Demonstration 72.57 - LR circuit rise time (L/R)

$$
\begin{gathered}
i=\frac{\varepsilon}{R}\left(1-e^{-R t / L}\right), \text { or } \\
i=\frac{\varepsilon}{R}\left(1-e^{-t / \tau}\right), \text { where } \tau=L / R
\end{gathered}
$$

R, of course, changes as the lamp heats up. (At 120 V and maximum current the resistances are about 360Ω and 29Ω for the 40 -watt and 500 -watt lamps, respectively.) Still, we can estimate the L / R time constants for the lamps when they are cold. They are about $0.273 \mathrm{H} / 28.5 \Omega=9.6 \mathrm{~ms}$, and $0.273 \mathrm{H} / 1.6 \Omega=170$ ms , for the 40 -watt and 500 -watt lamps, respectively. These differ by a factor of about 18 .

