1/2 an hour of the meridian and within five degrees of the celestial equator. Center the star in the field of your telescope and monitor the drift in declination.

- If the star drifts south, the polar axis is too far east.
- If the star drifts north, the polar axis is too far west.

Make the appropriate adjustments to the polar axis to eliminate any drift. Once you have eliminated all the drift, move to the star near the eastern horizon. The star should be 20 degrees above the horizon and within five degrees of the celestial equator.

- If the star drifts south, the polar axis is too low.
- If the star drifts north, the polar axis is too high.

Again, make the appropriate adjustments to the polar axis to eliminate any drift. Unfortunately, the latter adjustments interact with the prior adjustments ever so slightly. So, repeat the process again to improve the accuracy checking both axes for minimal drift. Once the drift has been eliminated, the telescope is very accurately aligned. You can now do prime focus deep-sky astrophotography for long periods.

NOTE: If the eastern horizon is blocked, you may choose a star near the western horizon, but you must reverse the polar high/low error directions. Also, if using this method in the southern hemisphere, the direction of drift is reversed for both R.A. and DEC.

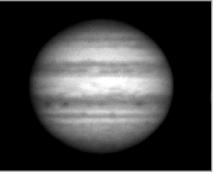
With your telescope set up, you are ready to use it for observing. This section covers visual observing hints for both solar system and deep sky objects as well as general observing conditions which will affect your ability to observe.

Observing the Moon

Often, it is tempting to look at the Moon when it is full. At this time, the face we see is fully illuminated and its light can be overpowering. In addition, little or no contrast can be seen during this phase.

One of the best times to observe the Moon is during its partial phases (around the time of first or third quarter). Long shadows reveal a great amount of detail on the lunar surface. At low power you will be able to see most of the lunar disk at one time. The optional Reducer/Corrector lens allows for breath-taking views of the entire lunar disk when used with a low power eyepiece. Change to higher power (magnification) to focus in on a smaller area. Choose the *lunar* tracking rate from the NexStar's MENU tracking rate options to keep the moon centered in the eyepiece even at high magnifications.

Lunar Observing Hints


To increase contrast and bring out detail on the lunar surface, use filters. A yellow filter works well at improving contrast while a neutral density or polarizing filter will reduce overall surface brightness and glare.

Observing the Planets

Other fascinating targets include the five naked eye planets. You can see Venus go through its lunar-like phases. Mars can reveal a host of surface detail and one, if not both, of its polar caps. You will be able to see the cloud belts of Jupiter and the great Red Spot (if it is visible at the time you are observing). In addition, you will also be able to see the moons of Jupiter as they orbit the giant planet. Saturn, with its beautiful rings, is easily visible at moderate power.

Planetary Observing Hints

• Remember that atmospheric conditions are usually the limiting factor on how much planetary detail will be visible. So, avoid observing the planets when they are low on the barigen or when they are directly over a course of radiating

horizon or when they are directly over a source of radiating heat, such as a rooftop or chimney. See the "Seeing Conditions" section later in this section.

• To increase contrast and bring out detail on the planetary surface, try using Celestron eyepiece filters.

Observing the Sun

Although overlooked by many amateur astronomers, solar observation is both rewarding and fun. However, because the Sun is so bright, special precautions must be taken when observing our star so as not to damage your eyes or your telescope.

Never project an image of the Sun through the telescope. Because of the folded optical design, tremendous heat buildup will result inside the optical tube. This can damage the telescope and/or any accessories attached to the telescope.

For safe solar viewing, use a solar filter that reduces the intensity of the Sun's light, making it safe to view. With a filter you can see sunspots as they move across the solar disk and faculae, which are bright patches seen near the Sun's edge.

Solar Observing Hints

- The best time to observe the Sun is in the early morning or late afternoon when the air is cooler.
- To center the Sun without looking into the eyepiece, watch the shadow of the telescope tube until it forms a circular shadow.
- To ensure accurate tracking, be sure to select the solar tracking rate.

Observing Deep Sky Objects

Deep-sky objects are simply those objects outside the boundaries of our solar system. They include star clusters, planetary nebulae, diffuse nebulae, double stars and other galaxies outside our own Milky Way. Most deep-sky objects have a large angular size. Therefore, low-to-moderate power is all you need to see them. Visually, they are too faint to reveal any of the color seen in long exposure photographs. Instead, they appear black and white. And, because of their low surface brightness, they should be observed from a dark-sky location. Light pollution around large urban areas washes out most nebulae making them difficult, if not impossible, to observe. Light Pollution Reduction filters help reduce the background sky brightness, thus increasing contrast.

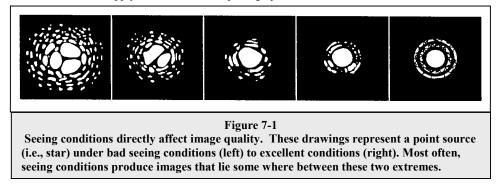
Seeing Conditions

Viewing conditions affect what you can see through your telescope during an observing session. Conditions include transparency, sky illumination, and seeing. Understanding viewing conditions and the effect they have on observing will help you get the most out of your telescope.

Transparency

Transparency is the clarity of the atmosphere which is affected by clouds, moisture, and other airborne particles. Thick cumulus clouds are completely opaque while cirrus can be thin, allowing the light from the brightest stars through. Hazy skies absorb more light than clear skies making fainter objects harder to see and reducing contrast on brighter objects. Aerosols ejected into the upper atmosphere from volcanic eruptions also affect transparency. Ideal conditions are when the night sky is inky black.

Sky Illumination


General sky brightening caused by the Moon, aurorae, natural airglow, and light pollution greatly affect transparency. While not a problem for the brighter stars and planets, bright skies reduce the contrast of extended nebulae making them difficult, if not impossible, to see. To maximize your observing, limit deep sky viewing to moonless nights far from the light polluted skies found around major urban areas. LPR filters enhance deep sky viewing from light

polluted areas by blocking unwanted light while transmitting light from certain deep sky objects. You can, on the other hand, observe planets and stars from light polluted areas or when the Moon is out.

Seeing

Seeing conditions refers to the stability of the atmosphere and directly affects the amount of fine detail seen in extended objects. The air in our atmosphere acts as a lens which bends and distorts incoming light rays. The amount of bending depends on air density. Varying temperature layers have different densities and, therefore, bend light differently. Light rays from the same object arrive slightly displaced creating an imperfect or smeared image. These atmospheric disturbances vary from time-to-time and place-to-place. The size of the air parcels compared to your aperture determines the "seeing" quality. Under good seeing conditions, fine detail is visible on the brighter planets like Jupiter and Mars, and stars are pinpoint images. Under poor seeing conditions, images are blurred and stars appear as blobs.

The conditions described here apply to both visual and photographic observations.

After looking at the night sky for a while you may want to try photographing it. Several forms of celestial photography are possible with your telescope, including short exposure prime focus, eyepiece projection, long exposure deep sky, terrestrial and even CCD imaging. Each of these is discussed in moderate detail with enough information to get you started. Topics include the accessories required and some simple techniques. More information is available in some of the publications listed at the end of this manual.

In addition to the specific accessories required for each type of celestial photography, there is the need for a camera but not just any camera. The camera does not have to have many of the features offered on today's state-of-the-art equipment. For example, you don't need auto focus capability or mirror lock up. Here are the mandatory features a camera needs for celestial photography. First, a "B" setting which allows for time exposures. This excludes point and shoot cameras and limits the selection to SLR cameras, the most common type of 35mm camera on the market today.

Second, the "B" or manual setting should NOT run off the battery. Many new electronic cameras use the battery to keep the shutter open during time exposures. Once the batteries are drained, usually after a few minutes, the shutter closes, whether you were finished with the exposure or not. Look for a camera that has a manual shutter when operating in the time exposure mode. Olympus, Nikon, Minolta, Pentax, Canon and others have made such camera bodies.

The camera must have interchangeable lenses so you can attach it to the telescope and so you can use a variety of lenses for piggyback photography. If you can't find a new camera, you can purchase a used camera body that is not 100-percent functional. The light meter, for example, does not have to be operational since you will be determining the exposure length manually.

You also need a cable release with a locking function to hold the shutter open while you do other things. Mechanical and air release models are available.

Short Exposure Prime Focus Photography

Short exposure prime focus photography is the best way to begin recording celestial objects. It is done with the camera attached to the telescope without an eyepiece or camera lens in place. To attach your camera you need the Celestron T-Adapter (#93633-A) and a T-Ring for your specific camera (i.e., Minolta, Nikon, Pentax, etc.). The T-Ring replaces the 35mm SLR camera's normal lens. Prime focus photography allows you to capture the majority of the lunar disk or solar disk. To attach your camera to your telescope.

- 1. Remove all visual accessories.
- 2. Thread the T-Ring onto the T-Adapter.
- 3. Mount your camera body onto the T-Ring the same as you would any other lens.
- 4. Thread the T-Adapter onto the back of the telescope while holding the camera in the desired orientation (either vertical or horizontal).

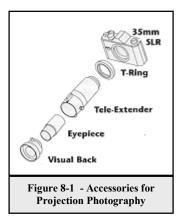
With your camera attached to the telescope, you are ready for prime focus photography. Start with an easy object like the Moon. Here's how to do it:

- 1. Load your camera with film that has a moderate-to-fast speed (i.e., ISO rating). Faster films are more desirable when the Moon is a crescent. When the Moon is near full, and at its brightest, slower films are more desirable. Here are some film recommendations:
- T-Max 100
- T-Max 400
- Any 100 to 400 ISO color slide film
- Fuji Super HG 400
- Ektar 25 or 100

- 2. Center the Moon in the field of your NexStar telescope.
- 3. Focus the telescope by turning the focus knob until the image is sharp.
- 4. Set the shutter speed to the appropriate setting (see table below).
- 5. Trip the shutter using a cable release.
- 6. Advance the film and repeat the process.

Lunar Phase	ISO 50	ISO 100	ISO 200	ISO 400
Crescent	1/2	1/4	1/8	1/15
Quarter	1/15	1/30	1/60	1/125
Full	1/30	1/60	1/125	1/250
Table 8-1 Above is a listing of recommended exposure times when photographing the Moon at the prime focus of your NexStar telescope.				

The exposure times listed in table 8-1 should be used as a starting point. Always make exposures that are longer and shorter than the recommended time. Also, take a few photos at each shutter speed. This will ensure that you will get a good photo.


- If using black and white film, try a yellow filter to reduce the light intensity and to increase contrast.
- Keep accurate records of your exposures. This information is useful if you want to repeat your results or if you want to submit some of your photos to various astronomy magazines for possible publication!
- This technique is also used for photographing the Sun with the proper solar filter.

Eyepiece Projection

This form of celestial photography is designed for objects with small angular sizes, primarily the Moon and planets. Planets, although physically quite large, appear small in angular size because of their great distances. Moderate to high magnification is, therefore, required to make the image large enough to see any detail. Unfortunately, the camera/telescope combination alone does not provide enough magnification to produce a usable image size on film. In order to get the image large enough, you must attach your camera to the telescope with the eyepiece in place. To do so, you need two additional accessories; a deluxe tele-extender (#93643), which attaches to the visual back, and a T-ring for your particular camera make (i.e., Minolta, Nikon, Pentax, etc.).

Because of the high magnifications during eyepiece projection, the field of view is quite small which makes it difficult to find and center objects. To make the job a little easier, align the finder as accurately as possible. This allows you to get the object in the telescope's field based on the finder's view alone.

Another problem introduced by the high magnification is vibration. Simply tripping the shutter — even with a cable release — produces enough vibration to smear the image. To get around this, use the camera's self-timer if the exposure time is less than one second — a common occurrence when photographing the Moon. For exposures over one second, use the "hat trick." This technique incorporates a hand-held black card placed over the aperture of the telescope to act as a shutter. The card prevents light from entering the telescope while the shutter is released. Once the shutter has been released and the vibration has diminished (a few seconds), move the black card out of the way to expose the film. After the exposure is complete, place the card over the front of the telescope and

close the shutter. Advance the film and you're ready for your next shot. Keep in mind that the card should be held a few inches in front of the telescope, and not touching it. It is easier if you use two people for this process; one to release the camera shutter and one to hold the card. Here's the process for making the exposure.

1. Find and center the desired target in the viewfinder of your camera.

- 2. Turn the focus knob until the image is as sharp as possible.
- 3. Place the black card over the front of the telescope.
- 4. Release the shutter using a cable release.
- 5. Wait for the vibration caused by releasing the shutter to diminish. Also, wait for a moment of good seeing.
- 6. Remove the black card from in front of the telescope for the duration of the exposure (see accompanying table).
- 7. Replace the black card over the front of the telescope.
- 8. Close the camera's shutter.

Advance the film and you are ready for your next exposure. Don't forget to take photos of varying duration and keep accurate records of what you have done. Record the date, telescope, exposure duration, eyepiece, f/ratio, film, and some comments on the seeing conditions.

The following table lists exposures for eyepiece projection with a 10mm eyepiece. All exposure times are listed in seconds or fractions of a second.

Planet	ISO 50	ISO 100	ISO 200	ISO 400
Moon	4	2	1	1/2
Mercury	16	8	4	2
Venus	1/2	1/4	1/8	1/15
Mars	16	8	4	2
Jupiter	8	4	2	1
Saturn	16	8	4	2
	Table 8-2 Recommended exposure time for photographing planets.			

The exposure times listed here should be used as a starting point. Always make exposures that are longer and shorter than the recommended time. Also, take a few photos at each shutter speed. This will ensure that you get a good photo. It is not uncommon to go through an entire roll of 36 exposures and have only one good shot.

NOTE: Don't expect to record more detail than you can see visually in the eyepiece at the time you are photographing.

Once you have mastered the technique, experiment with different films, different focal length eyepieces, and even different filters.

Long Exposure Prime Focus Photography

This is the last form of celestial photography to be attempted after others have been mastered. It is intended primarily for deep sky objects, that is objects outside our solar system which includes star clusters, nebulae, and galaxies. While it may seem that high magnification is required for these objects, just the opposite is true. Most of these objects cover large angular areas and fit nicely into the prime focus field of your telescope. The brightness of these objects, however, requires long exposure times and, as a result, are rather difficult.

There are several techniques for this type of photography, and the one chosen will determine the standard accessories needed. The best method for long exposure deep sky astrophotography is with an off-axis guider. This device allows you to photograph and guide through the telescope simultaneously. Celestron offers a very special and advanced off-axis guider, called the Radial Guider (#94176). In addition, you will need a T-Ring to attach your camera to the Radial Guider.

Other equipment needs include a guiding eyepiece. Unlike other forms of astrophotography which allows for fairly loose guiding, prime focus requires meticulous guiding for long periods. To accomplish this you need a guiding ocular with an illuminated reticle to monitor your guide star. For this purpose, Celestron offers the Micro Guide Eyepiece (#94171) Here is a brief summary of the technique.

- 1. Polar align the telescope using an optional equatorial wedge. To polar align the NexStar you must select EQ North Align (or EO South Align) from the alignment options. For more information on polar aligning, see the Polar Alignment section earlier in the manual.
- 2. Remove all visual accessories.
- 3. Thread the Radial Guider onto your telescope.
- 4. Thread the T-Ring onto the Radial Guider.
- 5. Mount your camera body onto the T-Ring the same as you would any other lens.
- 6. Set the shutter speed to the "B" setting.
- 7. Focus the telescope on a star.
- 8. Center your subject in the field of your camera.
- 9. Find a suitable guide star in the telescope field. This can be the most time consuming process.
- 10. Open the shutter using a cable release.
- 11. Monitor your guide star for the duration of the exposure using the buttons on the hand controller to make the needed corrections.
- 12. Close the camera's shutter.

Periodic Error Correction (PEC)

PEC for short, is a system that improves the tracking accuracy of the drive by reducing the number of user corrections needed to keep a guide star centered in the eyepiece. PEC is designed to improve photographic quality by reducing the amplitude of the worm errors. Using the PEC function is a three-step process. First, the NexStar needs to know the current position of its worm gear so that it has a reference when playing back the recorded error. Next, you must guide for at least 8 minutes during which time the system records the correction you make. (It takes the worm gear 8 minutes to make one complete revolution, hence the need to guide for 8 minutes). This "teaches" the PEC chip the characteristics of the worm. The periodic error of the worm gear drive will be stored in the PEC chip and used to correct periodic error. The last step is to play back the corrections you made during the recording phase. Keep in mind, this feature is for advanced astrophotography and still requires careful guiding since all telescope drives have some periodic error.

Using Periodic Error Correction

Once the telescope has been polar aligned using the *EQ North Align* (or *EQ South* for southern hemisphere) method, select *PEC* from the *Utilities* menu and press ENTER to begin recording your periodic error. Here's how to use the PEC function.

- 1. Find a bright star relatively close to the object you want to photograph.
- 2. Insert a high power eyepiece with illuminated cross hairs into your telescope. Orient the guiding eyepiece cross hairs so that one is parallel to the declination while the other is parallel to the R.A. axis.
- 3. Center the guide star on the illuminated cross hairs, focus the telescope, and study the periodic movement.
- 4. Before actually recording the periodic error, take a few minutes to practice guiding. Set the hand control slew rate to an appropriate guide rate (rate 1 = .5x, rate 2 = 1x) and practice centering the guide star in the cross hairs for several minutes. This will help you familiarize yourself with the periodic error of the drive and the operation of the hand control. Remember to ignore declination drift when programming the PEC.

Note: When recording PEC only the photo guide rates (rates 1 and 2) will be operational. This eliminates the possibility of moving the telescope suddenly while recording.

5. To begin recording the drive's periodic error, press the MENU button and select PEC from the Utilities menu. Use the Up/Down scroll buttons to display the *Record* option and press ENTER. You will have 5 seconds before the system starts to record. The first time each observing session that PEC record or play is selected, the worm gear must rotate in order to mark its starting position. If the rotation of the worm gear moves your guide star outside the field of view of the eyepiece, it will have to be re-centered before the recording begins.

Once the worm gear is indexed, it will not need to be positioned again until the telescope is turned-off. So, to give yourself more time to prepare for guiding, it is best to restart PEC recording after the worm gear has found its index.

- 6. After 8 minutes PEC will automatically stop recording.
- 7. Point the telescope at the object you want to photograph and center the guide star on the illuminated cross hairs and you are ready to play back the periodic error correction.
- 8. Once the drive's periodic error has been recorded, use the *Playback* function to begin playing back the correction for future photographic guiding. If you want to re-record the periodic error, select *Record* and repeat the recording processes again. The previously recorded information will be replaced with the current information. Repeat steps 7 and 8 to playback the PEC corrections for your next object.

Does the PEC function make unguided astrophotography possible? Yes and no. For solar (filtered), lunar, and piggyback (up to 200mm), the answer is yes. However, even with PEC, off-axis guiding is still mandatory for long exposure, deep sky astrophotography. The optional Reducer/Corrector lens reduces exposure times making the task of guiding a little easier.

When getting started, use fast films to record as much detail in the shortest possible time. Here are proven recommendations:

- Ektar 1000 (color print)
- Konica 3200 (color print)
- Fujichrome 1600D (color slide)
- 3M 1000 (color slide)
- Scotchchrome 400
- T-Max 3200 (black and white print)
- T-Max 400 (black and white print)

As you perfect your technique, try specialized films, that is films that are designed or specially treated for celestial photography. Here are some popular choices:

- Ektar 125 (color print)
- Fujichrome 100D (color slide)
- Tech Pan, gas hypered (black and white print)
- T-Max 400 (black and white print)

There is no exposure determination table to help you get started. The best way to determine exposure length is look at previously published photos to see what film/exposure combinations were used. Or take unguided sample photos of various parts of the sky while the drive is running. Always take exposures of various lengths to determine the best exposure time.

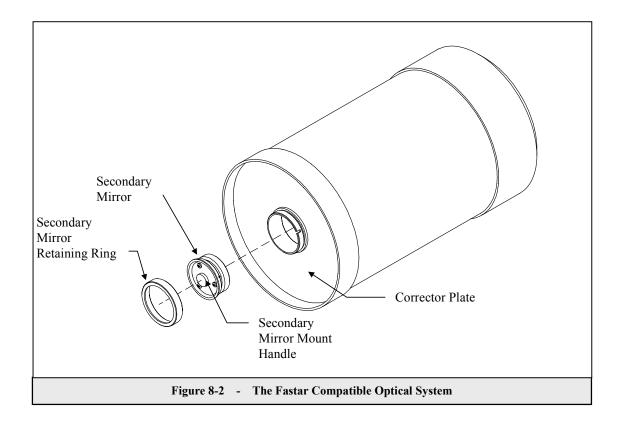
Terrestrial Photography

Your NexStar makes an excellent telephoto lens for terrestrial (land) photography. Terrestrial photography is best done will the telescope in Alt-Az configuration and the tracking drive turned off. To turn the tracking drive off, press the MENU (9) button on the hand control and scroll down to the Tracking Mode sub menu. Use the Up and Down scroll keys (10) to select the Off option and press ENTER. This will turn the tracking motors off, so that objects will remain in your camera's field of view.

Metering

The NexStar has a fixed aperture and, as a result, fixed f/ratios. To properly expose your subjects photographically, you need to set your shutter speed accordingly. Most 35mm SLR cameras offer through-the-lens metering which lets you know if your picture is under or overexposed. Adjustments for proper exposures are made by changing the shutter speed. Consult your camera manual for specific information on metering and changing shutter speeds.

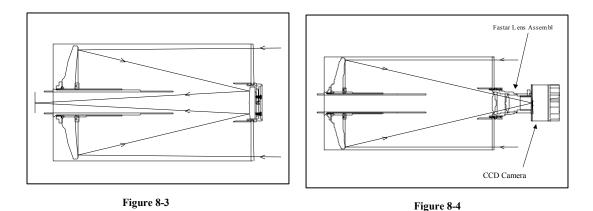
Reducing Vibration


Releasing the shutter manually can cause vibrations, producing blurred photos. To reduce vibration when tripping the shutter, use a cable release. A cable release keeps your hands clear of the camera and lens, thus eliminating the possibility of introducing vibration. Mechanical shutter releases can be used, though air-type releases are best. Blurry pictures can also result from shutter speeds that are too slow. To prevent this, use films that produce shutter speeds greater than 1/250 of a second when hand-holding the lens. If the lens is mounted on a tripod, the exposure length is virtually unlimited.

Another way to reduce vibration is with the Vibration Suppression Pads. These pads rest between the ground and tripod feet. They reduce the vibration amplitude and vibration time.

CCD Imaging

Fastar Lens Assembly Option – Using your NEXSTAR GPS telescope at f/2 with optional Fastar Lens Assembly


The NexStar GPS telescope is equipped with a removable secondary mirror that allows you to convert your f/10 telescope into an f/2 imaging system capable of exposure times 25 times shorter than those needed with a f/10 system! With the optional Fastar lens assembly you can easily convert your Fastar compatible telescope to f/2 prime focus use in a matter of seconds. The NexStar's versatility allows it to be used in many different f-number configurations for CCD imaging. It can be used at f/2 (with optional Fastar Lens Assembly), f/6.3 (with the optional Reducer/Corrector), f/10, and f/20 (with the optional 2x Barlow) making it the most versatile imaging system available today. This makes the system ideal for imaging deep-sky objects as well as planetary detail. Described below is the configuration of each F-number and the type of object best suited to that kind of imaging.

The above figure shows how the secondary mirror is removed when using the optional CCD camera at f/2 and the Fastar Lens Assembly.

Warning: The secondary mirror should never be removed unless installing the optional Fastar Lens Assembly. Adjustments to collimation can easily be made by turning the screws on the top of the secondary mirror mount without ever having to remove the secondary mirror (see Telescope Maintenance section of this manual).

The F/# stands for the ratio between the focal length and the diameter of the light gathering element. A NexStar 11 optical tube has a focal length of 110 inches and a diameter of 11 inches. This makes the system an f/10, (focal length divided by diameter). The NexStar 8 has a focal length of 80 inches and a diameter of 8 inches, also making it an f/10 optical system. When the secondary is removed and the CCD camera is placed at the Fastar position, the system becomes f/2, this is a unique feature to some Celestron telescopes (see figures below).

The key factors for good CCD imaging are; exposure time, field-of-view, image size, and pixel resolution. As the F/# goes down (or gets faster), the exposure times needed decreases, the field-of-view-increases, but the image scale of the object gets smaller. What is the difference between f/2 and f/10? F/2 has 1/5 the focal length of f/10. That makes the

exposure time needed about 25 times shorter than at f/10, the field of view 5 times larger and the object size 1/5 compared to that of f/10. (see Table below)

	Telescope Model	Standard Cassegrain f/10	With Reducer/Corrector f/6.3	With Fastar Lens Accessory f/2
Focal Length &	NexStar 8 GPS	80" (2032mm)	50.4" (1280mm)	16" (406.4mm)
Speed	NexStar 11 GPS	110" (2800mm)	69.5" (1764mm)	23.1 (587mm)
ST 237	NexStar 8 GPS	8 x 6.1 (arc min)	12.6 x 9.7 (arc min)	40 x 30 (arc min)
F.O.V.*	NexStar 11 GPS	5.8 x 4.4 (arc min)	9.2 x 7.0 (arc min)	28 x 21 (arc min)

* Field of view calculated using SBIG ST 237 CCD camera with 4.7mm x 3.6mm chip.

Table 8-3

The following is a brief description of the advantages of imaging at each f-number configuration and the proper equipment needed to use the telescope in any of its many settings

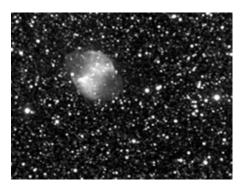
Fastar F/2 Imaging

As stated above, the exposure times are much shorter at f/2 than at f/6.3 or f/10. The field-of-view is wider, so it is easier to find and center objects. Also with a wider field-of-view you can fit larger objects (such as M51, The Whirlpool Galaxy) in the frame. Typical exposure times can be 20-30 seconds for many objects. Under dark skies you can get an excellent image of the Dumbbell Nebula (M27) with only a few 30 second exposures (see figure 8-5 below). The spiral arms of the Whirlpool galaxy (Figure 8-6) can be captured with a 30 second exposure and can be improved upon dramatically if several 30-60 second exposures are added together .

F/6.3 with Reducer/Corrector

When imaging some objects like planetary nebula (for example M57, the Ring Nebula) and small galaxies (M104, the Sombrero Galaxy), larger image scale is needed to resolve finer detail. These objects are better shot at f/6.3 or even f/10.

Medium size to small galaxies --


f/6.3 imaging gives you finer resolution then at f/2, but the slower f-number will usually require you to guide the image while you are taking longer exposures. Guiding can be accomplished by using an optional Radial Guider or a piggyback guide scope. The exposure times are about 10 times longer but the results can be worth the extra effort. There are some objects that are small enough and bright enough that they work great at f/6.3. M104 (the Sombrero Galaxy) can be imaged under dark skies with a series of short exposures using Track and Accumulate. Ten exposures at 15 seconds each will yield a nice image and is short enough that you may not need to guide the exposure at all. For f/6.3 imaging the optional Reducer/Corrector is needed. (See Optional Accessory section at the end of this manual).

Lunar or small planetary nebulae--

f/10 imaging is more challenging for long exposure, deep-sky imaging. Guiding needs to be very accurate and the exposure times need to be much longer, about 25 times longer than f/2. There are only a select few objects that work well at f/10. The moon images fine because it is so bright, but planets are still a bit small and should be shot at f/20. The Ring nebula is a good candidate because it is small and bright. The Ring Nebula (M57) can be imaged in about 30-50 seconds at f/10. The longer the exposure the better.

Planetary or Lunar --

f/20 is a great way to image the planets and features on the moon. When imaging the planets, very short exposures are needed. The exposure lengths range from .03 to .1 seconds on planetary images. Focus is critical as is good atmospheric conditions. Generally you will take one image after another until one looks good. This is due to the atmospheric "seeing" conditions. For every 10 exposures you might save 1. To image at f/20 you need to purchase a 2x Barlow and a T-adapter or Radial Guider.

Figure 8-5 M27 -- The Dumbbell Nebula 4 exposures of 30 seconds each!

Figure 8-6 M51 -- The Whirlpool Nebula 9 exposures of 60 seconds each.

Auto Guiding

The NexStar GPS has a designated auto guiding port for use with a CCD autoguider. The diagram below may be useful when connecting the CCD camera cable to the NexStar and calibrating the autoguider. Note that the four outputs are active-low, with internal pull-ups and are capable of sinking 25 mA DC.

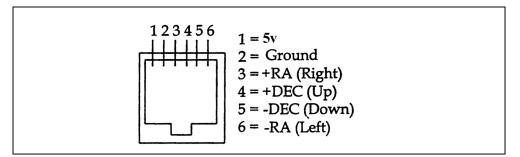


Figure 8-7 – Pin out diagram for Autoguider port.

While your NexStar telescope requires little maintenance, there are a few things to remember that will ensure your telescope performs at its best.

Care and Cleaning of the Optics

Occasionally, dust and/or moisture may build up on the corrector plate of your telescope. Special care should be taken when cleaning any instrument so as not to damage the optics.

If dust has built up on the corrector plate, remove it with a brush (made of camel's hair) or a can of pressurized air. Spray at an angle to the lens for approximately two to four seconds. Then, use an optical cleaning solution and white tissue paper to remove any remaining debris. Apply the solution to the tissue and then apply the tissue paper to the lens. Low pressure strokes should go from the center of the corrector to the outer portion. **Do NOT rub in circles!**

You can use a commercially made lens cleaner or mix your own. A good cleaning solution is isopropyl alcohol mixed with distilled water. The solution should be 60% isopropyl alcohol and 40% distilled water. Or, liquid dish soap diluted with water (a couple of drops per one quart of water) can be used.

Occasionally, you may experience dew build-up on the corrector plate of your telescope during an observing session. If you want to continue observing, the dew must be removed, either with a hair dryer (on low setting) or by pointing the telescope at the ground until the dew has evaporated.

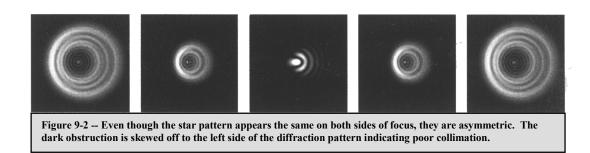
If moisture condenses on the inside of the corrector, remove the accessories from the rear cell of the telescope. Place the telescope in a dust-free environment and point it down. This will remove the moisture from the telescope tube.

To minimize the need to clean your telescope, replace all lens covers once you have finished using it. Since the rear cell is NOT sealed, the cover should be placed over the opening when not in use. This will prevent contaminants from entering the optical tube.

Internal adjustments and cleaning should be done only by the Celestron repair department. If your telescope is in need of internal cleaning, please call the factory for a return authorization number and price quote.

Collimation

The optical performance of your NexStar telescope is directly related to its collimation, that is the alignment of its optical system.


Figure 9-1 Rotate the collimation screw cover to access the three collimation screw.

Your NexStar was collimated at the factory after it was completely assembled. However, if the telescope is dropped or jarred severely during transport, it may have to be collimated. The only optical element that may need to be adjusted, or is possible, is the tilt of the secondary mirror.

To check the collimation of your telescope you will need a light source. A bright star near the zenith is ideal since there is a minimal amount of atmospheric distortion. Make sure that tracking is on so that you won't have to manually track the star. Or, if you do not want to power up your telescope, you can use Polaris. Its position relative to the celestial pole means that it moves very little thus eliminating the need to manually track it.

Before you begin the collimation process, be sure that your telescope is in thermal equilibrium with the surroundings. Allow 45 minutes for the telescope to reach equilibrium if you move it between large temperature extremes.

To verify collimation, view a star near the zenith. Use a medium to high power ocular -12mm to 6mm focal length. It is important to center a star in the center of the field to judge collimation. Slowly cross in and out of focus and judge the symmetry of the star. If you see a systematic skewing of the star to one side, then re-collimation is needed.

To accomplish this, you need to tighten the secondary collimation screw(s) that move the star across the field toward the direction of the skewed light. These screws are located in the secondary mirror holder (see figure 8-1). To access the collimation screws you will need to rotate the collimation screw cover clockwise to expose the three collimation screws underneath. Make only small 1/6 to 1/8 adjustments to the collimation screws and re-center the star by moving the scope before making any improvements or before making further adjustments.

To make collimation a simple procedure, follow these easy steps:

- 1. While looking through a medium to high power eyepiece, de-focus a bright star until a ring pattern with a dark shadow appears (see figure 9-2). Center the de-focused star and notice in which direction the central shadow is skewed.
- 2. Place your finger along the edge of the front cell of the telescope (be careful not to touch the corrector plate), pointing towards the collimation screws. The shadow of your finger should be visible when looking into the eyepiece. Rotate your finger around the tube edge until its shadow is seen closest to the narrowest portion of the rings (i.e. the same direction in which the central shadow is skewed).
- 3. Locate the collimation screw closest to where your finger is positioned. This will be the collimation screw you will need to adjust first. (If your finger is positioned exactly between two of the collimation screws, then you will need to adjust the screw opposite where your finger is located).
- 4. Use the hand control buttons to move the de-focused star image to the edge of the field of view, in the same direction that the central obstruction of the star image is skewed.
- 5. While looking through the eyepiece, use an Allen wrench to turn the collimation screw you located in step 2 and 3. Usually a tenth of a turn is enough to notice a change in collimation. If the star image moves out of the field of view in

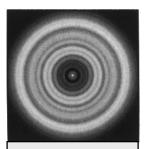


Figure 9-3 A collimated telescope should appear symmetrical with the central obstruction centered in the star's diffraction pattern.

- to notice a change in collimation. If the star image moves out of the field of view in the direction that the central shadow is skewed, than you are turning the collimation screw the wrong way. Turn the screw in the opposite direction, so that the star image is moving towards the center of the field of view.
- 6. If while turning you notice that the screws get very loose, then simply tighten the other two screws by the same amount. Conversely, if the collimation screw gets too tight, then loosen the other two screws by the same amount.
- 7. Once the star image is in the center of the field of view, check to see if the rings are concentric. If the central obstruction is still skewed in the same direction, then continue turning the screw(s) in the same direction. If you find that the ring pattern is skewed in a different direction, than simply repeat steps 2 through 6 as described above for the new direction.

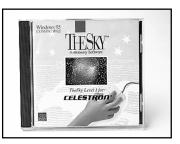
Perfect collimation will yield a star image very symmetrical just inside and outside of focus. In addition, perfect collimation delivers the optimal optical performance specifications that your telescope is built to achieve.

If seeing (i.e., air steadiness) is turbulent, collimation is difficult to judge. Wait until a better night if it is turbulent or aim to a steadier part of the sky. A steadier part of the sky is judged by steady versus twinkling stars.

Optional Accessories

You will find that additional accessories enhance your viewing pleasure and expand the usefulness of your telescope. For ease of reference, all the accessories are listed in alphabetical order.

Adapter, Car Battery (#18769) -



Celestron offers the Car Battery Adapter that allows you to run the NexStar drive off an external power source. The adapter attaches to the cigarette lighter of your car, truck, van, or motorcycle.

Barlow Lens - A Barlow lens is a negative lens that increases the focal length of a telescope. Used with any eyepiece, it doubles the magnification of that eyepiece. Celestron offers two Barlow lens in the 1-1/4" size for the NexStar. The 2x Ultima Barlow (#93506) is a compact triplet design that is fully multicoated for maximum light transmission and parfocal when used with the Ultima eyepieces. Model #93507 is a compact achromatic Barlow lens that is under three inches long and weighs only 4 oz. It works very well with all Celestron eyepieces.

CD-ROM (#93700) - Celestron and Software Bisque have joined together to present this comprehensive CD-ROM called The SkyTM Level 1 - from Celestron. It features a 10,000 object database, 75 color images, horizontal projection, custom sky chart printing, zoom capability and more! A fun, useful and educational product. PC format.

Erect Image Diagonal (#94112-A) - This accessory is an Amici prism arrangement that allows you to look into the telescope at a 45° angle with images that are oriented properly (upright and correct from left-to-right). It is useful for daytime, terrestrial viewing.

Eyepieces - Like telescopes, eyepieces come in a variety of designs. Each design has its own advantages and disadvantages. For the 1-1/4" barrel diameter there are four different eyepiece designs available.

• Super Modified Achromatic (SMA) Eyepieces: 1 1/4"

The SMA design is an improved version of the Kellner eyepiece. SMAs are very good, economical, general purpose eyepieces that deliver a wide apparent field, good color correction and an excellent image at the center of the field of view. Celestron offers SMA eyepieces in 1-1/4" sizes in the following focal lengths: 6mm, 10mm, 12mm, 17mm and 25mm.

- NexStar Plössl Plössl eyepieces have a 4-element lens designed for low-to-high power observing. The Plössls offer razor sharp views across the entire field, even at the edges! In the 1-1/4" barrel diameter, they are available in the following focal lengths: 3.6mm, 6mm, 8mm, 10mm, 13mm, 17mm, 25mm, 32mm and 40mm.
- Ultima Ultima is our 5-element, wider field eyepiece design. In the 1-1/4" barrel diameter, they are available in the following focal lengths: 5mm, 7.5mm, 12.5mm, 18mm, 30mm, 35mm, and 42mm. These eyepieces are all parfocal. The 35mm Ultima gives the widest possible field of view with a 1-1/4" diagonal.

• Axiom – As an extension of the Ultima line, a new wide angle series is offered – called the Axiom series. All units are seven element designs and feature a 70° extra wide field of view (except the 50mm). All are fully multicoated and contain all the feature of the Ultimas.

• Lanthanum Eyepieces (LV Series) - Lanthanum is a unique rare earth glass used in one of the field lenses of this new eyepiece. The Lanthanum glass reduces aberrations to a minimum. All are fully multicoated and have an astounding 20mm of eye relief — perfect for eyeglass wearers! In the 1-1/4" barrel diameter, they are available in the following focal lengths: 2.5mm, 4mm, 5mm, 6mm, 9mm, 10mm, 12mm and 15mm. Celestron also offers the LV Zoom eyepiece (#3777) with a focal length of 8mm to 24mm. It offers an apparent field of 40° at 24mm and 60° at 8mm. Eye relief ranges from 15mm to 19mm.

Fastar Lens Assembly 8" – (#94180) - For the ultimate in deep-sky imaging, a Fastar Lens Assembly can be combined with any of Celestron's Fastar compatible telescope to achieve amazing f/2 wide-field images. Celestron offers the lens assembly complete with lens assembly, secondary holder and counterweight.

Filters, Eyepiece - To enhance your visual observations of solar system objects,

Celestron offers a wide range of colored filters that thread into the 1-1/4" oculars. Available individually are: #12 deep yellow, #21 orange, #25 red, #58 green, #80A light blue, #96 neutral density - 25%T, #96 neutral density - 13%T, and polarizing. These and other filters are also sold in sets.

Flashlight, Night Vision - (#93588) - Celestron's premium model for astronomy, using two red LED's to preserve night vision better than red filters or other devices. Brightness is adjustable. Operates on a single 9 volt battery (included).

Red Astro Lite – (**#93590**) – An economical squeeze-type flashlight fitted with a red cap to help preserve your night vision. Remove the red cap for normal flashlight operation. Very compact size and handy key chain.

Light Pollution Reduction (LPR) Filters - These filters are designed to enhance your views of deep sky astronomical objects when viewed from urban areas. LPR Filters selectively reduce the transmission of certain wavelengths of light, specifically those produced by artificial lights. This includes mercury and high and low pressure sodium vapor lights. In addition, they also block unwanted natural light (sky glow) caused by neutral oxygen emission in our atmosphere. Celestron offers a model for 1-1/4" eyepieces (#94126A) and a model that attaches to the rear cell ahead of the star diagonal and visual

back (#94127A).

Micro Guide Eyepiece (#94171) - This multipurpose 12.5mm illuminated reticle can be used for guiding deep-sky astrophotos, measuring position angles, angular separations, and more. The laser etched reticle provides razor sharp lines and the variable brightness illuminator is completely cordless. The micro guide eyepiece produces 224 power when used with the NexStar 11 at f/10 and 163 power with the NexStar 8.

Moon Filter (#94119-A) - Celestron's Moon Filter is an economical eyepiece filter for reducing the brightness of the moon and improving contrast, so greater detail can be observed on the lunar surface. The clear aperture is 21mm and the transmission is about 18%.

Planisphere (#93720) - A simple and inexpensive tool for all levels of observers, from naked eye viewers to users of highly sophisticated telescopes. The Celestron Planisphere makes it easy to locate stars for observing and is a great planet finder as well. A map of the night sky, oriented by month and day, rotates within a depiction of the 24 hours of the day, to display exactly which stars and planets will be visible at any given time. Ingeniously simple to use, yet quite effective. Made of durable materials and coated for added protection. Celestron Planispheres come in three different models, to match the latitude from which you're observing:

For 20° to 40° of latitude	#93720-30
For 30° to 50° of latitude	#93720-40
For 40° to 60° of latitude	#93720-50

Polarizing Filter Set (#93608) - The polarizing filter set limits the transmission of light to a specific plane, thus increasing contrast between various objects. This is used primarily for terrestrial, lunar and planetary observing.

Radial Guider (#94176) - The Celestron Radial Guider[®] is specifically designed for use in prime focus, deep sky astrophotography and takes the place of the T-Adapter. This device allows you to photograph and guide simultaneously through the optical tube assembly of your telescope. This type of guiding produces the best results since what you see through the guiding eyepiece is exactly reproduced on the processed film. The Radial Guider is a "T"-shaped assembly that attaches to the rear cell of the telescope. As light from the telescope enters the guider, most passes straight through to the camera. A small portion, however, is diverted by a prism at an adjustable angle up to the guiding eyepiece. This guider has two features not found on other off-axis guiders; first, the prism and eyepiece housing rotate independently of the camera orientation making the acquisition of

a guide star quite easy. Second, the prism angle is tunable allowing you to look at guide stars on-axis. This accessory works especially well with the Reducer/Corrector.

Reducer/Corrector (#94175) - This lens reduces the focal length of the telescope by 37%, making your NexStar 11 a 1764mm f/6.3 instrument and the NexStar 8 a 1280mm f/6.3 instrument. In addition, this unique lens also corrects inherent aberrations to produce crisp images all the way across the field when used visually. When used photographically, there is some vignetting that produces a 26mm circular image on the processed film. It also increases the field of view significantly and is ideal for wide-field, deep-space viewing. It is also perfect for beginning prime focus, long-exposure astro photography when used with the radial guider. It makes guiding easier and exposures much shorter.

> RS-232 Cable (#93920) – Allows your NexStar telescope to be controlled using a laptop computer or PC. Once connected, the NexStar can be controlled using popular astronomy software programs.

Sky Maps (#93722) - Celestron Sky Maps are the ideal teaching guide for learning the night sky. You wouldn't set off on a road trip without a road map, and you don't need to try to navigate the night sky without a map either. Even if you already know your way around the major constellations, these maps can help you locate all kinds of fascinating objects.

Skylight Filter (#93621) - The Skylight Filter is used on the Celestron NexStar telescope as a dust seal. The filter threads onto the rear cell of your telescope. All other accessories, both visual and photographic (with the exception of Barlow lenses), thread onto the skylight filter. The light loss caused by this filter is minimal.

Solar Filter - The AstroSolar® filter is a safe and durable filter that covers the front opening of the telescope. View sunspots and other solar features using this double-sided metal coated filter for uniform density and good color balance across the entire field. The Sun offers constant changes and will keep your observing interesting and fun. Celestron offers filters for NexStar GPS 8 (#94162).

T-Adapter (#93633-A) - T-Adapter (with additional T-Ring) allows you to attach your SLR camera to the rear cell of your Celestron NexStar. This turns your NexStar into a high power telephoto lens perfect for terrestrial photography and short exposure lunar and filtered solar photography.

T-Ring - The T-Ring couples your 35mm SLR camera body to the T-Adapter, radial guider, or tele-extender. This accessory is mandatory if you want to do photography through the telescope. Each camera make (i.e., Minolta, Nikon, Pentax, etc.) has its own unique mount and therefore, its own T-Ring. Celestron has 8 different models for 35mm cameras.

Tele-Extender, Deluxe (#93643) - The tele-extender is a hollow tube that allows you to attach a camera to the telescope when the eyepiece is installed. This accessory is used for eyepiece projection photography which allows you to capture very high power views of the Sun, Moon, and planets on film. The tele-extender fits over the evepiece onto the visual back. This tele-extender works with eyepieces that have large housings, like the Celestron Ultima series.

Wedge, Heavy Duty (#93655) – The wedge allows you to tilt the telescope so that its polar axis is parallel to the earth's axis of rotation. Ideal for using your NexStar for guided astrophotography.

A full description of all Celestron accessories can be found in the Celestron Accessory Catalog (#93685).

Appendix A -	Technical	Specifications
--------------	-----------	-----------------------

Optical Specification	NexStar 8 GPS	NexStar 11 GPS
Design	Schmidt-Cassegrain Catadioptric	Schmidt-Cassegrain Catadioptric
Aperture	8" (203.2mm)	11" (279mm)
Focal Length	2032mm	2800mm
F/ratio of the Optical System	10	10
Primary Mirror: Material Coatings	Fine Annealed Pyrex Starbright Coatings - 5 step multi-layer process	Fine Annealed Pyrex Starbright Coatings - 5 step multi-layer process
Secondary Mirror: Material Coatings	Hand Figured Fine Annealed Pyrex Starbright Coatings - 5 step multi-layer process	Hand Figured Fine Annealed Pyrex Starbright Coatings - 5 step multi-layer process
Central Obstruction	2.7"	3.75"
Corrector Plate: Material Coatings	Optical Quality Crown Glass A-R Coatings both sides	Optical Quality Crown Glass A-R Coatings both sides
Highest Useful Magnification	480x (~4mm eyepiece)	660x (~4mm eyepiece)
Lowest Useful Magnification (7mm exit pupil)	29x (~70mm eyepiece)	40x (~70mm eyepiece)
Magnification: Standard Eyepiece (40mm Pl)	51x	70x
Resolution: Rayleigh Criterion Dawes Limit	.68 arc seconds .57 arc seconds	.50 arc seconds .42 arc seconds
Photographic Resolution (theoretic at 410nm)	200 line/mm	200 line/mm
Light Gathering Power	843x	1593x
Near Focus w/ standard eyepiece or camera	~25 feet	~60 feet
Field of View: Standard Eyepiece : 35mm Camera	.91° 1° x .68°	.66° .72° x .50°
Linear Field of View (at 1000 yds)	47.5 ft.	34.5 ft.
Optical Tube Length	21"	25"
Weight of Telescope	42 lbs	65 lbs
Weight of Tripod	26 lbs	26 lbs

Electronic Specifications

Input Voltage	12 V DC Nominal
Maximum	15 V DC Max.
Minimum	9 V DC Min.
Power Supply Requirements	12 VDC-1.5A (Tip positive)
Cord Management	Internal Slip Ring Design

Mechanical Specifications

Motor: Type	DC Servo motors with encoders, both axes
Resolution	.113 arc sec
Slew speeds	Nine slew speeds: 3° /sec, 2° /sec, .5°/sec, 64x, 16x, 8x, 4x, 1x, .5x
Hand Control	Double line, 16 character Liquid Crystal Display
	19 fiber optic backlit LED keypad
Fork Arm	Dual Fork tine cast aluminum, with integrated hand control receptacle
Gears	5.625", precision bronze gears on both axes, 180 tooth
Bearings	9.5" Roller Azimuth Bearing
Optical Tube	Carbon Fiber

Software Specifications

Software Precision	16 bit, 20 arc sec. calculations
Ports	RS-232 communication port on hand control, Autoguider Port,
	2 Auxiliary Port
Period Error Correction	Permanently programmable
Tracking Rates	Sidereal, Solar, Lunar
Tracking Modes	Alt-Az, EQ North & EQ South
Alignment Procedures	GPS Align, AutoAlign, Two-Star Align, Quick-Align, EQ North Align & EQ
	South Align
Database	40,000+ objects, 50 user defined programmable objects.
	Enhanced information on over 200 objects
Complete Revised NGC Catalog	7,840
Complete Messier Catalog	110
Complete IC Catalog	5,386
Complete Caldwell	109
Abell Galaxies	2,712
Solar System objects	9
Famous Asterisms	20
Selected CCD Imaging Objects	25
Selected SAO Stars	29,500

Appendix B - Glossary of Terms

A-

A- Absolute magnitude	The apparent magnitude that a star would have if it were observed from a standard distance of 10
C C	parsecs, or 32.6 light-years. The absolute magnitude of the Sun is 4.8. at a distance of 10 parsecs, it
Airy disk	would just be visible on Earth on a clear moonless night away from surface light. The apparent size of a star's disk produced even by a perfect optical system. Since the star can never be focused perfectly, 84 per cent of the light will concentrate into a single disk, and 16 per cent into
Alt-Azimuth Mounting	a system of surrounding rings. A telescope mounting using two independent rotation axis allowing movement of the instrument in Altitude and Azimuth.
Altitude	In astronomy, the altitude of a celestial object is its Angular Distance above or below the celestial
Aperture	horizon. the diameter of a telescope's primary lens or mirror; the larger the aperture, the greater the telescope's light-gathering power.
Apparent Magnitude	A measure of the relative brightness of a star or other celestial object as perceived by an observer on Earth.
Arcminute	A unit of angular size equal to 1/60 of a degree.
Arcsecond	A unit of angular size equal to 1/3,600 of a degree (or 1/60 of an arcminute).
Asterism	A small unofficial grouping of stars in the night sky.
Asteroid	A small, rocky body that orbits a star.
Astrology	The pseudoscientific belief that the positions of stars and planets exert an influence on human affairs; astrology has nothing in common with astronomy.
Astronomical unit (AU)	The distance between the Earth and the Sun. It is equal to 149,597,900 km., usually rounded off to 150,000,000 km.
Aurora	The emission of light when charged particles from the solar wind slams into and excites atoms and molecules in a planet's upper atmosphere.
Azimuth	The angular distance of an object eastwards along the horizon, measured from due north, between the astronomical meridian (the vertical line passing through the center of the sky and the north and earth paints on the horizon) and the surficed line generation the center of the sky and the north and
	south points on the horizon) and the vertical line containing the celestial body whose position is to be measured.
B -	
Binary Stars	Binary (Double) stars are pairs of stars that, because of their mutual gravitational attraction, orbit around a common Center of Mass. If a group of three or more stars revolve around one another, it is called a multiple system. It is believed that approximately 50 percent of all stars belong to binary or multiple systems. Systems with individual components that can be seen separately by a telescope are called visual binaries or visual multiples. The nearest "star" to our solar system, Alpha Centauri, is actually our nearest example of a multiple star system, it consists of three stars, two very similar to our Sun and one dim, small, red star orbiting around one another.
C -	
Celestial Equator	The projection of the Earth's equator on to the celestial sphere. It divides the sky into two equal hemispheres.
Celestial pole	The imaginary projection of Earth's rotational axis north or south pole onto the celestial sphere.
Celestial Sphere	An imaginary sphere surrounding the Earth, concentric with the Earth's center.
Collimation	The act of putting a telescope's optics into perfect alignment.
D -	The wei of putting a telescope s optice mic perfect angument.
Declination (DEC)	The angular distance of a celestial body north or south of the celestial equator. It may be said to
Decimation (DEC)	correspond to latitude on the surface of the Earth.
Е -	1
Ecliptic	The projection of the Earth's orbit on to the celestial sphere. It may also be defined as "the apparent yearly path of the Sun against the stars".
Equatorial mount	A telescope mounting in which the instrument is set upon an axis which is parallel to the axis of the Earth; the angle of the axis must be equal to the observer's latitude.
Б	
F - Focal length	The distance between a lens (or mirror) and the point at which the image of an object at infinity is brought to focus. The focal length divided by the aperture of the mirror or lens is termed the focal ratio.

J -	
Jovian Planets	Any of the four gas giant planets that are at a greater distance form the sun than the terrestrial planets.
К -	
Kuiper Belt	A region beyond the orbit of Neptune extending to about 1000 AU which is a source of many short period comets.
L -	
Light-Year (LY)	A light-year is the distance light traverses in a vacuum in one year at the speed of 299,792 km/ sec. With 31,557,600 seconds in a year, the light-year equals a distance of 9.46 X 1 trillion km (5.87 X 1 trillion mi).
M -	
Magnitude	Magnitude is a measure of the brightness of a celestial body. The brightest stars are assigned magnitude 1 and those increasingly fainter from 2 down to magnitude 5. The faintest star that can be seen without a telescope is about magnitude 6. Each magnitude step corresponds to a ratio of 2.5 in brightness. Thus a star of magnitude 1 is 2.5 times brighter than a star of magnitude 2, and 100 times brighter than a magnitude 5 star. The brightest star, Sirius, has an apparent magnitude of -1.6, the full moon is -12.7, and the Sun's brightness, expressed on a magnitude scale, is -26.78. The zero point of the apparent magnitude scale is arbitrary.
Meridian	A reference line in the sky that starts at the North celestial pole and ends at the South celestial pole and passes through the zenith. If you are facing South, the meridian starts from your Southern horizon and passes directly overhead to the North celestial pole.
Messier	A French astronomer in the late 1700's who was primarily looking for comets. Comets are hazy diffuse objects and so Messier cataloged objects that were not comets to help his search. This catalog became the Messier Catalog, M1 through M110.
N -	
Nebula	Interstellar cloud of gas and dust. Also refers to any celestial object that has a cloudy appearance.
North Celestial Pole	The point in the Northern hemisphere around which all the stars appear to rotate. This is caused by the fact that the Earth is rotating on an axis that passes through the North and South celestial poles. The star Polaris lies less than a degree from this point and is therefore referred to as the "Pole Star".
Nova	Although Latin for "new" it denotes a star that suddenly becomes explosively bright at the end of its life cycle.
0 -	,
Open Cluster	One of the groupings of stars that are concentrated along the plane of the Milky Way. Most have an asymmetrical appearance and are loosely assembled. They contain from a dozen to many hundreds of stars.
P -	
Parallax	Parallax is the difference in the apparent position of an object against a background when viewed by an observer from two different locations. These positions and the actual position of the object form a triangle from which the apex angle (the parallax) and the distance of the object can be determined if the length of the baseline between the observing positions is known and the angular direction of the object from each position at the ends of the baseline has been measured. The traditional method in astronomy of determining the distance to a celestial object is to measure its parallax.
Parfocal	Refers to a group of eyepieces that all require the same distance from the focal plane of the telescope to be in focus. This means when you focus one parfocal eyepiece all the other parfocal eyepieces, in a particular line of eyepieces, will be in focus.
Parsec	The distance at which a star would show parallax of one second of arc. It is equal to 3.26 light-years, 206,265 astronomical units, or 30,8000,000,000 km. (Apart from the Sun, no star lies within one parsec of us.)
Point Source	An object which cannot be resolved into an image because it to too far away or too small is considered a point source. A planet is far away but it can be resolved as a disk. Most stars cannot be resolved as disks, they are too far away.
R -	
Reflector	A telescope in which the light is collected by means of a mirror.
Resolution	The minimum detectable angle an optical system can detect. Because of diffraction, there is a limit to the minimum angle, resolution. The larger the aperture, the better the resolution.
Right Ascension: (RA) S -	The angular distance of a celestial object measured in hours, minutes, and seconds along the Celestial Equator eastward from the Vernal Equinox.
Schmidt Telescope	Rated the most important advance in optics in 200 years, the Schmidt telescope combines the best features of the refractor and reflector for photographic purposes. It was invented in 1930 by Bernhard Voldemar Schmidt (1879-1935).
Sidereal Rate	This is the angular speed at which the Earth is rotating. Telescope tracking motors drive the

	telescope at this rate. The rate is 15 arc seconds per second or 15 degrees per hour.
Τ-	
Terminator	The boundary line between the light and dark portion of the moon or a planet.
U -	
Universe	The totality of astronomical things, events, relations and energies capable of being described objectively.
V -	
Variable Star	A star whose brightness varies over time due to either inherent properties of the star or something eclipsing or obscuring the brightness of the star.
W -	
Waning Moon	The period of the moon's cycle between full and new, when its illuminated portion is decreasing.
Waxing Moon Z -	The period of the moon's cycle between new and full, when its illuminated portion is increasing.
Zenith	The point on the Celestial Sphere directly above the observer.
Zodiac	The zodiac is the portion of the Celestial Sphere that lies within 8 degrees on either side of the Ecliptic. The apparent paths of the Sun, the Moon, and the planets, with the exception of some portions of the path of Pluto, lie within this band. Twelve divisions, or signs, each 30 degrees in width, comprise the zodiac. These signs coincided with the zodiacal constellations about 2,000 years ago. Because of the Precession of the Earth's axis, the Vernal Equinox has moved westward by about 30 degrees since that time; the signs have moved with it and thus no longer coincide with the constellations.

APPENDIX C LONGITUDES AND LATITUDES

	LONGITUDE		LATITUDE	
ALABAMA	degrees	min	degrees	min
Anniston	85	51	33	34.8
Auburn	85 86	26.4 45	32 33	40.2 34.2
Birmingham Centreville	87	45 15	33	34.2 54
Dothan	85	27	31	19.2
Fort Rucker	85	43.2	31	16.8
Gadsden Huntsville	86 86	5.4 46.2	33 34	58.2 39
Maxwell AFB	86	22.2	32	22.8
Mobile	88	15	30	40.8
Mobile Aeros	88	4.2	30	37.8
Montgomery Muscle Shoal	86 87	2.4 37.2	32 34	18 45
Selma	86	59.4	32	20.4
Troy	86	1.2	31	52.2
Tuscaloosa ALASKA	87	37.2	33	13.8
Anchorage	149	51	61	13.2
Barrow	156	46.8	71	18
Fairbanks Haines Hrbor	147 135	52.2 25.8	64 59	49.2 13.8
Homer	151	3	59	37.8
Juneau	134	34.8	58	22.2
Ketchikan	131	4.2	55	21
Kodiak Nome	152 165	3 25.8	57 64	45 30
Sitka	135	23.0	57	4.2
Sitkinak	154	1.2	56	52.8
Skagway Valdez	135 146	31.8 21	59 61	45 7.8
ARIZONA	140	21	01	7.0
Davis-M AFB	110	52.8	32	10.2
Deer Valley Douglas	112 109	4.8 3.6	33 31	40.8 27
Falcon Fld	111	43.8	33	28.2
Flagstaff	111	40.2	35	7.8
Fort Huachuc	110	21	31	36
Gila Bend Goodyear	113 112	10.2 22.8	33 33	33 25.2
GrandCanyon	112	9	35	57
Kingman	113	57	35	16.2
Luke Page	112 111	22.8 27	33 36	31.8 55.8
Payson	111	19.8	34	13.8
Phoenix	112	1.2	33	25.8
Prescott Safford Awrs	112 109	25.8 40.8	34 32	39 49.2
Scottsdale	111	55.2	33	37.2
Show Low	110	0	34	16.2
Tucson	110	55.8	32	7.2
Williams AFB Winslow	111 110	40.2 43.8	33 35	18 1.2
Yuma	115	0	33	6
Yuma Mcas	114	37.2	32	39
Yuma Prv Gd ARKANSAS	114	2.4	32	51
Blytheville	89	57	35	58.2
Camden El Dorado	92 92	2.4 4.8	33 33	31.2 13.2
Favetteville	92 94	4.0	36	0
Ft Smith	94	22.2	35	19.8
Harrison	93	9	36	16.2
Hot Springs Jonesboro	93 90	0.6 39	34 35	28.8 49.8
Little Rock	92	22.8	35	13.2
Pine Bluff	91	55.8	34	10.2
Springdale Texarkana	94 94	7.8 0	36 33	10.8 27
Walnut Ridge	94 90	0 55.8	33 36	7.8
CALIFORNIA				
Alameda	122	19.2	37	46.8 28.8
Alturas Arcata	120 124	31.8 0.6	41 40	28.8 58.8
Bakersfield	119	3	35	25.8
Beale AFB	121	27	39	7.8
Beaumont Bicycle Lk	116 116	57 37.2	33 35	55.8 16.8
Big Bear	116	40.8	34	16.2
Bishop	118	3.6	37	36
Blue Canyon	120	4.2	39	16.8

	LONGITUDE		LATITUDE	
	degrees	min	degrees	min
Blythe Burbank	114 118	43.2	33 34	37.2
Campo	118	22.2 28.2	34 32	12 37.2
Carlsbad	117	16.8	33	7.8
Castle AFB	120	34.2	37	22.8
Chico China Lake	121 117	51 40.8	39 35	46.8 40.8
Chino	117	37.8	33	58.2
Concord	122	3	37	58.8
Crescent Cty Daggett	124 116	13.8 46.8	41 34	46.8 52.2
Edwards AFB	117	52.8	34	54
El Centro	115	40.8	32	49.2
El Monte El Toro	118 117	1.8 43.8	34 33	4.8 40.2
Eureka	124	16.8	41	19.8
Fort Hunter	121	19.2	36	0
Fort Ord Fresno	121 119	46.2 43.2	36 36	40.8 46.2
Fullerton	117	58.2	33	52.2
George AFB	117	22.8	34	34.8
Hawthorne Hayward	118 122	19.8 7.2	33 37	55.2 39
Imperial	115	34.2	32	49.8
Imperial Bch	117	7.2	32	34.2
La Verne Lake Tahoe	117 120	46.8 0	34 38	6 54
Lancaster	118	13.2	34	43.8
Livermore	121	49.2	37	42
Long Beach Los Alamitos	118 118	9 3	33 33	49.2 46.8
Los Angeles	118	2.4	33	55.8
Mammoth	118	55.2	37	37.8
March AFB Marysville	117 121	16.2 34.2	33 39	52.8 6
Mather AFB	121	1.8	38	34.2
Mcclellan	121	2.4	38	40.2
Merced Miramar NAS	120 117	31.2 9	37 32	16.8 52.2
Modesto	120	57	37	37.8
Moffet	122	3	37	25.2
Mojave Montague	118 122	9 31.8	35 41	3 43.8
Monterey	121	51.0	36	34.8
Mount Shasta	122	19.2	41	19.2
Mount Wilson Napa	118 122	4.2 16.8	34 38	13.8 13.2
Needles	114	37.2	34	46.2
North Is	117	1.2	32	42
Norton AFB Oakland	117 122	13.8 13.2	34 37	6 43.8
Ontario Intl	117	37.2	34	3
Oxnard	119	1.2	34	12
Palm Springs Palmdale	116 118	3 7.8	33 35	49.8 3
Palo Alto	122	7.2	37	28.2
Paso Robles	120	37.8	35	40.2
Pillaro Pt Point Mugu	122 119	49.8 7.2	37 34	49.8 7.2
Pt Arena	124	13.2	39	34.8
Pt Arguello	121	7.2	34	57
Pt Piedras Red Bluff	121 122	16.8 15	35 40	40.2 9
Redding	122	1.8	40	30
Riverside Sacramento	117 121	27 3	33	57 31.2
Salinas	121	3 3.6	38 36	40.2
San Carlos	122	15	37	31.2
San	117	37.2	33	25.2
Clemente San Diego	117	7.8	32	49.2
San	122	22.8	37	37.2
Francisco	101	EE 0	07	<u></u>
San Jose San Luis Obi	121 120	55.2 39	37 35	22.2 13.8
San Mateo	117	34.8	33	22.8
San Miguel	120	2.4	34	1.8
Sandburg Santa Ana	118 117	43.8 52.8	34 33	45 40.2
Santa Barb	119	49.8	34	25.8
Santa Maria	120	27	34	54
Santa Monica Santa Rosa	118 122	27 49.2	34 38	1.2 31.2
				=

	LONGITUDE		LATITUDE	
	degrees	min	degrees	min
Shelter Cove	124 122	4.2 28.2	40 41	1.8 46.8
Siskiyou Stockton	122	20.2 15	37	40.0 54
Superior Val	117	0.6	35	19.8
Susanville	120	57	40	37.8
Thermal	116	10.2	33	37.8
Torrance Travis AFB	118 121	19.8 55.8	33 38	48 16.2
Tahoe	120	7.8	39	19.2
Tustin Mcas	117	49.8	33	42
Ukiah	123	1.2	39	7.8
Van Nuys Vandenberg	118 120	28.8 57	34 35	13.2 12
Visalia	119	2.4	36	19.2
COLORADO	105	21	39	21.2
Air Force A Akron	105	13.2	39 40	31.2 10.2
Alamosa	105	52.2	37	27
Aspen	106	52.2	39	13.2
Brmfield/Jef	105 104	7.2 45	39 39	54 42 2
Buckley Colo Sprgs	104	45 43.2	38	43.2 49.2
Cortez	104	37.8	37	18
Craig-Moffat	107	31.8	40	30
Denver	104	52.2	39 27	45
Durango Eagle	107 106	45 55.2	37 39	9 39
Englewood	108	49.8	39	39 34.2
Fort Carson	104	46.2	38	40.8
Fraser	105	3	39	34.2
Ft Col/Lovel Ft Collins	105 105	1.2 4.8	40 40	27 34.8
Grand Jct	108	31.8	39	7.2
Greeley-Wld	104	37.8	40	25.8
Gunnison	106 103	55.8	38	33
La Junta Lamar	103	31.2 3.6	38 38	3 7.2
Leadville	106	1.8	39	15
Limon	103	4.2	39	10.8
Montrose	107 104	52.8	38 38	30
Pueblo Rifle	104	31.2 4.8	39	16.8 31.8
Salida	106	3	38	31.8
Trinidad	104	19.8	37	15
Winter Park CONNECTICUT	105	52.2	40	0
Bridgeport	73	7.8	41	10.2
Danbury Groton	73 72	28.8 3	41 41	22.2 19.8
Hartford	72	39	41	43.8
New Haven	72	40.2	41	13.2
New London	72	4.8	41	18
Windsor Loc	72	40.8	41	55.8
Dover	75	28.2	39	7.8
Wilmington	75	3.6	39	40.2
D.C. WASH Washington	77	27.6	38	57
FLORIDA				
Apalachicola Astor NAS	85 81	1.8 34.2	29 29	43.8 7.2
Avon Park G	81	34.2 33	29	4.8
Cape	80	33	28	28.2
Canaveral				
Cecil Crestview	81 86	52.8 31.2	30 30	13.2 46.8
Cross City	83	0.6	29	40.0 37.2
Daytona Bch	81	3	29	10.8
Duke Fld	86	31.2	30	39
Eglin AFB Egmont Key	86 82	31.8 46.2	30 27	28.8 36
Fort Myers	81	40.2 52.2	26	30 34.8
Ft Lauderdale	80	9	26	4.2
Ft Myers	81	52.2	26	39
Gainesville Homestead	82 80	16.2 22.8	29 25	40.8 28.8
Hurlburt Fld	86	40.8	30	26.6 25.8
Jacksonville	81	40.8	30	13.8
Key West	81	45	24	33
Lakeland Macdill AFB	81 82	57 31.2	28 27	1.8 51
Marianna	85	10.8	30	50.4
Mayport NAS	81	25.2	30	24

	LONGITUDE	min	LATITUDE degrees	min
Melbourne	80	37.8	28	6
Miami Naples	80 81	16.8 4.8	25 26	49.2 7.8
Nasa Shuttle	80	40.8	28	37.2
Orlando	81	19.2	28	25.8
Panama City Patrick AFB	85 80	40.8 3.6	30 28	12 13.8
Pensacola	87	3.0 19.2	30	21
Ruskin	82	3.6	27	58.2
Saint Peters	82	40.8	27	55.2
Sanford Sarasota	81 82	15 33	28 27	46.8 24
Tallahassee	84	22.2	30	22.8
Tampa Intl	82 80	31.8	27 28	58.2
Titusville Tyndall AFB	85	4.8 34.8	28 30	31.2 4.2
Vero Beach	80	25.2	27	39
West Palm Beach	80	7.2	26	40.8
Whiting Fld	87	1.2	30	43.2
Albany	84	10.8	31	31.8
Alma	82	31.2	31	31.8
Athens Atlanta	83 84	19.2 25.2	33 33	57
Augusta/Bush	81	20.2 58.2	33	39 22.2
Brunswick	81	22.8	31	9
Columbus	84	55.8	32	31.2
Dobbins AFB Fort Benning	84 85	31.2 0	33 32	55.2 19.8
Ft Stewart	81	34.2	31	52.8
Hunter Aaf	81	9	32	1.2
La Grange Macon/Lewis	85 83	4.2 39	33 32	0.6 42
Moody AFB	83	1.2	30	58.2
Robins AFB	83	3.6	32	37.8
Rome/Russell Valdosta	85 83	10.2 16.8	34 30	21 46.8
Waycross	82	2.4	31	40.0 15
HAWAII				
Barbers Pt	158 160	7.2 1.8	21 22	31.8 3
Barking San Fr Frigate	166	28.2	22	3 27
Hilo	155	4.2	19	43.2
Honolulu Int Kahului Maui	157 156	55.8 25.8	21 20	21 54
Kaneohe Mca	156	25.8 16.8	20	54 45
Kilauea Pt	159	40.2	22	22.8
Lanai-Lanai Lihue-Kauai	156 159	57 21	20 21	48 58.8
Maui	159	49.8	20	58.2
Molokai	157	0.6	21	9
Upolo Pt Ln Waimea-	156 156	28.2 7.2	20 20	25.2 0
Koha	150	1.2	20	0
IDAHO	110	13.2	42	34.2
Boise Burley	116 113	46.2	43 42	31.8
Challis	114	13.2	44	31.2
Coeur	116	49.2	47	46.2
d'Alene Elk City	115	25.8	45	49.2
Gooding	115	10.2	43	0
Grangeville	116	7.8	45 43	55.2
Idaho Falls Lewiston	112 117	4.2 1.2	43 46	31.2 22.8
Malad City	112	19.2	42	10.2
Malta	113	22.2	42	18
Mccall Mullan	116 115	0.6 4.8	44 47	52.8 28.2
Pocatello	112	3.6	42	55.2
Salmon	113	5.4	45	10.8
Soda Springs	111 114	34.8 1.8	42 43	39 30
Sun Valley Twin Falls	114	28.8	43 42	30 28.8
ILLINOIS				
Alton Aurora	90 88	3 19.2	38 41	52.8 46.2
Bistate Park	90	19.2 9	38	40.2 34.2
Bloomington	88	55.8	40	28.8
Bradford	89 80	3.6	41 37	9.6
Cairo Carbondale	89 89	13.2 15	37 37	4.2 46.8
Centralia	89	5.4	38	30.6
Champaign	88	16.8	40	1.8
Chicago Danville	87 87	39 3.6	41 40	54 12
DeKalb	88	43.2	40	55.8
Decatur	88	52.2	39	49.8
Du Page Galesburg	88 90	15 25.8	41 40	55.2 55.8
Galesburg	90	20.0	-+0	55.0

	LONGITUDE degrees	min	LATITUDE degrees	min
Glenview	87	49.2	42	4.8
NAS	07	54	44	4.0
Kankakee Macomb	87 90	51 39.6	41 40	4.2 31.2
Marion	89	0	37	45
Marseilles	88	40.8	41	22.2
Mattoon Moline/Quad	88 90	16.8 31.2	39 41	28.8 27
Mount	88	51.6	38	19.3
Vernon			10	
Peoria Quincy	89 91	40.8 1.2	40 39	40.2 55.8
Rockford	89	0.6	42	12
Salem	88	57.6	38	37.8
Scott AFB Springfield	89 89	51 40.2	38 39	33 51
Sterling	89	40.2	41	44.4
Taylorville	89	19.8	39	31.8
Vandalia	89	10.2	38	59.4
Bakalar	86	3	39	22.8
Bloomington	86	37.2	39	7.8
Elkhart Evansville	86 87	0 31.8	41 38	43.2 3
Fort Wayne	85	1.2	41	0
Gary	87	25.2	41	37.2
Grissom AFB Indianapolis	86 86	9 16.2	40 39	39 43.
Muncie	86 85	22.8	39 40	43.
South Bend	86	19.2	41	42
Terre Haute	87	1.8	39 40	27
W Lafayette	86	55.8	40	25.
Burlington	91	7.2	40	46.
Cedar Rapids Des Moines	91 93	4.2 39	41 41	52. 31.
Dubuque	90	4.2	42	24
Estherville	94	45	43	24
Fort Dodge Lamoni	94 93	10.8 55.8	42 40	33 37.:
Mason City	93	55.6 19.8	40	37 9
Ottumwa	92	27	41	6
Sioux City	96 95	22.8 9	42 43	24 10.:
Spencer Waterloo Mun	95 92	9 2.4	43 42	33
KANSAS	05		27	
Chanute Col. J Jabar	95 97	28.8 13.2	37 37	40.2 45
Concordia	97	39	39	33
Dodge City	99 101	58.2	37	46.2
Elkhart Emporia	101 96	52.8 1.2	37 38	0 19.
Ft Leavnwrth	94	55.2	39	22.
Ft Riley	96 100	46.2	39	3
Garden City Goodland	100 101	43.2 4.2	37 39	55. 22.
Hays	99	4.2 16.2	38	51
Hill City	99	49.8	39	22.
Hutchinson Johnson Cnty	97 94	52.2 52.8	38 38	4.2 49.3
Liberal	94 100	58.2	38	49 3
Manhatten	96	40.2	39	9
Mcconnell Af	97	16.2	37	37.
Medicine Ldg Olathe	98 94	34.8 5.4	37 38	18 51
Russell	98	49.2	38	52.
Salina	97	39	38	48
Topeka Topeka/Forbe	95 95	37.2 40.2	39 38	4.2 57
Wichita	97	25.8	37	39
KENTUCKY	00	25.0	26	E0.1
Bowling Gren Ft Campbell	86 87	25.8 3	36 36	58.: 40.:
Ft Knox	85	58.2	37	54
Jackson	83	19.2	37	36
Lexington London	85 84	0 4.2	38 37	3 4.8
	85	4.2 40.2	38	4.0
Louisville	87	10.2	37	45
Owensboro		46.2	37	4.2
Owensboro Paducah	88		37	28.
Owensboro Paducah Pikeville	88 82	31.2		
Owensboro Paducah Pikeville LOUISIANA Alexandria	82 92	1.8	31	
Louisville Owensboro Paducah Pikeville LOUISIANA Alexandria Barksdale	82 92 93	1.8 40.2	32	30
Owensboro Paducah Pikeville LOUISIANA Alexandria Barksdale Baton Rouge	82 92 93 91	1.8 40.2 9	32 30	30 31.8
Owensboro Paducah Pikeville LOUISIANA Alexandria Barksdale Baton Rouge Boothville	82 92 93	1.8 40.2	32	30 31. 33
Owensboro Paducah Pikeville LOUISIANA Alexandria Barksdale Baton Rouge Boothville Cameron Heli Claiborne R	82 92 93 91 89 93 92	1.8 40.2 9 40.2 1.8 57	32 30 29 29 31	30 31. 33 46. 13.
Owensboro Paducah Pikeville LOUISIANA Alexandria Barksdale	82 92 93 91 89 93	1.8 40.2 9 40.2 1.8	32 30 29 29	31.8

Grand Isle High Island Houma Intercoastal Lafayette Lake Charles Lk Palourde Missippi Can Monroe Morgan City New Orleans S Marsh Isl Shreveport Sildel MAINE Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	LONGITUDE degrees 90 94 92 92 93 91 89 92 91 91 91 91 90 93 89 93 89	min 4.2 2.4 39 7.2 0 13.2 0.6 3 1.2 52.8 15 58.8 45	LATITUDE degrees 29 28 29 29 30 30 29 28 30 29 28 32 29 28 32 29 30	min 10.8 7.8 34.2 43.8 12 7.2 42 46.8 31.2 42
High Island Houma Intercoastal Lafayette Lake Charles Lk Palourde Missippi Can Monroe Morgan City New Iberia New Orleans S Marsh Isl Shreveport Slidel MAINE Augusta Ban Harbor Brunswick Caribou Mun Greenville	94 90 92 93 91 89 92 91 91 91 90 91 93 89	2.4 39 7.2 0 13.2 0.6 3 1.2 52.8 15 58.8 45	28 29 30 30 29 28 32 29 30	7.8 34.2 43.8 12 7.2 42 46.8 31.2
Houma Intercoastal Lafayette Lake Charles Lk Palourde Missippi Can Monroe Morgan City New Iberia New Orleans S Marsh Isl Shreveport Slidel MAINE Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	90 92 93 91 89 92 91 91 91 91 91 93 89	39 7.2 0 13.2 0.6 3 1.2 52.8 15 58.8 45	29 29 30 29 28 32 29 30	34.2 43.8 12 7.2 42 46.8 31.2
Lafayette Lake Charles Lk Palourde Missippi Can Morgan City New Iberia New Orleans S Marsh Isl Shreveport Slidel MAINE Augusta Ban Harbor Brunswick Caribou Mun Greenville	92 93 91 89 92 91 91 90 91 93 89	0 13.2 0.6 3 1.2 52.8 15 58.8 45	30 30 29 28 32 29 30	12 7.2 42 46.8 31.2
Lake Charles Lk Palourde Missippi Can Monroe Morgan City New Iberia New Orleans S Marsh Isl Shreveport Slidel MAINE Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	93 91 89 91 91 91 90 91 93 89	13.2 0.6 3 1.2 52.8 15 58.8 45	30 29 28 32 29 30	7.2 42 46.8 31.2
Lk Palourde Missippi Can Monroe Morgan City New Iberia New Orleans S Marsh Isl Shreveport Sildel MAINE Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	91 89 92 91 90 90 91 93 89	0.6 3 1.2 52.8 15 58.8 45	29 28 32 29 30	42 46.8 31.2
Monroe Morgan City New Iberia New Orleans S Marsh Isl Shreveport Slidel MAINE Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	92 91 90 91 93 89	3 1.2 52.8 15 58.8 45	32 29 30	31.2
Morgan City New Uberia New Orleans S Marsh Isl Shreveport Siidel MAINE Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	91 91 90 91 93 89	1.2 52.8 15 58.8 45	29 30	
New Iberia New Orleans S Marsh Isl Shreveport Slidel MAINE Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	91 90 91 93 89	52.8 15 58.8 45	30	
S Marsh Isl Shreveport Slidel MAINE Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	91 93 89	58.8 45		1.8
Shreveport Slidel MAINE Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	93 89	45	29	58.8
Slidel MAINE Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	89		28 32	18 31.2
Augusta Bangor Bar Harbor Brunswick Caribou Mun Greenville	69	49.2	32	21
Bangor Bar Harbor Brunswick Caribou Mun Greenville	09	4.8	44	19.2
Brunswick Caribou Mun Greenville	68	49.2	44	48
Caribou Mun Greenville	68	22.2	44	27
Greenville	69 68	55.8 1.2	43 46	52.8 52.2
	69	33	40	27
Houlton	67	46.8	46	7.8
Loring AFB	67 70	52.8	46 43	57
Portland Presque Isle	70 68	19.2 3	43 46	39 40.8
Rockland	69	7.2	44	4.2
Rumford MARYLAND	70	52.8	44	52.8
Andrews AFB	76	52.2	38	49.2
Baltimore	76 76	40.2	39	10.8
Fort Meade Hagerstown	76 77	46.2 43.2	39 39	4.8 42
Ocean City	75	7.8	38	33
Patuxent	76 76	2.4	38	16.8
Phillips Salisbury	76 75	10.2 3	39 38	28.2 19.8
MASSACHUSE				
Bedford Beverly	71 70	16.8 55.2	42 42	28.2 34.8
Boston	71	1.8	42	22.2
Cape Cod	70	3	41	46.8
Chatham Fort Devens	69 71	58.2 3.6	41 42	40.2 34.2
Hyannis	70	16.8	41	40.2
Lawrence	71	7.2	42	43.2
Marthas Vine Nantucket	70 70	37.2 4.2	41 41	24 15
New Bedford	70	58.2	41	40.8
Norwood	71	10.8	42	10.8
Otis ANGB Pittsfield	70 73	31.2 10.8	41 42	39 15.6
S Weymouth	70	55.8	42	9
Westfield	72	43.2	42	10.2
Westover Worcester	72 71	31.8 52.2	42 42	12 16.2
MICHIGAN				
Alpena Ann Arbor	83 83	34.2 45	45 42	4.2 13.2
Battle Creek	85	45 13.8	42	13.2 18
Benton	86	25.8	42	7.8
Harbor Chippewa	84	28.2	46	15
Coopersville	85	20.2 57	40	4.2
Copper Harb	87	51	47	28.2
Detroit Escanaba	83 87	1.2 4.8	42 45	25.2 43.8
Flint/Bishop	83	4.0 45	43	43.8 58.2
Grand Rapids	85	31.2	42	52.8
Hancock Harbor Beach	88 82	3 31.8	47 43	10.2 49.8
Houghton	84	40.8	43	49.8 22.2
Lake	~~	7 0		40.5
Iron Mtn Ironwood	88 90	7.2 7.8	45 46	49.2 31.8
Jackson	84	28.2	40	16.2
Kalamazoo	85	33	42	13.8
Lansing Manistee	84 86	3.6 15	42 44	46.2 16.2
Marquette	87	57	44	52.8
Menominee	87	37.8	45	7.2
Muskegon Pellston	86 84	15 4.8	43 45	10.2 34.2
Pontiac	83	4.0 25.2	43	40.2
Saginaw	84	4.8	43	31.8
Sault Ste M	84 87	22.2	46 46	28.2 21
Sawyer AFB Selfridge	87 82	2.4 49.8	46 42	21 37.2
	85	55.2	45	55.2
Seul Choix Traverse Cty	85	34.8	44	43.8

	LONGITUDE		LATITUDE	min
Wurtsmith	degrees 83	min 2.4	degrees 44	min 27
Ypsilanti MINNESOTA	83	31.8	42	13.8
Albert Lea Alexandria	93 95	22.2 22.8	43 45	40.8 52.2
Bemidji Muni	94	55.8	47	30
Brainerd-Crw	94	7.8	46	24 49.2
Detroit Laks Duluth	95 92	52.8 10.8	46 46	49.2 49.8
Ely	91	49.2	47	54
Fairmont Fergus Falls	94 96	25.2 4.2	43 46	39 18
Grand Rapids	93	31.2	47	13.2
Hibbing Intl Falls	92 93	51 22.8	47 48	22.8 34.2
Litchfield	94	31.2	40	7.8
Mankato	93	55.2	44 44	13.2
Marshall Arpt Minneapolis	95 93	49.2 28.2	44 44	27 49.8
Park Rapids	95	4.2	46	54
Pequot Lake Rochester	94 92	19.2 3	46 43	36 55.2
Saint Paul	93	3	44	55.8
St Cloud Thief River	94 96	4.2 10.8	45 48	33 4.2
Tofte	90	49.8	40	34.8
Warroad	95 05	21 34.8	48 43	55.8 39
Worthington MISSISSIPPI	95	34.0	43	39
Columbus AFB	88	27	33	39
Golden Trian	88	34.8	33	27
Greenville	90	58.8	33 33	28.8
Greenwood Gulfport	90 89	4.8 4.2	33 30	30 24
Hattiesburg	89	19.8	31	28.2
Jackson Keesler AFB	90 88	4.8 55.2	32 30	19.2 25.2
Laurel	89	10.2	31	40.2
Mccomb Meridian NAS	90 88	28.2 34.2	31 32	10.8 33
Meridian/Key	88	45	32	19.8
Natchez	91 89	15 32.4	31 34	37.2
Oxford Tupelo	88	32.4 46.2	34 34	23.4 16.2
MISSOURI	92	12.2	20	49.2
Columbia Cape	92 89	13.2 34.8	38 37	49.2 13.8
Girardeau				
Ft Leonard Jefferson City	92 92	7.8 10.2	37 38	45 36
Joplin	94	3	37	10.2
Kansas City Kirksville	94 92	43.2 33	39 40	19.2 6
Monett	94	21	37	19.8
Muskogee Poplar Bluff	95 90	21.6 28.2	35 36	39.6 46.2
Richards-Geb	94	33	38	51
Spickard	93 93	43.2 22.8	40 37	15 13.8
Springfield St Joseph	95 95	31.8	40	16.8
St Louis	90	22.2	38	45
Vichy/Rolla West Plains	91 92	46.2 25.2	38 37	7.8 13.2
Whiteman	93	33	38	43.8
AFB MONTANA				
Billings	108	31.8	45	48
Bozeman Broadus	111 105	9 40.2	45 45	46.8 40.2
Butte	112	3	45	57
Cut Bank Dillon	112 112	22.2 33	48 45	36 15
Drummond	113	9	46	40.2
Glasgow Glendive	106 104	37.2 4.8	48 47	13.2 7.8
Great Falls	111	22.2	47	28.8
Harlowton	109	49.8	46	25.8
Havre Helena	109 112	46.2 0	48 46	33 36
Jordan	106	55.8	47	19.8
Kalispell Lewiston	114 109	16.2 27	48 47	18 3
Livingston	110	25.8	45	42
Malmstrom Miles City	111 105	10.8 52.2	47 46	30 25.8
Missoula	114	4.8	46	55.2
Monida Sidney	112 104	19.2 10.8	44 47	34.2 43.2
W Yellowston	104	0.6	47 44	43.2 39

	LONGITUDE degrees	min	LATITUDE degrees	min
NEBRASKA			T	
Ainsworth Alliance	99 102	58.8 4.8	42 42	34.8 3
Beatrice	96	45	40	19.2
Broken Bow	99	39	41	25.8
Burwell Chadron	99 103	9 4.8	41 42	46.8 49.8
Columbus	97	4.0 21	42	49.0
Cozad	100	0	40	52.2
Falls City	95	34.8	40	4.2
Grand Island Hastings	98 98	19.2 25.8	40 40	58.2 36
Imperial	101	23.4	40	19.8
Kearney	99	0	40	43.8
Lincoln Muni	96	45	40	51
Mccook Mullen	100 101	34.8 3	40 42	13.2 3
Norfolk	97	3 25.8	42	5 58.8
North Omaha	96	1.2	41	22.2
North Platte	100	40.8	41	7.8
O'neill Offutt AFB	98 95	40.8 55.2	42 41	28.2 7.2
Omaha	95	5.4	41	18
Ord/Sharp	98	57	41	37.2
Scottsbluff	103	3.6	41	52.2
Sidney Muni Valentine	102 100	58.8	41 42	6 52.2
NEVADA	100	33	42	52.2
Austin	117	7.8	39	49.8
Battle Mtn	116	52.2	40	37.2
Caliente Elko	114 115	31.2 46.8	37 40	37.2 49.8
Ely/Yelland	115	40.0 51	40 39	49.8
Eureka	115	58.2	39	30
Fallon NAS	118	4.2	39	25.2
Hawthorne Ind Sprng Rn	118 115	37.8 34.2	38 36	33 31.8
Las Vegas	115	10.2	36	4.8
Lovelock	118	55.2	40	6
Mercury	116	1.2	36	37.2
Nellis AFB	115 116	1.8 10.2	36 42	13.8 34.8
Owyhee Reno	119	46.8	39	34.8
Tonopah	117	4.8	38	4.2
Wildhorse	116	15	41	19.8
Winnemucca Yucca Flat	117 116	4.8 4.8	40 37	54 34.8
NEW HAMPS		4.0	01	01.0
Berlin	71	10.8	44	34.8
Concord	71	3	43	12 48
Jaffrey Keene	72 72	0 16.2	42 42	40 54
Laconia	71	25.8	43	34.2
Lebanon	72	1.8	43	37.8
Manchester	71 71	25.8	42 44	55.8
Mt Washingtn Nashua	71	1.8 31.2	44 42	16.2 46.8
Pease AFB	70	49.2	43	4.8
Wolfeboro	71	22.8	44	0
NEW JERSEN Atlantic Ctly	۲ 74	34.2	39	27
Barnegat Ls	74 74	34.2 16.8	39 40	27
Fairfield	74	16.8	40	52.2
Lakehurst	74	21	40	1.8
Mcguire AFB Millville	74 75	3.6 4.2	40 39	1.2 22.2
Morristown	75	4.2 25.2	40	48
Newark Intl	74	10.2	40	42
Teterboro	74	3	40	51
Trenton NEW MEXICO	74	49.2	40	16.8
Albuquerque	106	3.6	35	3
Cannon	103	19.2	34	22.8
Carlsbad	104 103	16.2 9	32 36	19.8 27
Clayton Arpt Corona	105	9 40.8	30 34	6
Deming	107	4.2	32	15
Farmington	108	13.8	36	45
Gallup/Clark Grants	108 107	46.8 5.4	35	31.2 10.2
Grants Hobbs	107	5.4 1.2	35 32	40.8
Holloman	106	0.6	32	
Holioman				
AFB		46.2	32	18
AFB Las Cruces	106		25	20
AFB Las Cruces Las Vegas	105	9	35 35	39 52.8
AFB Las Cruces			35 35 34	52.8
AFB Las Cruces Las Vegas Los Alamos Moriarity Northrup Str	105 106 106 106	9 16.8 3 2.4	35 34 32	52.8 58.8 54
AFB Las Cruces Las Vegas Los Alamos Moriarity	105 106 106	9 16.8 3	35 34	52.8 58.8

	LONGITUDE		LATITUDE	
	degrees	min	degrees	min
Santa Fe Silver City	106 108	4.8 10.2	35 32	37.2 37.8
Socorro	106	5.4	34	4.2
Taos Truth Or Con	105 107	34.2 16.2	36 33	25.2 13.8
Tucumcari	103	3.6	35	10.8
White Sands	106	2.4	32	37.8
NEW YORK Albany	73	4.8	42	45
Ambrose	74	22.2	40	45
Binghamton Buffalo	75 78	58.8 43.8	42 42	13.2 55.8
Dansville	78	1.2	42	58.2
Elmira	76	5.4	42	10.2
Farmingdale Fort Drum	73 75	25.8 43.8	40 44	43.8 3
Glens Falls	73	37.2	43	21
Griffiss AFB	75 73	2.4	43	13.8
Islip Ithaca	73	0.6 28.2	40 42	46.8 28.8
Jamestown	79	15	42	9
Massena Monticello	74 74	51 4.8	44 41	55.8 42
New York	73	58.8	40	46.2
Newburgh	74	0.6	41	30
Niagara Fall Ogdensburg	78 75	57 2.4	43 44	6 40.8
Oneonta	75	7.2	42	52.2
Plattsburgh	73	28.2	44	39
Rochester Saranac Lk	77 74	40.2 1.2	43 44	7.2 22.8
Schenectady	73	55.8	42	51
Syracuse Utica	76 75	7.2 22.8	43 43	7.2 9
Watertown	75 76	22.8 1.2	43 44	9 0
Westhampton	72	37.8	40	51
White Plains	73 DI INA	43.2	41	4.2
Asheville	82	33	35	25.8
Cape Hattera	75	33	35	16.2
Charlotte Cherry Point	80 76	55.8 52.8	35 34	13.2 54
Dare Co Gr	76	3	36	7.8
Diamond Sho Elizabeth	75 76	3 10.8	35 36	15 16.2
Fayetteville	76 78	10.8 52.8	36	0
Fort Bragg	78	55.8	35	7.8
Greensboro Hickory	79 81	57 22.8	36 35	4.8 45
Hot Springs	82	49.2	35	54
Jacksonville	77 77	37.2	34	49.2
Kinston Mackall Aaf	79	37.8 3	35 35	19.2 1.8
Manteo Arpt	75	40.8	35	55.2
New Bern New River	77 77	3 25.8	35 34	4.8 42
Pope AFB	79	1.2	34	42 10.2
Raleigh-Durh	78	46.8	35	52.2
Rocky Mt Southern Pin	77 79	52.8 23.4	35 35	51 14.4
Wilmington	77	55.2	34	16.2
Winston-	80	13.8	36	7.8
Salem NORTH DAKC	DTA			
Bismarck	100	45	46	46.2
Devil's Lake Dickenson	98 102	5.4 4.8	48 46	7.2 46.8
Fargo	96	4.8 4.8	46	46.8 54
Grand Forks	97	10.8	47	57
Jamestown Lidgerwood	98 97	40.8 9	46 46	55.2 6
Minot	101	16.8	48	16.2
Roseglen	101	49.8 37.8	47	45 10.8
Williston OHIO	103	37.8	48	10.8
Athens	82	13.8	39	12.6
Canton Cincinnati	81 84	25.8 40.2	40 39	55.2 3
Cleveland	84 81	40.2 40.8	39 41	3 31.2
Columbus	82	52.8	40	0
Dayton Findlay	84 83	1.2 40.2	39 41	54 1.2
Mansfield	82	31.2	40	49.2
Rickenbacker	82	55.8	39	49.2
Toledo Willoughby	83 81	4.8 2.4	41 41	36 37.8
Youngstown	80	40.2	41	16.2
Zanesville	81	5.4	39	57

	LONGITUDE		LATITUDE	
OKLAHOMA	degrees	min	degrees	min
Altus AFB	99	16.2	34	40.2
Ardmore	97	1.2	34	18
Bartlesville Clinton	96 99	0 1.2	36 35	45 21
Enid	97	4.8	36	22.8
Fort Sill	98	2.4	34	39
Gage	99	46.2	36	18
Hobart Lawton	99 98	3 25.2	35 34	0 34.2
Mcalester	95	46.8	34	52.8
Norman	97	28.2	35	13.8
Oklahoma Page	97 94	3.6 37.2	35 34	24 40.8
Ponca City	94 97	0.6	36	40.8
Stillwater	97	5.4	36	9.6
Tinker AFB	97	22.8	35	25.2
Tulsa Vance AFB	95 97	5.4 55.2	36 36	12 19.8
OREGON	51	JJ.2		19.0
Astoria	123 122	52.8	46	9
Aurora Baker	122	45 49.2	45 44	15 49.8
Brookings	124	28.2	42	4.8
Burns Arpt	118	57	43	36
Cape Blanco Cascade	124 121	57 52.8	43 45	22.8 40.8
Cascade Corvallis	121	52.8 16.8	45 44	40.8 30
Eugene	123	13.2	44	7.2
Hillsboro	122	57	45	31.8
Klamath Fall La Grande	121 118	43.8 0	42 45	9 16.8
Lake View	120	21	43	10.8
Meacham	118	2.4	45	30
Medford	122	52.2	42	22.2
Newport North Bend	124 124	3 15	44 43	37.8 25.2
Ontario	117	1.2	44	1.2
Pendleton	118	51	45	40.8
Portland	122	3.6	45 44	36
Redmond Roseburg	121 123	9 22.2	44 43	16.2 13.8
Salem	123	0	44	55.2
Sexton	123	22.2	42	37.2
The Dalles Troutdale	121 122	9 2.4	45 45	37.2 33
PENNSYLVAN		2.1	-10	00
Allentown	75	25.8	40	39
Altoona Beaver Falls	78 80	19.2 19.8	40 40	18 45
Blairsville	79	5.4	40	16.2
Bradford	78	37.8	41	48
Dubois Erie	78	5.4	41	10.8
Franklin	80 79	10.8 52.2	42 41	4.8 22.8
Harrisburg	76	51	40	13.2
Johnstown	78	49.8	40	19.2
Lancaster Latrobe	76 79	1.8 2.4	40 40	7.8 16.8
Middletown	76	46.2	40	10.0
Muir	76	34.2	40	25.8
Nth Philadel	75	1.2	40	4.8
Philadelphia Philipsburg	75 78	15 7.8	39 41	52.8 28.2
Pittsburgh	79	55.8	40	20.2
Reading	75	58.2	40	22.8
Site R	77	25.8	39	43.8
State Colleg Wilkes-Barre	77 75	49.8 43.8	40 41	51 19.8
Williamsport	76	55.2	41	15
Willow Grove	75	9	40	12
RHODE ISLAN Block Island	71	34.8	41	10.2
Nth Kingston	71	25.2	41	36
Providence	71	25.8	41	43.8
SOUTH CARC	B2	43.2	24	30
Anderson Beaufort	82 80	43.2 43.2	34 32	30 28.8
Charleston	80	1.8	32	54
Columbia	81	7.2	33	57
Florence Greenville	79 82	43.2 21	34 34	10.8 51
Mcentire	82 80	21 4.8	33	55.2
	20		50	

	LONGITUDE		LATITUDE	
Myrtle Beach	degrees 78	min 55.8	degrees 33	min 40.8
Shaw AFB	80	28.2	33	58.2
Spartanburg	81	57.6	34	55.2
SOUTH DAKC	98	25.8	45	27
Brookings	98 96	25.0 4.8	45 44	27 18
Chamberlain	99	19.2	43	48
Custer	103	3.6	43	46.2
Ellsworth Huron	103 98	0.6 13.2	44 44	9 22.8
Lemmon	102	10.2	44	22.0 55.8
Mitchell	98	1.8	43	46.2
Mobridge	100	25.8	45	31.8
Philip Pierre	101 100	3.6 16.8	44 44	3 22.8
Rapid City	100	4.2	44	3
Redig	103	19.2	45	9.6
Sioux Falls	96	43.8	43	34.8
Watertown Yankton	97 97	9 22.8	44 42	55.2 55.2
TENNESSEE	01	22.0	12	00.2
Bristol	82	2.4	36	28.8
Chattanooga	85	1.2	35	1.8
Clarksville Crossville	87 85	25.2 4.8	36 35	37.2 57
Dyersburg	89	2.4	36	1.2
Jackson	88	55.2	35	36
Knoxville	83	58.8	35	49.2
Memphis Intl Monteagle	90 85	0 30.6	35 35	3 9
Nashville	86	40.8	36	7.2
Smyrna	86	3	36	0
Abilene	99	40.8	32	25.2
Alice	98	1.8	27	43.8
Amarillo	101	4.2	35	13.8
Austin	97	4.2	30	18
Bergstrom Af Big Sky	97 101	40.8 28.8	30 32	12 23.4
Big Spring	101	27	32	18
Brownsville	97	25.8	25	54
Brownwood Carswell AFB	98 97	57.6 25.8	31 32	47.4 46.8
Chase NAS	97	40.2	28	40.8 22.2
Childress	100	16.8	34	25.8
College Stn	96	22.2	30	34.8
Corpus Chrst Cotulla	97 99	3 13.2	27 28	46.2 27
Dalhart	102	33	36	1.2
Dallas/FW	97	1.8	32	54
Del Rio	100	55.2	29	22.2
Dyess AFB El Paso	99 106	51 2.4	32 31	25.8 48
Ellington Af	95	10.2	29	37.2
Fort Worth	97	21	32	49.2
Ft Hood Aaf Galveston	97 94	43.2 52.2	31 29	9 16.2
Gray AFB	94 97	49.8	31	4.2
Greenville	96	4.2	33	4.2
Guadalupe	104	4.8	31	49.8
Harlingen Hondo	97 99	40.2 10.2	26 29	13.8 21
Houston	95	21	29	58.2
Junction	99	46.2	30	30
Kelly AFB	98 99	34.8 4.8	29 29	22.8 58.8
Kerrville Killeen	99 97	4.0 40.8	29 31	56.6 4.8
Kingsville	97	49.2	27	30
Laredo Intl	99	28.2	27	31.8
Laughlin AFB Longview	100 94	46.8 43.2	29 32	22.2 22.8
Lubbock	94 101	49.2 49.2	33	22.0 39
Lufkin	94	45	31	13.8
Marfa	104	1.2	30	22.2
Mcallen Midland	98 102	13.8 10.8	26 31	10.8 57
Mineral Wlls	98	4.2	32	46.8
Palacios	96	15	28	43.2
Paris/Cox Plainview	95 101	27 42.6	33 34	37.8 10.2
Port Arthur	94	42.0	34	34.8
Reese AFB	102	3	33	36
Rockport	97	1.8	28	4.8

_	LONGITUDE		LATITUDE	
	degrees	min	degrees	min
San Angelo San Antonio	100 98	3 28.2	31 29	22.2 31.8
Sanderson	102	25.2	30	10.2
South Brazos	95	52.2	28	1.8
Stephenville	98	10.8	32	13.2
Temple Tyler/Pounds	97 95	25.2 2.4	31 32	9 22.2
Victoria	96	2. 4 55.2	28	51
Wichita Flls	98	3	33	58.8
Wink UTAH	103	1.2	31	46.8
Blanding	109	46.8	38	1.8
Bullfrog Mar	110	4.2	37	30
Cedar City Delta	113 112	0.6 34.8	37 39	42 19.8
Eagle Range	112	34.0 4.2	41	3
Green River	110	9	39	0
Hanksville	110	43.2	38	22.2
Hill AFB Logan	111 111	58.2 51	41 41	7.2 46.8
Milford	113	1.8	38	43.2
Moab	109	45	38	46.2
Ogden	112	1.2	41	10.8
Price/Carbon Provo	110 111	45 43.2	39 40	37.2 13.2
Roosevelt	110	37.8	40	30
Saint George	113 111	3.6	37	4.8 46.8
Salt Lake Ct Tooele	111	58.2 1.2	40 40	46.8 10.2
Vernal	109	31.2	40	27
Wendover	114	3	41	13.2
VERMONT Burlington	73	9	44	28.2
Montpelier	72	34.2	44	12
Newport	72	19.8	45	33
Rutland St. Johnsbury	73 72	57 1.2	43 44	31.8 25.2
St Johnsbury Wilmington	72	52.8	44	23.2 52.8
VIRGINIA				_
Charlottes Chesapeake	78 76	27 1.2	38 37	7.8 30
Danville	79	19.8	36	34.2
Fort Belvoir	77	10.8	38	43.2
Fort Eustis Hot Springs	76 79	37.2 49.2	37 37	7.8 57
Langley AFB	76	22.2	37	4.8
Lynchburg	79	1.2	37	19.8
Newport	76	3	37	7.8
News Norfolk NAS	76	16.8	36	55.8
Norfolk Rgnl	76	1.2	36	54
Oceana NAS Quantico Mca	76 77	1.8 1.8	36 38	49.2 30
Richmond	77	1.o 19.8	30 37	30 30
Roanoke	79	58.2	37	19.2
Muni	70	E1	20	16.0
Staunton Volens	78 78	51 58.8	38 36	16.2 57
Wallops Sta	75	28.8	37	51
WASHINGTO Bellingham	N 122	31.8	48	48
Bellingham Bremerton	122	46.2	48 47	48 28.8
Burlington	122	19.8	48	30
Colville	118	28.2	48	52.8
Ephrata Everet/Paine	119 122	31.2 16.8	47 47	19.2 55.2
Fairchild	117	39	47	37.2
Fort Lewis	122	34.8	47	4.8
Hanford Hoquiam	119 123	3.6 58.2	46 46	34.2 58.2
Mcchord AFB	123	28.8	47	9
Moses Lake	119	19.2	47	12
Oak Harbor	122 122	40.8 5.4		15 58.2
Olympia Omak	119	5.4 31.8		56.2 25.2
Pasco	119	7.2	46	16.2
Port Angeles	123	3		7.2
Pullman Quillayute	117 124	7.2 33		45 57
Renton	124	13.2		30
Seattle	122	1.8	47	27
Shelton Spokane	123 117	9 31.8		15 37.8
Tacoma	122	34.8		16.2
Toledo	122	4.8		28.8

	LONGITUDE degrees	min	LATITUDE degrees	min		LONGITUDE degrees	min	LATITUDE degrees	min		LONGITUDE degrees	m
Walla Walla	118	16.8	46	6	WISCONSIN					WYOMING		
Wenatchee	120	1.2	47	24	Appleton	88	31.2	44	15	Big Piney	110	
Whidbey Is	122	39	48	21	Eau Claire	91	28.8	44	52.2	Casper	106	1
Yakima	120	31.8	46	34.2	Green Bay	88	7.8	44	28.8	Cheyenne	104	
WEST VIRGIN	NIA				Janesville	89	1.8	42	37.2	Cody	109	
Beckley	81	7.2	37	46.8	La Crosse	91	15	43	52.2	Douglas	105	
Bluefield	81	13.2	37	18	Lone Rock	90	10.8	43	12	Evanston	111	
Charleston	81	3.6	38	22.2	Madison	89	19.8	43	7.8	Gillette	105	
Clarksburg	80	13.8	39	16.8	Manitowac	87	40.2	44	7.8	Jackson	110	
Elkins	79	51	38	52.8	Milwaukee	87	5.4	42	57	Lander	108	
Huntington	82	33	38	22.2	Mosinee	89	40.2	44	46.8	Laramie	105	,
Lewisburg	80	2.4	37	52.2	Neenah	88	31.8	44	13.2	Moorcroft	104	
Martinsburg	77	58.8	39	24	Oshkosh	88	34.2	44	0	Rawlins	107	
Morgantown	79	55.2	39	39	Rhinelander	89	27	45	37.8	Riverton	108	
Parkersburg	81	25.8	39	21	Rice Lake	91	43.2	45	28.8	Rock Springs	109	
Wheeling	80	39	40	10.8	Volk Fld	90	16.2	43	55.8	Sheridan	106	
Wh Sulphur	80	1.2	37	27.6	Wausau	89	37.2	44	55.2	Worland	107	
•										Yellowstone	110	1

CANADA

CITY	PROVINCE	LON	GITUDE	LATIT	JDE
Calgary	Alberta	114	7	51	14
Churchill	Newfoundland	94	0	58	45
Coppermine	Northwest Terr.	115	21	67	49
Edmonton	Alberta	113	25	53	34
Frederickton	New Brunswick	66	40	45	57
	Northwest Terr	134	40 50	67	29
Ft Mcpherson					
Goose Bay	Newfoundland	60	20	53	15
Halifax	Nova Scotia	63	34	44	39
Hazelton	BC	127	38	55	15
Kenora	Ontario	94	29	49	47
Labrador City	Labrador	66	52	52	56
Montreal	Quebec	73	39	45	32
Mt. Logan	Yukon	140	24	60	34
Nakina	Yukon	132	48	59	12
Ottawa	Ontario	75	45	45	18
Peace River	Alberta	117	18	56	15
Pr. Edward Isl	Nova Scotia	63	9	46	14
Quebec	Quebec	71	15	46	50
Regina	Saskatchewan	104	38	50	30
Saskatoon	Saskatchewan	101	32	52	10
St. Johns	Newfoundland	52	43	47	34
Toronto	Ontario	79	23	43	39
Vancouver	BC	123	7	49	16
Victoria	BC	123	20	48	26
Whitehorse	Yukon	135	3	60	43
Winnipeg	Manitoba	97	9	49	53
NTERNA		0.	0		00
NIERNA	HUNAL				
Aberdeen	Scotland	2	9 w	57	9 r
Adelaide	Australia	138	36 e	34	55 s
Amsterdam	Holland	4	53 e	52	22 r
Ankara	Turkey	32	55 e	39	55 r
Asunción	Paraguay	57	40 w	25	15 s
Athens	Greece	23	43 e	37	58 r
Auckland	New Zealand	174	45 e	36	52 s
Bangkok	Thailand	100	30 e	13	45 r
Barcelona	Spain	2	9 e	41	23 r
Belém	Brazil	48	29 w	1	28 s
Belfast	Northern Ireland	5	56 w	54	37 r
Belgrade	Yuqoslavia	20	32 e	44	52 r
Berlin	Germany	13	25 e	52	30 r
Birmingham	England	1	55 w	52	25 r
Bombay	India	72	48 e	19	_0 r
Bordeaux	France	0	40 e 31 w	44	50 r
Bremen	Germany	8	31 W 49 e	44 53	50 r
		8 153	49 e 8 e	53 27	5 r 29 s
Brisbane	Australia				
Bristol	England	2	35 w	51	28 r
Brussels	Belgium	4	22 e	50	52 r
Bucharest	Romania	26	7 e	44	25 r
Budapest	Hungary	19	5 e	47	30 r
Buenos Aires	Argentina	58	22 w	34	35 s
Cairo	Egypt	31	21 e	30	2 r
Canton	China	113	15 e	23	7 r
	South Africa	18	22 e	33	55 s
Cape Lown		67	2 w	10	28 r
Cape Town Caracas	Venezuela			28	37 r
Caracas	Venezuela	106	5 w		
Caracas Chihuahua	Mexico	106 106	5 w 34 e		
Caracas Chihuahua Chongqing	Mexico China	106	34 e	29	46 r
Caracas Chihuahua Chongqing Copenhagen	Mexico China Denmark	106 12	34 e 34 e	29 55	46 r 40 r
Caracas Chihuahua Chongqing Copenhagen Córdoba	Mexico China Denmark Argentina	106 12 64	34 e 34 e 10 w	29 55 31	46 r 40 r 28 s
Caracas Chihuahua Chongqing Copenhagen Córdoba Darwin	Mexico China Denmark Argentina Australia	106 12 64 130	34 e 34 e 10 w 51 e	29 55 31 12	46 r 40 r 28 s 28 s
Caracas Chihuahua Chongqing Copenhagen Córdoba Darwin Dublin	Mexico China Denmark Argentina Australia Ireland	106 12 64 130 6	34 e 34 e 10 w 51 e 15 w	29 55 31 12 53	46 r 40 r 28 s 28 s 20 r
Caracas Chihuahua Chongqing Copenhagen Córdoba Darwin	Mexico China Denmark Argentina Australia	106 12 64 130 6 30	34 e 34 e 10 w 51 e	29 55 31 12	46 r 40 r 28 s 28 s 20 r
Caracas Chihuahua Chongqing Copenhagen Córdoba Darwin Dublin	Mexico China Denmark Argentina Australia Ireland	106 12 64 130 6	34 e 34 e 10 w 51 e 15 w	29 55 31 12 53	46 r 40 r 28 s 28 s 20 r 53 s
Caracas Chihuahua Chongqing Copenhagen Córdoba Darwin Dublin Dublin Durban	Mexico China Denmark Argentina Australia Ireland South Africa	106 12 64 130 6 30	34 e 34 e 10 w 51 e 15 w 53 e	29 55 31 12 53 29	46 n 40 n 28 s 28 s 20 n 53 s 55 n 7 n

Guatemala City Guatemala 90 31 w 14 37 Guayaquil Ecuador 79 56 w 2 10 Hamburg Germany 10 2 e 53 33 Hammerfest Norway 23 38 e 70 38 Havana Cuba 82 23 w 23 8 Heisinki Finland 25 0 e 60 10 Hobart Tasmania 147 19 e 42 52 30 Jakarta Indonesia 106 48 e 6 16 12 Lingston Jamaica 76 49 w 17 59 La Paz Bolivia 68 22 w 12 0 Liversol England 3 34 2 w 40 26 Madrid Spain 3 42 w 40 26 Maroita Prilipines 120 57 e 14 35 Maroita <th>CITY</th> <th>COUNTRY</th> <th></th> <th>GITUDE</th> <th></th> <th>TUDE</th>	CITY	COUNTRY		GITUDE		TUDE
Guayaquil Ecuador 79 56 w 2 10 Hamburg Germany 10 2 e 53 33 Hammerfest Norway 23 38 e 70 38 Havana Cuba 82 23 w 23 88 Hobart Tasmania 147 19 e 42 52 Iquique Chile 70 7 w 20 10 Irkutsk Russia 104 20 e 52 30 Jakarta Indonesia 106 48 e 6 16 Johannesburg South Africa 28 4 e 26 12 Leds England 1 30 w 53 45 London England 3 0 w 53 55 London England 2 15 w 53 30 Marchester England 2 15 w 53 30 Marinia Phillipines 120 <th></th> <th></th> <th></th> <th></th> <th></th> <th>50 n</th>						50 n
Hamburg Germany 10 2 e 53 33 Hammerfest Norway 23 38 e 70 38 Havana Cuba 82 23 w 38 e 70 38 Helsinki Finland 25 0 e 60 10 Hobart Tasmania 147 19 e 42 52 Iquique Chile 70 7 w 0 10 Irkutsk Russia 104 20 e 52 30 Jakarta Indonesia 106 48 e 6 16 Johannesburg South Africa 28 4 e 6 16 Johannesburg South Africa 88 4 e 6 16 Liverso England 3 0 w 53 25 London England 2 15 w 53 30 Maridi Spain 3 42 w 40 26 Marotille						37 n
Hammerfest Norway 23 38 e 70 38 Havana Cuba 82 23 w 23 8 Helsinki Finland 25 0 e 60 10 Hobart Tasmania 147 19 e 42 52 Iquique Chile 70 7 w 20 10 Irkutsk Russia 106 48 e 6 16 Johannesburg South Africa 28 4 e 26 12 Kingston Jamaica 76 49 w 17 59 La Paz Bolivia 68 22 w 12 0 Liverpool England 0 5 w 13 3 25 London England 2 15 w 53 30 Machester England 2 15 w 53 30 Marchester England 2 15 w 53 30 Machester England 1 </td <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>					_	
Havana Cuba 82 23 8 Helsinki Finland 25 0 6 60 10 Hobart Tasmania 147 19 e 52 30 Jakarta Indonesia 106 48 e 6 16 Johannesburg South Africa 28 4 e 26 12 Kingston Jamaica 76 49 w 17 59 La Paz Bolivia 68 22 w 12 10 Lima Peru 77 2 w 12 0 53 25 London England 3 0 53 30 Marseilles France 5 20 e 43 30 Marseilles France 5 20 e 43 20 Marseilles France 5 20 e 43 20 Marseilles France						33 n
Helsinki Finland 25 0 e 60 10 Hobart Tasmania 147 19 e 42 52 Iquique Chile 70 7 w 20 10 Irkutsk Russia 104 20 e 52 30 Jakarta Indonesia 106 48 e 6 16 Johannesburg South Africa 28 4 e 26 12 Lapaz Bolivia 68 22 w 16 27 Leeds England 1 30 w 53 45 Lorono England 0 5 w 13 32 Lyons France 4 50 e 45 45 Madrid Spain 3 42 w 40 26 Mazatia Mexico 106 25 w 30 30 Marchester England 2 15 w 33 30 Mazatia Mexico 106 25 w 30 31 32 Meloume Australia 144						
Hobart Tasmania 147 19 e 42 52 Iquique Chile 70 7 w 20 10 Ikutsk Russia 104 20 e 52 30 Jakarta Indonesia 106 48 e 6 16 Johannesburg South Africa 28 4 e 26 12 Kingston Jamarica 76 49 w 17 59 Leeds England 1 30 w 53 25 London England 3 0 w 53 30 Manida Spain 3 42 w 40 26 Manida Philipines 120 57 e 14 35 Marca Mexico 106 25 w 23 12 Meca Saudi Arabia 39 45 e 21 29 Melbourne Australia 144 58 e 37 36 e 55 45 Munich <td></td> <td></td> <td></td> <td></td> <td></td> <td>8 n</td>						8 n
Iquique Chile 70 7 w 20 10 Irkutsk Russia 104 20 e 52 30 Jakarta Indonesia 106 48 e 26 12 Kingston Jamaica 76 49 w 17 59 La Paz Bolivia 68 22 w 16 27 Leeds England 1 30 w 53 45 Liverpool England 3 0 w 53 25 London England 0 5 w 51 32 Lyons France 4 50 e 45 45 Madrid Spain 3 42 w 40 26 Marseilles France 5 20 e 43 20 Marseilles France 5 20 e 43 23 Marseilles France 9 7 w 19 26 Marseilles France 9 7						10 n
Irkutsk Russia 104 20 e 52 30 Jakarta Indonesia 106 48 e 6 16 Johannesburg South Africa 28 4 e 26 12 Kingston Jamaica 76 49 w 17 59 La Paz Bolivia 68 22 w 16 27 Leeds England 1 30 w 53 45 Lima Peru 77 2 w 12 0 Liverpool England 0 5 w 51 32 Lyons France 4 50 e 45 45 Madrid Spain 3 42 w 40 26 Mazatian Mexico 106 25 w 30 31 32 Marchester England 2 15 w 33 30 wait 35 34 45 20 Mazatian Mexico 31 32 34 32 37 36 55 45 45 44 35 36 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>52 s</td></td<>						52 s
Jakarta Indonesia 106 48 e 6 16 Johannesburg South Africa 28 4 e 26 12 Kingston Jamarica 76 49 w 17 59 La Paz Bolivia 68 22 w 16 27 Leeds England 1 30 w 53 25 London England 0 5 w 51 32 Lyons France 4 50 e 45 45 Madrid Spain 3 42 w 40 26 Manchester England 2 15 w 53 30 Marseilles France 5 20 e 43 20 Marseilles France 5 20 e 43 20 Marseilles France 5 20 e 43 21 Mecca Sauti Arabia 39 45 e 21 29 Melourne Australia 1						10 s
Johannesburg South Africa 28 4 e 26 12 Kingston Jamaica 76 49 w 17 59 La Paz Bolivia 68 22 w 16 27 Leeds England 1 30 w 53 45 Lima Peru 77 2 w 12 0 Liverpool England 3 0 w 53 25 London England 2 15 w 53 30 Machid Spain 3 42 w 40 26 Manchester England 2 15 w 53 30 Marseilles France 5 20 e 43 20 Marseilles France 5 20 e 43 23 Marseilles France 9 7 w 19 26 Marseilles France 9 7 w 19 26 Marseilles France 20 e						
Kingston Jamaica 76 49 w 17 59 La Paz Bolivia 68 22 w 16 27 Leeds England 1 30 w 53 45 Lima Peru 77 2 w 12 0 Liverpool England 3 0 w 53 45 London England 0 5 w 13 22 Lyons France 4 50 e 45 45 Marchester England 2 15 w 53 30 Marseilles France 5 20 e 43 20 Mazatlán Mexico 106 25 w 21 29 Melbourne Australia 144 58 e 37 47 Mexico City Mexico 9 7 w 48 8 Nagasaki Japan 129 57 e 32 48 Nagoya Japan 136 5						
La Paz Bolivia 68 22 w 16 27 Leeds England 1 30 w 53 45 Lima Peru 77 2 w 12 0 Liverpool England 3 0 w 53 25 London England 0 5 w 51 32 Lyons France 4 50 e 43 30 Markind Spain 3 42 w 40 26 Manchester England 2 15 w 53 30 Marseilles France 5 20 e 43 20 Marseilles France 5 20 e 43 20 Mecca Saudi Arabia 39 45 e 21 29 Melbourne Australia 144 58 e 37 47 Mexico Uruguay 56 10 w 34 53 Moscow Russaia 37 36 e <						
Leeds England 1 30 w 53 45 Lima Peru 77 2 w 12 0 Liverpool England 3 0 w 53 25 London England 0 5 w 51 32 Lyons France 4 50 e 45 45 Madrid Spain 3 42 w 40 26 Manchester England 2 15 w 53 30 Marseilles France 5 20 e 43 20 Marseilles France 5 20 e 43 20 Marseilles France 9 7 w 19 26 Marseilles France 99 7 w 19 26 Maleloume Australia 144 58 e 37 45 Montevideo Uruguay 56 10 w 45 53 Moscow Russia 37 3						
Lima Peru 77 2 w 12 0 Liverpool England 3 0 w 53 25 London England 0 5 w 51 32 Lyons France 4 50 e 45 45 Madrid Spain 3 42 w 40 26 Manila Phillipines 120 57 e 14 35 Marseilles France 5 20 e 43 20 Mazatlán Mexico 106 25 w 23 12 Mecca Saudi Arabia 39 45 e 21 29 Mecco Saudi Arabia 39 45 e 21 29 Mecco Saudi Arabia 39 45 e 21 29 Mecio Mayasia 37 56 10 w 34 53 Moscow Russia 37 36 e 55 e 1 25 Najoio Ken						
Liverpool England 3 0 w 53 25 London England 0 5 w 51 32 Lyons France 4 50 e 45 45 Madrid Spain 3 42 w 40 26 Manchester England 2 15 w 53 30 Manila Phillipines 120 57 e 43 32 Marseilles France 5 20 e 43 20 Mazattán Mexico 106 25 w 23 12 Mecca Saudi Arabia 39 45 e 37 47 Mexico City Mexico 99 7 w 19 26 Milan Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Magosaki Japan 136 56 e 35 7 Naiobi Kenya 36						
London England 0 5 w 51 32 Lyons France 4 50 e 45 45 Madrid Spain 3 42 w 40 26 Manchester England 2 15 w 53 30 Manila Phillipines 120 57 e 14 35 Marseilles France 5 20 e 43 20 Marseilles France 5 20 e 43 20 Mactid Mexico 99 7 w 19 26 Milan Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Moscow Russia 37 36 e 55 45 Munich Germany 11 35 e 48 Nagosai Japan 129 Nanjing China 118 53 e 21 38 Nanjing <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Lyons France 4 50 e 45 45 Madrid Spain 3 42 w 40 26 Manchester England 2 15 w 53 30 Manila Phillipines 120 57 e 14 35 Marsetiles France 5 20 e 43 20 Mazatlán Mexico 106 25 w 23 12 Mecca Saudi Arabia 39 45 e 21 29 Melbourne Australia 144 58 e 37 47 Mexico City Mexico 99 7 w 19 26 Milan Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Magoya Japan 136 56 e 35 7 Nairobi Kenya 36 55 e 1 25 Naples Italy 14						
Madrid Spain 3 42 w 40 26 Manchester England 2 15 w 53 30 Manila Phillipines 120 57 e 14 35 Marseilles France 5 20 e 43 20 Mazattán Mexico 106 25 w 23 12 Mecca Saudi Arabia 39 45 e 37 47 Mexico City Mexico 99 7 w 19 26 Milan Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Munich Germany 11 35 e 42 48 Nagosaki Japan 136 56 e 35 7 Nairobi Kenya 36 55 e 1 25 Nanjing China 118 53 e 32 33 Newesatle England 1						
Manchester England 2 15 w 53 30 Manila Phillipines 120 57 e 14 35 Marseilles France 5 20 e 43 20 Mazatlán Mexico 106 25 w 23 12 Mecca Saudi Arabia 39 45 e 21 29 Melcourne Australia 144 58 e 37 47 Mexico City Mexico 99 7 w 19 26 Milan Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Moscow Russia 37 36 e 55 45 Magoasi Japan 129 57 e 24 48 Nagoasi Japan 136 56 e 35 7 Nainign China 118 53 e 30 46 27 Osaka Japan </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Manila Phillipines 120 57 e 14 35 Marselilles France 5 20 e 43 20 Mazatlán Mexico 106 25 w 21 29 Mecca Saudi Arabia 39 45 e 21 29 Mekico City Mexico 99 7 w 19 26 Milan Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Moscow Russia 37 36 e 55 45 Munich Germany 11 35 e 48 8 Nagoya Japan 136 56 e 35 7 Nairobi Kenya 36 55 e 12 50 Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 458 8 Odessa Ukraine 30						
Marseilles France 5 20 e 43 20 Mazattán Mexico 106 25 w 23 12 Mecca Saudi Arabia 39 45 e 21 29 Melbourne Australia 144 58 e 37 47 Mexico City Mexico 99 7 w 19 26 Milan Italy 9 10 e 45 z 27 Montevideo Uruguay 56 10 w 34 53 Moscow Russia 37 36 e 55 45 48 Nagosaki Japan 136 56 e 35 7 Nairobi Kenya 36 55 c 1 25 Nanjing China 118 53 e 32 a 33 Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 4 58 8 20 57 Panama 79 32 w 58 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Mazatlán Mexico 106 25 w 23 12 Mecca Saudi Arabia 39 45 e 21 29 Melbourne Australia 144 58 e 21 29 Mulian Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Moscow Russia 37 36 e 55 45 Munich Germany 11 35 e 48 8 Nagasaki Japan 129 57 e 32 48 Nagoya Japan 136 56 e 35 7 Nanjing China 118 53 e 22 38 Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 54 58 Osaka Japan 135 30 e 34 32 Osio Norway 10 <td< td=""><td>in a ma</td><td></td><td></td><td></td><td></td><td></td></td<>	in a ma					
Mecca Saudi Arabia 39 45 e 21 29 Melbourne Australia 144 58 e 37 47 Mexico City Mexico 99 7 w 19 26 Milan Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Monto Germany 11 35 e 48 8 Nagoya Japan 136 56 e 35 1 25 Nairobi Kenya 36 55 e 1 25 3 Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 45 88 Odsaka Japan 135 30 e 34 32 Osaka Japan 135 30 e 34 32 Osaka Japan 135 30 e 34 32 Osaka Japan <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Melbourne Australia 144 58 e 37 47 Mexico City Mexico 99 7 w 19 26 Milan Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Moscow Russia 37 36 e 55 45 Munich Germany 11 35 e 48 8 Nagosaki Japan 129 57 e 32 48 Najoby Japan 136 56 e 35 7 Nairobi Kenya 36 55 e 1 25 Nanjing China 118 53 e 32 3 Newcastle England 1 37 w 56 50 Odessa Ukraine 30 48 e 46 27 Osak Japan 135 30 e 34 32 Oslo Norway 10 42 e<						
Mexico City Mexico 99 7 w 19 26 Milan Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Moscow Russia 37 36 e 55 45 Munich Germany 11 35 e 48 8 Nagosaki Japan 129 57 e 32 48 Nagoya Japan 136 56 e 35 7 Nairobi Kenya 36 55 e 1 25 Nanjing China 118 53 e 28 38 Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 54 58 Odessa Ukraine 30 48 e 46 27 Osaka Japan 135 30 e 34 32 Osia Norway 10 42 e						
Milan Italy 9 10 e 45 27 Montevideo Uruguay 56 10 w 34 53 Moscow Russia 37 36 e 55 45 Munich Germany 11 35 e 48 8 Nagoya Japan 129 57 e 32 48 Nagoya Japan 136 65 e 1 25 Nairobi Kenya 36 55 e 1 25 Napires Italy 14 15 e 40 50 Naples Italy 14 15 e 40 50 Naples Italy 14 15 e 40 50 Naples Italy 14 15 e 40 50 Nagosa Ukraine 30 48 e 46 27 Osaka Japan 135 30 e 34 32 Osaka Japan 135 30 e						
Montevideo Uriguay 56 10 w 34 53 Moscow Russia 37 36 e 55 45 Munich Germany 11 35 e 48 8 Nagosaki Japan 129 57 e 32 48 Nagosya Japan 136 56 e 35 7 Nairobi Kenya 36 55 e 1 25 Nanjing China 118 53 e 32 33 Newcastle England 1 37 w 54 58 Odessa Ukraine 30 48 e 46 27 Oska Japan 135 30 e 34 32 Oska Japan 135 30 e 34 57 Parama 79 32 w 8 58 Paramaribo Surinam 55 15 w 5 55 Paris France 2 20 e 48						
Moscow Russia 37 36 e 55 45 Munich Germany 11 35 e 48 8 Nagasaki Japan 129 57 e 32 48 Nagosya Japan 136 56 e 35 7 Nairobi Kenya 36 55 e 1 25 Nanjing China 118 53 e 2 33 Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 54 58 Odessa Ukraine 30 48 e 62 27 Osaka Japan 135 30 e 34 32 Oslo Norway 10 42 e 59 57 Panama City Panama 79 32 w 8 58 Paris France 2 20 e 48 48 Beijing China 116 25 e			-			
Munich Germany 11 35 e 48 8 Nagasaki Japan 129 57 e 32 48 Nagoya Japan 136 56 e 35 7 Nairobi Kenya 36 55 e 1 25 Nairobi Kenya 36 55 e 1 25 Nanjing China 118 53 e 32 3 Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 54 58 Odessa Ukraine 30 48 e 46 27 Osaka Japan 135 30 e 34 32 Osaka Japan 79 32 w 8 58 Paramaribo Surinam 79 32 w 8 58 Paramaribo Surinam 116 25 e 31 57 Paris France 2 20 e						
Nagasaki Japan 129 57 e 32 48 Nagoya Japan 136 56 e 35 7 Nairobi Kenya 36 55 e 32 3 Nairobi Kenya 36 55 e 32 3 Napiles Italy 14 15 e 40 50 Newcastle England 1 37 w 458 58 Odessa Ukraine 30 48 e 46 27 Osaka Japan 135 30 e 34 32 Oslo Norway 10 42 e 59 57 Panama City Panama 79 32 w 8 58 Paramaribo Surinam 55 15 w 5 45 Paramaribo Surinam 116 25 e 31 57 Paris France 2 20 e 48 48 Beijing China 116 25 w						
Nağoya Japan 136 56 e 35 7 Nairobi Kenya 36 55 e 1 25 Nanjing China 118 53 e 2 3 Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 54 58 Odessa Ukraine 30 48 e 46 27 Osaka Japan 135 30 e 34 32 Oslo Norway 10 42 e 59 57 Panama 79 32 w 8 58 Paris France 2 20 e 48 Beijing China 115 52 e 31 57 Plymouth England 4 5 w 50 55 Perth Australia 115 52 e 31 57 Rome Italy 12 27 e 41 54 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>8 n</td></t<>						8 n
Nairobi Kenya 36 55 e 1 25 Nanjing China 118 53 e 32 3 Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 54 58 Odessa Ukraine 30 48 e 46 27 Osaka Japan 135 30 e 34 32 Oslo Norway 10 42 e 59 57 Panama City Panama 79 32 w 8 58 Paramaribo Surinam 55 15 w 5 55 Paris France 2 20 e 48 48 Beijing China 116 25 e 31 57 Parke France 2 20 e 48 48 Beijing China 116 25 e 31 57 Rome Italy 12 27 e						40 n 7 n
Nanjing China 118 53 e 32 3 Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 45 8 60 50 Odessa Ukraine 30 48 e 46 27 Osaka Japan 135 30 e 34 32 Oslo Norway 10 42 e 59 57 Panama City Panama 79 32 w 8 58 Paramaribo Surinam 55 15 w 5 45 Paris France 2 20 e 48 48 Beijing China 116 25 e 31 57 Plymouth England 4 5 w 50 55 Rio de Janeiro Brazil 38 27 w 12 26 Salvador Brazil 30 18 e 59 56 Sao Paulo Brazil						
Naples Italy 14 15 e 40 50 Newcastle England 1 37 w 54 58 Odessa Ukraine 30 48 e 62 77 Osaka Japan 135 30 e 34 32 Oslo Norway 10 42 e 59 57 Panama City Panama 79 32 w 8 58 Paramaribo Surinam 55 15 w 5 45 Paris France 2 20 e 48 48 Beijing China 116 25 e 31 57 Ptrmouth England 4 5 w 50 25 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 12 56 Santiago Chile 70 45 w 30 88 St. Petersburg Russia 30 18						25 S 3 n
Newcastle England 1 37 w 54 58 Odessa Ukraine 30 48 e 46 27 Osaka Japan 135 30 e 48 e 46 27 Osaka Japan 135 30 e 53 30 e 34 32 Oslo Norway 10 42 e 59 57 Panama City Panama 79 32 w 8 58 Paramaribo Surinam 55 15 w 54 55 Paris France 2 20 e 48 48 Beijing China 116 25 e 39 55 Perth Australia 115 52 e 31 57 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 32 28 St. Petersburg Rusaia 30 18 e 59 56 Saor						50 n
Odessa Ukraine 30 48 e 46 27 Osaka Japan 135 30 e 34 32 Osaka Japan 135 30 e 34 32 Oslo Norway 10 42 e 59 57 Panama City Panama 79 32 w 8 58 Paramaribo Surinam 55 15 w 5 45 Paris France 2 20 e 48 48 Beijing China 116 25 e 31 57 Proth Australia 115 52 e 31 57 Plymouth England 4 5 w 50 55 Rio de Janeiro Brazil 43 12 w 22 57 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 12 56 Sao Paulo Brazil 151 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Osaka Japan 135 30 e 34 32 Osio Norway 10 42 e 59 57 Panama City Panama 79 32 w 8 58 Parama City Panama 79 32 w 8 58 Paris France 2 20 e 48 48 Beijing China 116 25 e 31 57 Pdrib Australia 115 52 e 31 57 Plymouth England 4 5 w 50 25 Rio de Janeiro Brazil 38 27 w 12 56 Santiago Chile 70 45 w 33 28 St. Petersburg Russia 30 18 e 59 56 Sao Paulo Brazil 23 20 e 42 40 Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Oslo Norway 10 42 e 59 57 Panama City Panama 79 32 w 8 58 Paramaribo Surinam 55 15 w 54 58 Paris France 2 20 e 48 48 Beijing China 116 25 e 39 55 Perth Australia 115 52 e 31 57 Plymouth England 4 5 w 50 25 Rode Janeiro Brazil 43 12 w 22 57 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 32 32 Sa Patilo Brazil 46 31 w 33 28 Stockolm Bulgaria 23 20 e 42 40 Stockolm Sweden 18 3 e 50 74 Stockolm Medagascar 47						
Panama City Panama 79 32 w 8 58 Paramaribo Surinam 55 15 w 5 45 Paris France 2 20 e 48 48 Beijing China 116 25 e 39 55 Perth Australia 115 52 e 31 57 Pitmoth England 4 5 w 50 25 Rio de Janeiro Brazil 43 12 w 22 57 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 12 56 Santiago Chile 70 45 w 33 28 Sto Paulo Brazil 46 31 w 23 11 50 Sofa au Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 55 45 Tokyo Japan					•••	
Paramaribo Surinam 55 15 w 5 45 Paris France 2 20 e 48 48 Beijing China 116 25 e 31 57 Perth Australia 115 52 e 31 57 Plymouth England 4 5 w 50 25 Rio de Janeiro Brazil 43 12 w 22 57 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 12 56 Santiago Chile 70 45 w 33 28 St. Petersburg Russia 30 18 e 59 56 Sao Paulo Brazil 46 31 w 23 31 Shanghai China 121 28 e 31 10 Sofia Bulgaria 23 20 e 42 40 Stockholm Sweden 18 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Paris France 2 20 e 48 48 Beijing China 116 25 e 39 55 Perth Australia 115 52 e 31 57 Plymouth England 4 5 w 50 25 Rio de Janeiro Brazil 43 12 w 22 57 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 12 56 Santiago Chile 70 45 w 33 28 St. Petersburg Russia 30 18 e 59 56 Sao Paulo Brazil 46 31 w 23 31 10 Sofia Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 50 74 Sydney Australia 151 0 e 34 0 Tananarive Madagascar<						
Beijing China 116 25 e 39 55 Perth Australia 115 52 e 31 57 Pytmouth England 4 5 w 50 25 Rio de Janeiro Brazil 43 12 w 22 57 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 33 28 Santiago Chile 70 45 w 33 28 Sa Paulo Brazil 46 31 w 23 31 10 Sofa Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 55 40 Stockholm Sweden 18 3 e 18 50 Teheran Iran 51 45 e 35 45 Tokyo Japan 139 45 e 35 45 Venice Italy 12						48 n
Perth Australia 115 52 e 31 57 Plymouth England 4 5 w 50 25 Rio de Janeiro Brazil 43 12 w 22 57 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 12 56 Santiago Chile 70 45 w 33 28 St. Petersburg Russia 30 18 e 59 56 Sao Paulo Brazil 46 31 w 23 31 Shanghai China 121 28 e 31 10 Sofa Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 35 45 Tokyo Japan 139 45 e 35 40 Tripoli Libya 13						55 n
Plymouth England 4 5 w 50 25 Rio de Janeiro Brazil 43 12 w 22 57 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 12 56 Santiago Chile 70 45 w 33 28 St. Petersburg Russia 30 18 e 59 56 Sao Paulo Brazil 46 31 w 23 31 10 Soffa Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 34 0 Tananarive Madagascar 47 33 e 18 50 Tokyo Japan 139 45 e 35 40 Tripoli Libya 12 20 e 45 26 Veracruz Mexico </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Río de Janeiro Brazil 43 12 w 22 57 Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 12 56 Santiago Chile 70 45 w 33 28 St. Petersburg Russia 30 18 e 59 56 Sao Paulo Brazil 46 31 w 23 31 Shanghai China 121 28 e 31 10 Soffa Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 34 0 Tananarive Madagascar 47 33 e 18 50 Teheran Iran 51 45 e 35 45 Tokyo Japan 139 45 e 35 40 Venice Italy 12						25 n
Rome Italy 12 27 e 41 54 Salvador Brazil 38 27 w 12 56 Santiago Chile 70 45 w 33 28 St. Petersburg Russia 30 18 e 59 56 Sao Paulo Brazil 46 31 w 23 31 Shanghai China 121 28 e 31 10 Sofia Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 34 50 Teheran Iran 51 45 e 35 45 Tokyo Japan 139 45 e 35 40 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Verince Italy 12			•			57 s
Salvador Brazil 38 27 w 12 56 Santiago Chile 70 45 w 33 28 St. Petersburg Russia 30 18 e 59 56 Sao Paulo Brazil 46 31 w 23 31 Shanghai China 121 28 e 31 10 Sofia Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 34 0 Tananarive Madagascar 47 33 e 18 50 Teheran Iran 51 45 e 35 40 Tripoli Libya 13 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16						54 n
Santiago Chile 70 45 w 33 28 St. Petersburg Russia 30 18 e 59 56 Sao Paulo Brazil 46 31 w 23 31 10 Sofa Bulgaria 23 20 e 42 40 Stockolm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 34 0 Tananarive Madagascar 47 33 e 18 50 Teheran Iran 51 45 e 35 40 Tripoli Libya 13 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Veracruz Mexico 96 10 w 19 10 Verana Austria 16 20 e 48 14 Marsaw Poland 21 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
St. Petersburg Russia 30 18 e 59 56 Sao Paulo Brazil 46 31 w 23 31 Shanghai China 121 28 e 31 10 Sofia Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 34 50 Tananarive Madagascar 47 33 e 18 50 Teheran Iran 51 45 e 35 45 Tokyo Japan 133 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14						28 s
Sao Paulo Brazil 46 31 w 23 31 Shanghai China 121 28 e 31 10 Sofia Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 34 0 Tananarive Madagascar 47 33 e 18 50 Teheran Iran 51 45 e 35 45 Tokyo Japan 139 45 e 35 40 Tripoli Libya 13 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Weilington New Zealand 174						
Shanghai China 121 28 e 31 10 Sofia Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 34 0 Tananarive Madagascar 47 33 e 18 50 Teheran Iran 51 45 e 35 40 Tripoli Libya 13 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						
Sofia Bulgaria 23 20 e 42 40 Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 34 0 Tananarive Madagascar 47 33 e 18 50 Teheran Iran 51 45 e 35 45 Tokyo Japan 139 45 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						
Stockholm Sweden 18 3 e 59 17 Sydney Australia 151 0 e 34 0 Tananarive Madagascar 47 33 e 18 50 Teheran Iran 51 45 e 35 45 Tokyo Japan 139 45 e 35 40 Tripoli Libya 13 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						
Sydney Australia 151 0 e 34 0 Tananarive Madagascar 47 33 e 18 50 Teheran Iran 51 45 e 35 45 Tokyo Japan 139 45 e 35 40 Tripoli Libya 13 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Weilington New Zealand 174 47 e 41 17						
Tananarive Madagascar 47 33 e 18 50 Teheran Iran 51 45 e 35 45 Tokyo Japan 139 45 e 35 40 Tripoli Libya 13 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						17 n 0 s
Teheran Iran 51 45 e 35 45 Tokyo Japan 139 45 e 35 40 Tripoli Libya 13 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						
Tokyo Japan 139 45 e 35 40 Tripoli Libya 13 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						50 s 45 n
Tripoli Libya 13 12 e 32 57 Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						
Venice Italy 12 20 e 45 26 Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						
Veracruz Mexico 96 10 w 19 10 Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						57 n
Vienna Austria 16 20 e 48 14 Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						26 n
Warsaw Poland 21 0 e 52 14 Wellington New Zealand 174 47 e 41 17						10 n
Wellington New Zealand 174 47 e 41 17						14 n
						14 n
						17 s
Zunon Switzenanu 8 31 e 47 21	Zürich	Switzerland	8	31 e	47	21 n

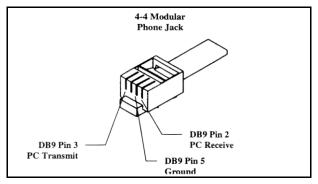
LATITUDE min degrees

0.6 28.2 49.2 22.8 0 31.8 43.8 43.8 43.8 43.8 48.6 1.2 27 4.2 58.2 58.2 58.2 25.2 min

34.2 55.2 9 31.2 45 19.8 21 36 49.2 19.2 21 48 3 36 46.2 58.2 33

Appendix D - RS-232 Connection

You can control your NexStar telescope with a computer via the RS-232 port on the computerized hand control and using an optional RS-232 cable (#93920). Once connected, the NexStar can be controlled using popular astronomy software programs.


Communication Protocol:

NexStar-i communicates at 9600 bits/sec, No parity and a stop bit. All angles are communicated with 16 bit angle and communicated using ASCII hexadecimal.

Description	PC Command ASCII	Hand Control Response	Notes

Echo	Kx	X#	Useful to check communication
Goto Azm-Alt	B12AB, 4000	#	10 characters sent. B=Command, 12AB=Azm, comma, 4000=Alt. If command conflicts with slew limits, there will be no action.
Goto Ra-Dec	R34AB, 12CE	#	Scope must be aligned. If command conflicts with slew limits, there will be no action.
Get Azm-Alt	Z	12AB, 4000#	10 characters returned, 12AB=Azm, comma, 4000=Alt, #
Get RA-Dec	E	34AB, 12CE#	Scope must be aligned
Cancel Goto	M	#	
Is Goto in Progress	L	0# or 1#	0=No, 1=Yes; "0" is ASCII character zero
Is Alignment Complete	J	0# or 1#	0=No, 1=Yes
available on version 1.6 or later HC version	V	22	Two bytes representing V2.2
Stop/Start Tracking	V Tx x = 0 (Tracking off) x = 1 (Alt-Az on) x = 2 (EQ-N) x = 3 (EQ-S)	#	Alt-Az tracking requires alignment
32-bit goto RA-Dec	r34AB0500,12CE0500	#	
32-bit get RA-Dec	e	34AB0500,12CE0500#	The last two characters will always be zero.
Commands below available on version 2.2 or later			
		#	
32-bit goto Azm-Alt	b34AB0500,12CE0500	#	

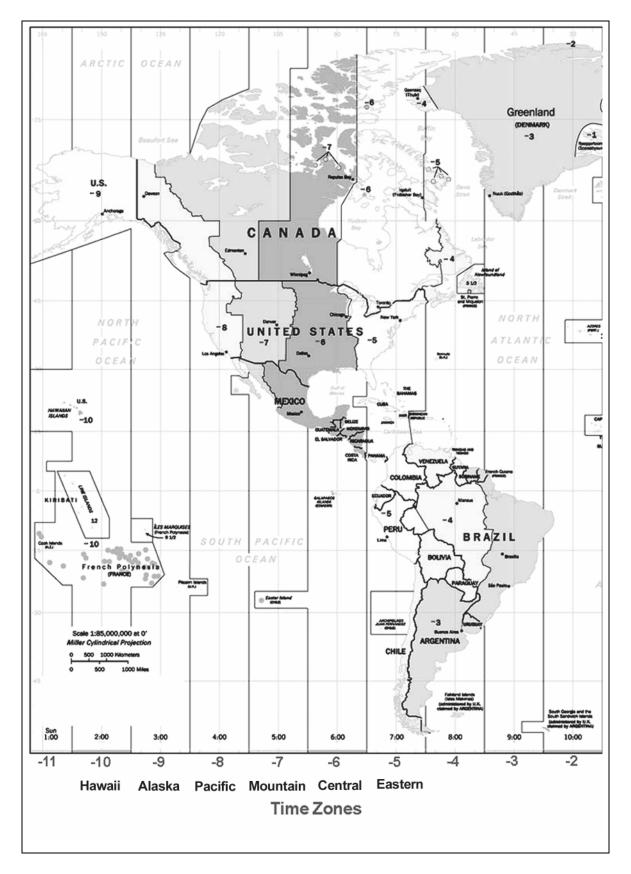
The cable required to interface to the telescope has an RS-232 male plug at one end and a 4-4 telephone jack at the other end. The wiring is as follows:

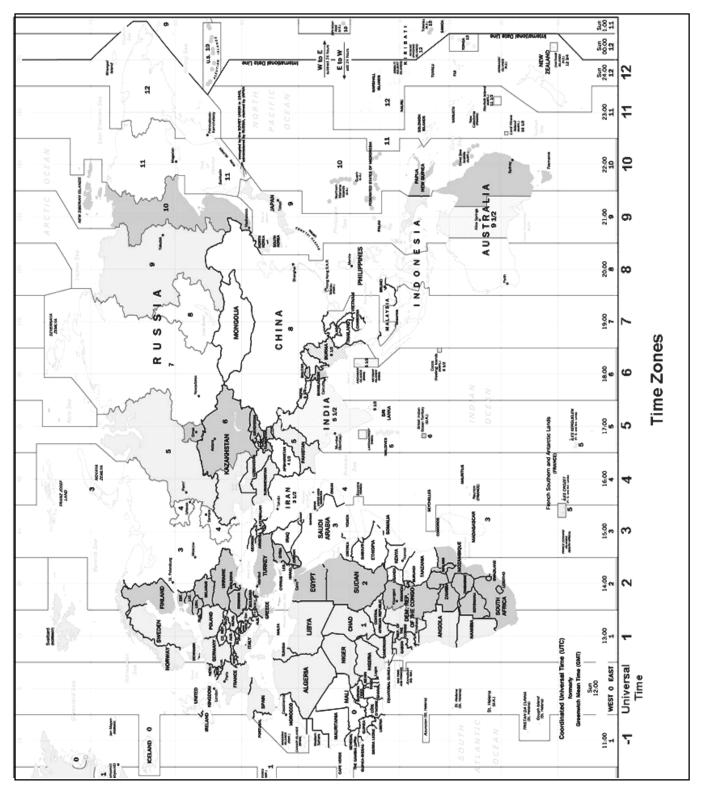
Additional RS232 Commands

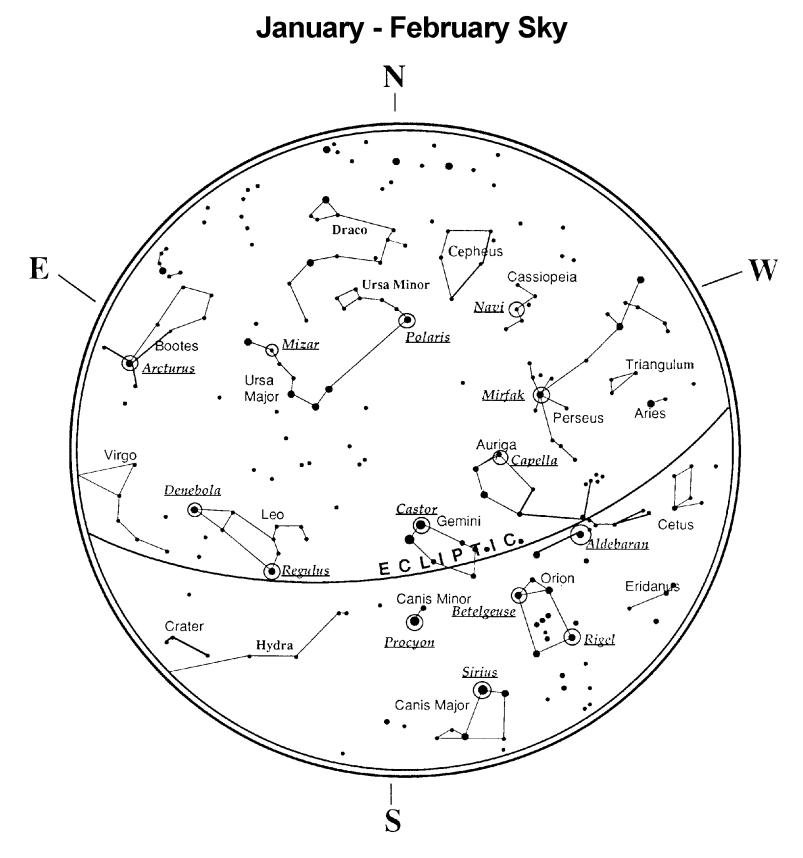
Send Any Track Rate Through RS232 To The Hand Control

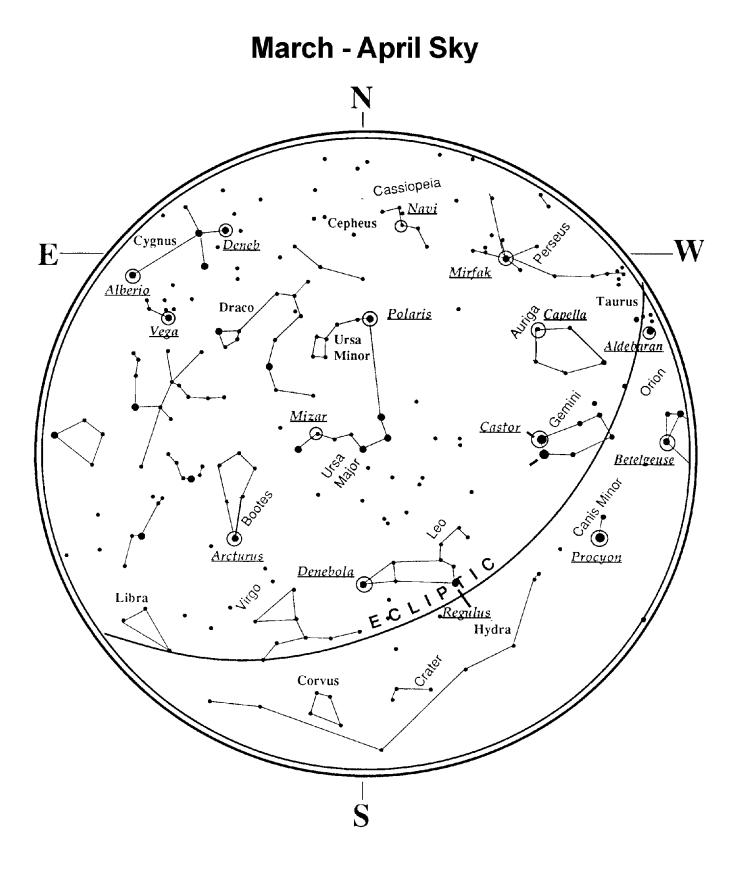
- 1. Multiply the desired tracking rate (arcseconds/second) by 4. Example: if the desired trackrate is 150 arcseconds/second, then TRACKRATE = 600
- 2. Separate TRACKRATE into two bytes, such that (TRACKRATE = TrackRateHigh*256 + rackRateLow). Example: TrackRateHigh = 2 TrackRateLow = 88
- 3. To send a tracking rate, send the following 8 bytes:
 - a. Positive Azm tracking: 80, 3, 16, 6, TrackRateHigh, TrackRateLow, 0, 0
 - b. Negative Azm tracking: 80, 3, 16, 7, TrackRateHigh, TrackRateLow, 0, 0
 - c. **Positive Alt tracking**: 80, 3, 17, 6, TrackRateHigh, TrackRateLow, 0, 0
 - d. Negative Alt tracking: 80, 3, 17, 7, TrackRateHigh, TrackRateLow, 0, 0
- 4. The number 35 is returned from the handcontrol

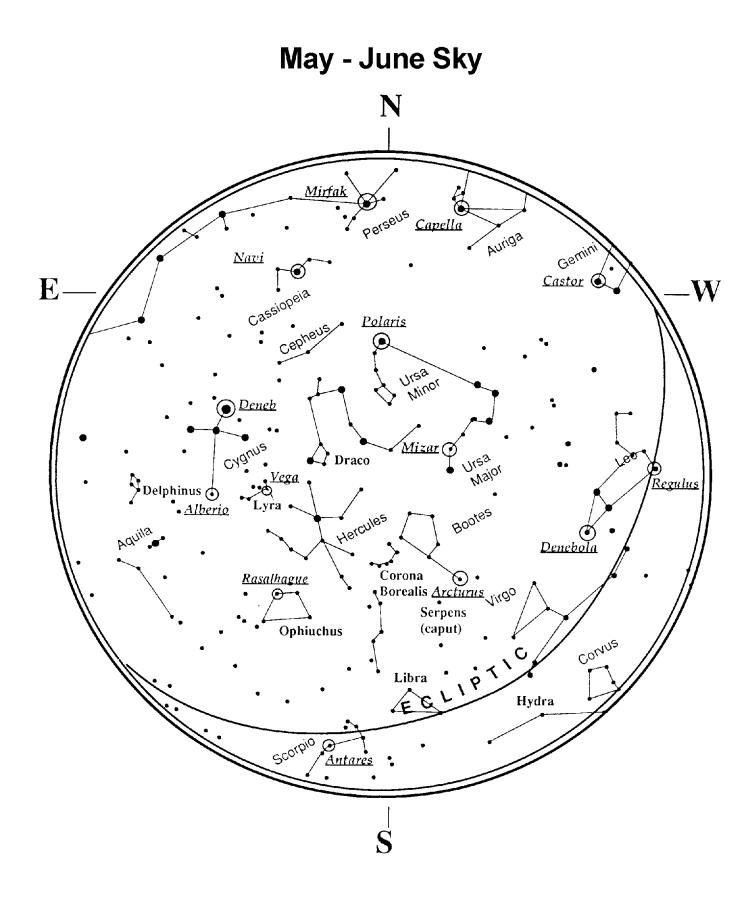
Send A Slow-Goto Command Through RS232 To The Hand Control

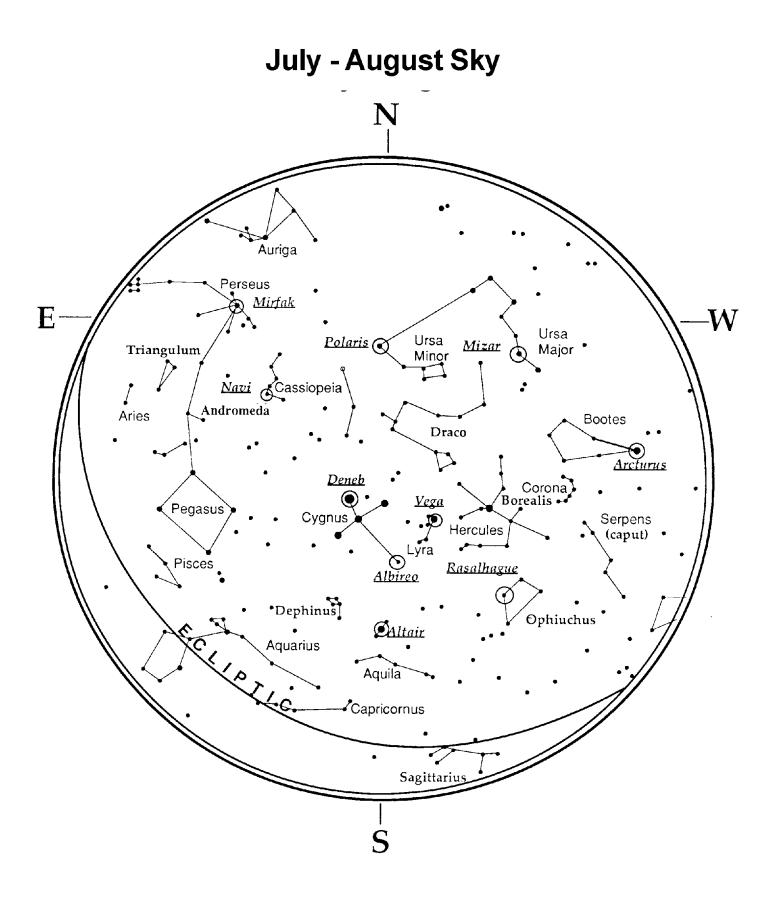

(note: Only valid for motorcontrol version 4.1 or greater)

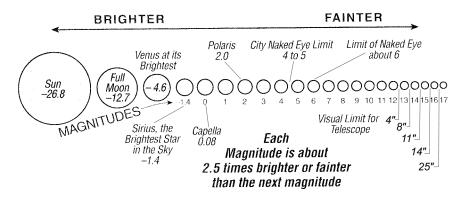

- 1. Convert the angle position to a 24bit number. Example: if the desired position is 220° , then POSITION_24BIT = $(220/360)*2^{24} = 10,252,743$
- 2. Separate POSITION_24BIT into three bytes such that (POSITION_24BIT = PosHigh*65536 + PosMed*256 + PosLow). Exampe: PosHigh = 156, PosMed = 113, PosLow = 199
- 3. Send the following 8 bytes:
 - a. Azm Slow Goto: 80, 4, 16, 23, PosHigh, PosMed, PosLow, 0
 - b. Alt Slow Goto: 80, 4, 17, 23, PosHigh, PosMed, PosLow, 0
- 4. The number 35 is returned from the handcontrol


Reset The Position Of Azm Or Alt


- 1. Convert the angle position to a 24bit number, same as Slow-Goto example.
- 2. Send the following 8 bytes:
 - a. Azm Set Position: 80, 4, 16, 4, PosHigh, PosMed, PosLow, 0
 - b. Alt Set Position: 80, 4, 17, 4, PosHigh, PosMed, PosLow, 0
- 3. The number 35 is returned from the handcontrol
- 4. Note: If using Motorcontrol version less than 4.1, then send:
 - a. Azm Set Position: 80, 3, 16, 4, PosHigh, PosMed, PosLow, 0
 - b. Alt Set Position: 80, 3, 17, 4, PosHigh, PosMed, PosLow, 0


APPENDIX E – MAPS OF TIME ZONES




September - October Sky Ņ Major Booies Mizar E W Ø<u>Castor</u> Ursa Minor Hercules Gemini Auriga Draco G Polaris Capella Perseus C_{assiopeia}. Cy_{gnu}. Deneb 🔘 Q Mirfak <u>Aldebaran</u>` Rj Vra • <u>Navi</u> __⊖ Alberio Triangulum ¥ ∖ Taurus ÷ Incrionic $\begin{array}{c} A_{9_{U_{i}}}\\ \bullet_{\underline{Altair}} \end{array}$ Aries Pegasus" Dephinus Cetus Eridanus Pisces Aquarius Ś

Ņ Bootes Hercules Vega V¹²O-Ursa Major Draco 🖌 ØMizar . Alberio (• W E Ursa Minc CY9^N Deneb <u>Polaris</u> Cassiopeia Gemini Auriga Perseus, Navi Pegasus <u>⊙Castor</u> • <u>Mirfak</u> Capella Procyon Canis Minor S.C. LIP T.I C's. Aldebaran ~ PISCES Triangulum Aries <u>Betelgeuse</u> Cetus ٠ Orion Eridanus Rigel S

v

November - December Sky

Observational Data Sheet

Yearly Meteor Showers

Shower	Date	Peak	Hourly Rate
Quadrantids	Jan 01-Jan 05	4-Jan	60-200
Lyrids	Apr 16-Apr 25	21-Apr	15
pi-Puppids	Apr 15-Apr 28	23-Apr	Var.
eta-Aquarids	Apr 19-May 28	5-May	60
June Bootids	Jun 26-Jul 02	27-Jun	Var.
July Phoenicids	Jul 10-Jul 16	13-Jul	Var.
Southern delta-Aquarids	Jul 12-Aug 19	27-Jul	20
Perseids	Jul 17-Aug 24	12-Aug	120-160
alpha-Aurigids	Aug 25-Sep 05	31-Aug	10
Draconids	Oct 06-Oct 10	8-Oct	Var*.
Orionids	Oct 02-Nov 07	21-Oct	20
Leonids	Nov 14-Nov 21	17-Nov	100*
alpha-Monocerotids	Nov 15-Nov 25	21-Nov	Var.
Phoenicids	Nov 28-Dec 09	6-Dec	Var.
Puppid-Velids	Dec 01-Dec 15	7-Dec	10
Geminids	Dec 07-Dec 17	13-Dec	120
Ursids	Dec 17-Dec 26	22-Dec	10

* These meteor showers have the potential of becoming meteor storms with displays of thousands of meteors per hour.

Solar Eclipses in North America plus Total Eclipses Around the World

Date	Eclipse Type	Duration	Location
2001 Dec 14	Annular	03m53s	North America, Hawaii
2001 Jun 21	Total	04m57s	South Africa, Madagascar
2002 Dec 04	Total	02m04s	S. Africa, Indonesia, Australia
2002 Jun 10	Annular	00m23s	West, Midwest, Hawaii, Alaska
2003 May 31	Annular	03m37s	Alaska
2003 Nov 23	Total	01m57s	Australia, New Zealand, S. America
2005 Apr 08	Partial	00m42s	Florida, Southwest
2006 Mar 29	Total	04m07s	Africa, Europe, Asia
2008 Aug 01	Total	02m27s	Europe, Asia
2009 Jul 22	Total	06m39s	Asia, Hawaii
2010 Jul 11	Total	05m20s	South America
2012 May 20	Annular	05m46s	West, Hawaii, Alaska
2012 Nov 13	Total	04m02s	Australia, S. America
2013 May 10	Annular	06m03s	Australia, N.Z.
2014 Oct 23	Partial	-	West, Midwest, Alaska
2015 Mar 20	Total	02m47s	Europe, N. Africa, Asia
2016 Mar 09	Partial	04m09s	Hawaii, Alaska
2017 Aug 21	Total	02m40s	Across the U.S.!
2019 Jul 02	Total	04m33s	S. America
2020 Dec 14	Total	02m10s	S. America

CELESTRON TWO YEAR WARRANTY

- A. Celestron warrants this telescope to be free from defects in materials and workmanship for two years. Celestron will repair or replace such product or part thereof which, upon inspection by Celestron, is found to be defective in materials or workmanship. As a condition to the obligation of Celestron to repair or replace such product, the product must be returned to Celestron together with proof-of-purchase satisfactory to Celestron.
- B. The Proper Return Authorization Number must be obtained from Celestron in advance of return. Call Celestron at (310) 328-9560 to receive the number to be displayed on the outside of your shipping container.

All returns must be accompanied by a written statement setting forth the name, address, and daytime telephone number of the owner, together with a brief description of any claimed defects. Parts or product for which replacement is made shall become the property of Celestron.

The customer shall be responsible for all costs of transportation and insurance, both to and from the factory of Celestron, and shall be required to prepay such costs.

Celestron shall use reasonable efforts to repair or replace any telescope covered by this warranty within thirty days of receipt. In the event repair or replacement shall require more than thirty days, Celestron shall notify the customer accordingly. Celestron reserves the right to replace any product which has been discontinued from its product line with a new product of comparable value and function.

This warranty shall be void and of no force of effect in the event a covered product has been modified in design or function, or subjected to abuse, misuse, mishandling or unauthorized repair. Further, product malfunction or deterioration due to normal wear is not covered by this warranty.

CELESTRON DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WHETHER OF MERCHANTABILITY OF FITNESS FOR A PARTICULAR USE, EXCEPT AS EXPRESSLY SET FORTH HEREIN.

THE SOLE OBLIGATION OF CELESTRON UNDER THIS LIMITED WARRANTY SHALL BE TO REPAIR OR REPLACE THE COVERED PRODUCT, IN ACCORDANCE WITH THE TERMS SET FORTH HEREIN. CELESTRON EXPRESSLY DISCLAIMS ANY LOST PROFITS, GENERAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM BREACH OF ANY WARRANTY, OR ARISING OUT OF THE USE OR INABILITY TO USE ANY CELESTRON PRODUCT. ANY WARRANTIES WHICH ARE IMPLIED AND WHICH CANNOT BE DISCLAIMED SHALL BE LIMITED IN DURATION TO A TERM OF TWO YEARS FROM THE DATE OF ORIGINAL RETAIL PURCHASE.

Some states do not allow the exclusion or limitation of incidental or consequential damages or limitation on how long an implied warranty lasts, so the above limitations and exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

Celestron reserves the right to modify or discontinue, without prior notice to you, any model or style telescope.

If warranty problems arise, or if you need assistance in using your telescope contact:

Celestron Customer Service Department 2835 Columbia Street Torrance, CA 90503 Tel. (310) 328-9560 Fax. (310) 212-5835 Monday-Friday 8AM-4PM PST

This warranty supersedes all other product warranties.

NOTE: This warranty is valid to U.S.A. and Canadian customers who have purchased this product from an Authorized Celestron Dealer in the U.S.A. or Canada. Warranty outside the U.S.A. and Canada is valid only to customers who purchased from a Celestron Distributor or Authorized Celestron Dealer in the specific country and please contact them for any warranty service.

Celestron 2835 Columbia Street Torrance, CA 90503 Tel. (310) 328-9560 Fax. (310) 212-5835 Web site at http://www.celestron.com

Copyright 2003 Celestron All rights reserved.

(Products or instructions may change without notice or obligation.)

Item # 11052-INST v2.2 \$10.00 10-02