

Definitive Evidence for Order-by-Quantum-Disorder

Lucile Savary

Hamilton, June 4th, 2012

Collaborators

Leon Balents (KITP)

Kate Ross

Bruce Gaulin

Jacob Ruff (Argonne)

experiments, McMaster

What is order-by-disorder?

Id idea: Villain 1980, Shender 1982, Henley 1989

so far not definitively exhibited in experiment

would be nice to do so!

What is order-by-disorder?

Look at spin system

 $H = \sum_{i,j} \sum_{\mu,\nu} J^{\mu\nu}_{ij} S^{\mu}_i S^{\nu}_j$

Order-by-disorder: an example

✤ Henley 1989: *J*₁-*J*₂ square lattice

$$H = J_1 \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

classical XY unit vectors

$$J_2 > J_1/2 > 0$$

two interpenetrating decoupled Néel states

Order-by-disorder

those states have the same energy

but different "environment"

Order-by-disorder: an example

picture

thermal fluctuations: entropy

 $F = E - TS(\phi) = F(\phi)$ minimized for $\phi = 0$ or π

The degeneracy is lifted in the free energy by the entropy

 $H_{\rm eff} \neq 0$

Order-by-disorder: an example

quantum fluctuations: zero-point energy

$$E = E_0 + E_{\text{zero-point}}$$

$$\hbar\omega_{\mathbf{k}} = \sqrt{\frac{A_{\mathbf{k}}}{m}}$$

$$E_{\text{zero-point}} = \sum_{\mathbf{k}} \frac{\hbar \omega_{\mathbf{k}}}{2} \sim \frac{1}{\sqrt{2m}} \sum_{\mathbf{k}} \sqrt{A_{\mathbf{k}}}$$

classical degeneracy lifted by the zero-point energy

What is order-by-disorder?

 when a system displays *classical* accidental degeneracy which is (at least partially) lifted by fluctuations

But:

- There usually are other degeneracy breaking terms in the Hamiltonian:
 - # further neighbor interactions (dipolar, exchange)
 - spin-orbit coupling & crystal fields
 - spin-phonon coupling
 - multiple-spin terms

So, how can we know?

How can we be sure that ObD is at play?

need a robust classical degeneracy of the ground state

protected by symmetry?

but should still be allowed to lift it!

so far none was exhibited for sure

Iook in frustrated magnets!

We show definitive evidence for quantum ObD in Er₂Ti₂O₇

hard

Outline

- $m Er_2Ti_2O_7$
- Review of "older" literature
- Hamiltonian of Er₂Ti₂O₇
- Degeneracy
- Comparison with experiments
- Verifiable consequences

based on arXiv 1204.1320 (to appear in PRL)

.

Leon Balents balents@kitp.ucsb.edu via gmail.com à moi, Bruce, Kate -

Bad news - we are too slow ... can we rush it out in a day or two?

Leon

Quantum order by disorder and accidental soft mode Er2Ti2O7

3 avr. 📩

M. E. Zhitomirsky, M. V. Gvozdikova, P. C. W. Holdsworth, R. Moessner

(Submitted on 3 Apr 2012)

>>originally published 4/6/2012

THE ALLNIGHTER

THE ALLNIGHTER

PhD comics - J. Cham - I thank L. Jaubert for posting this comic on facebook!

Quantum order by disorder and accidental soft mode Er2Ti2O7

M. E. Zhitomirsky, M. V. Gvozdikova, P. C. W. Holdsworth, R. Moessner

(Submitted on 3 Apr 2012)

arXiv 1204.0595

THE ALLNIGHTER

>>originally published 4/6/2012

Definitive Evidence for Order-by-Quantum-Disorder in Er2Ti2O7

Lucile Savary, Kate A. Ross, Bruce D. Gaulin, Jacob P. C. Ruff, Leon Balents

(Submitted on 5 Apr 2012)

arXiv 1204.1320

Er₂Ti₂O₇

Er³⁺ pyrochlore

- rare-earth pyrochlore family: Ho₂Ti₂O₇, Dy₂Ti₂O₇, Ho₂Sn₂O₇, Dy₂Sn₂O₇, Er₂Ti₂O₇, Yb₂Ti₂O₇,
 Tb₂Ti₂O₇, Er₂Sn₂O₇, Tb₂Sn₂O₇, Pr₂Sn₂O₇, Nd₂Sn₂O₇, Gd₂Sn₂O₇, ...
- many presentations this week: Ross, Onoda, Singh, Broholm, Lee, Petit, Bonville, Gukasov, Wan, Tomiyasu, Benton, Kadowaki, Liu, Lhotel, Wiebe, Henley, Fennell, Ryzhkin, Holdsworth, Dunsiger, Bovo, Matthews, Pan, Ishizuka, Powell, McClarty, Toews, Kycia, Jaubert, Tchernyshyov, Aczel, Matsuhira, Storchak, Tachibana, White, Ishikawa, Shinaoka, Yamauchi, Stewart, Shinaoka, Hallas, Silverstein, Clancy, Khemani, MacDougall, Clark, Yamaura

Er2Ti2O7: Previous studies

k = 0 order

\oplus compatible with " ψ_1 "or " ψ_2 " states

specific heat: T³ behavior - Goldstone?

Goldstone mode

Champion et al. 2003, Poole et al. 2007, Ruff et al. 2008, Cao et al. 2009

Er2Ti2O7: Previous studies

isotı

H = .

- model:
- has a huge degeneracy
- order-by-disorder suggested
- dipolar interactions invoked
- # effect of multi-spin terms
- anisotropy necessary
- not 1st order transition?

ropic interactions

$$T \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + D \left(\sum_i \mathbf{S}_i \cdot \hat{\mathbf{e}}_i \right)^2$$

somewhat ad hoc
insightful! Champion *et al.*
"Palmer-Chalker state" not
experimental ground state
very small McClarty *et al.*
Stasiak *et al.*
 $Cao \ et al.$
 $Cao \ et al.$

Er2Ti2O7: Previous studies

- model:
- has a huge degeneracy
- order-by-disorder suggested
- dipolar interactions invoked
- # effect of multi-spin terms
- anisotropy necessary
- not 1st order transition?

isotropic interactions

$$H = \overbrace{J\sum_{\langle i,j\rangle} \mathbf{S}_i \cdot \mathbf{S}_j}^{\mathbf{T}} + D\left(\sum_i \mathbf{S}_i \cdot \hat{\mathbf{e}}_i\right)^2$$

somewhat ad hoc

insightful!

Champion *et al*.

"Palmer-Chalker state" not experimental ground state

very small

McClarty *et al.* Stasiak *et al.*

Cao *et al*. McClarty *et al*. Stasiak *et al*.

Need a more accurate Hamiltonian

rare-earths : intrinsic strong spin-orbit coupling A₂B₂O₇: strong crystal fields

 \rightarrow

discrete cubic symmetries only

rare-earths : intrinsic strong spin-orbit coupling A₂B₂O₇: strong crystal fields

 \rightarrow

discrete cubic symmetries only

rare-earths : intrinsic strong spin-orbit coupling A₂B₂O₇: strong crystal fields

 \rightarrow

discrete cubic symmetries only

rare-earths : intrinsic strong spin-orbit coupling A₂B₂O₇: strong crystal fields

 \longrightarrow

 C_3

mirror

discrete cubic symmetries only

rare-earths : intrinsic strong spin-orbit coupling A₂B₂O₇: strong crystal fields

 \longrightarrow

discrete cubic symmetries only

rare-earths : intrinsic strong spin-orbit coupling A₂B₂O₇: strong crystal fields

 \longrightarrow

discrete cubic symmetries only

space group: Fd-3m, i.e. #227

mirror

 C_3

inversion

rare-earths : intrinsic strong spin-orbit coupling A₂B₂O₇: strong crystal fields

 \longrightarrow

discrete cubic symmetries only

space group: Fd-3m, i.e. #227

C₃ mirror

inversion

rare-earths : intrinsic strong spin-orbit coupling A₂B₂O₇: strong crystal fields

 \rightarrow

discrete cubic symmetries only

space group: Fd-3m, i.e. #227

*C*₃

mirror

inversion

time reversal

Er₂Ti₂O₇: most general NN effective spin-1/2 Hamiltonian

- \circledast strong SOC & crystal fields => J = L+S = 15/2, $\Delta \sim 75$ K
- spin-1/2 Hamiltonian:

H

$$= \sum_{\langle ij \rangle} \begin{bmatrix} J_{zz} S_i^z S_j^z \\ -J_{\pm} (S_i^+ S_j^- + S_i^- S_j^+) \\ +J_{z\pm} \left[S_i^z (\zeta_{ij} S_j^+ + \zeta_{ij}^* S_j^-) + i \\ +J_{\pm\pm} \left[\gamma_{ij} S_i^+ S_j^+ + \gamma_{ij}^* S_i^- S_j^- \right] \end{bmatrix}$$

What are the parameters for Er₂Ti₂O₇?

 $\leftrightarrow j$

local XY-plane

local z-axes

Fits to experiments: Er₂Ti₂O₇ parameters

Phase diagrams of pyrochlores

Ross, Savary, Gaulin and Balents 2011; Savary and Balents 2012; Lee, Onoda and Balents 2012

The H=0 ground states

semi-classical $\mathbf{k} = \mathbf{0}$ ordered states

minimize classical energy: find E_{min} for:

$$\mathbf{S}_i = \frac{1}{2} \left(\cos \alpha \, \hat{\mathbf{a}}_i + \sin \alpha \, \hat{\mathbf{b}}_i \right)$$

U(1) degeneracy

Goldstone mode in neutron scattering T³ behavior of C_V order-by-disorder

Is this degeneracy robust?

Proof of the robustness

Ansatz
$$\mathbf{S}_{i}(\alpha) = \frac{1}{2} \operatorname{Re} \left[e^{-i\alpha} \left(\mathbf{\hat{a}}_{i} + i\mathbf{\hat{b}}_{i} \right) \right]$$

- \oplus quadratic Hamiltonian $\Rightarrow E[\Phi] = a\Phi^2 + a^*\Phi^2 + b|\Phi|^2$

independent of α

OED

 $\Phi \to e^{2i\pi/3} \Phi \quad \Rightarrow$ a = 0

This uses the discrete symmetries of *H* only

What exactly we showed

- I classically, the ground-state degeneracy cannot be lifted
 - includes: long-range (dipolar) interactions, multi-spin terms (< 6th order = negligible), spin-lattice couplings

What exactly we showed

- I classically, the ground-state degeneracy cannot be lifted
 - includes: long-range (dipolar) interactions, multi-spin terms (< 6th order = negligible), spin-lattice couplings
- But: "environment" effects = order-by-disorder (!) can do the job

Really just two symmetry-allowed possibilities $E = b|\Phi|^2 + ...$

Leading-order term allowed by symmetry:

$$E_6 = -c \left(\Phi^6 + (\Phi^*)^6 \right) \sim \pm \cos 6\alpha$$

six-fold degeneracy

The sign of c determines how the degeneracy is lifted

 $\ll c > 0: \alpha = n \pi/3$ - " ψ_2 " states

𝔅 c < 0 : α = (n + 1/2) π/3 - " $ψ_1$ " states

The magnitude of c determines the gap (later...)

Let's look at all of this!

Quantum order-by-disorder

zero-point energy

$$\epsilon_0^{sw} = \frac{1}{V_{\rm BZ}} \sum_{i=1}^4 \int_{\mathbf{k} \in \rm BZ} \frac{\omega_{\mathbf{k}}^i}{2}$$

Quantum order-by-disorder

zero-point energy

$$\epsilon_0^{sw} \sim -\frac{\lambda}{2}\cos 6\alpha$$

six-fold degeneracy, $\lambda > 0$

$$\lambda = 3.5 \ 10^{-4} \ \text{meV}$$

$$\lambda = 3.5 \ 10^{-4} \ \text{meV}$$

$$\alpha = n\pi/3 \ \text{states are preferred}$$

note: non-field-cooled sample => domain (6 types) formation

Evolution of the ground state degeneracy with a field

H//110

domain formation in nonfield-cooled samples

Bragg peak intensity a priori depends on the domain

Confirmation of quantum order-bydisorder

elastic intensity:

$$\mathcal{I}(\mathbf{k}, \omega = 0) \propto \left| \mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \mathbf{A}_{\mathbf{k}} \right) \right|$$
$$\mathbf{A}_{\mathbf{k}} = \left\langle 0 \left| \sum_{a=0}^{3} \mathbf{M}_{a}(\mathbf{k}) \right| 0 \right\rangle$$

depends on α

Confirmation of quantum order-bydisorder

H//110

"Direct" inelastic structure factor comparison

<u>continuous degeneracy</u> (no fluctuations)

gapless Goldstone-like mode

Iow-energy theory:

$$S_0 = \frac{1}{2} \int \frac{d^3 r}{v_{u.c.}} d\tau \left[\kappa (\boldsymbol{\nabla} \alpha)^2 + \eta (\partial_\tau \alpha)^2 \right]$$
$$\omega_{\mathbf{k}} = c \, k$$

 T^3 specific heat

weakly-lifted C⁰ degeneracy (order-by-disorder)

gapped pseudo-Goldstone mode

need high resolution

Iow-energy theory:

$$S = \frac{1}{2} \int \frac{d^3r}{v_{u.c.}} d\tau \left[\kappa (\boldsymbol{\nabla} \alpha)^2 + \eta (\partial_\tau \alpha)^2 + m^2 \alpha^2 \right]$$
$$\omega_{\mathbf{k}} = \sqrt{c^2 k^2 + \Delta^2}$$

* no T^3 behavior very close to T = 0 C_v/T need very
low T data

Ruff et al. 2008, Sosin et al. 2010

The gap: we know everything about the spin wave spectrum

$$S = \frac{1}{2} \int \frac{d^3 r}{v_{u.c.}} d\tau \left[\kappa (\nabla \alpha)^2 + \eta (\partial_\tau \alpha)^2 - \lambda \cos 6\alpha \right] \qquad \omega_{\mathbf{k}} = \sqrt{\frac{\kappa}{\eta} \mathbf{k}^2 + \Delta^2}$$

 η and \varkappa : extracted by expanding the spin-wave theory

* λ: extracted by calculating the zero-point energy from spin-wave theory

$$\Delta = \sqrt{\frac{18\lambda}{\eta}} \approx 0.02 \,\mathrm{meV} = 260 \,\mathrm{mK}$$

Domain wall width

$$S = \frac{1}{2} \int \frac{d^3 r}{v_{u.c.}} d\tau \left[\kappa (\nabla \alpha)^2 + \eta (\partial_\tau \alpha)^2 - \lambda \cos 6\alpha \right]$$

$$\xi = \sqrt{\frac{\kappa}{18\lambda}} \approx 2a \approx 20\,\text{\AA}$$

The specific heat

Further considerations: MFT

- 111 field: 1st order (Potts)
- etc.

Conclusions and perspectives

- first definitive proof of the experimental realization of order-by-disorder: so far examples where result could always be disputed, including in ETO - full Hamiltonian, no room for speculations
- conclusive determination of quantumness
- calculation of associated quantities
- other materials and lattices (kagomé?)
- needed experiments:
 - experiments on field-cooled samples
 - Iower-temperature specific heat
 - more field directions
 - gap: NMR?
 - gap: higher resolution neutron scattering

Thank you for your attention