Propionibacterium freudenreichii ssp shermanii ATCC9614 responsible for the holes in Emmental

Impurity effects in Highly Frustrated Diamond-Lattice Antiferromagnets

Lucile Savary

Boston, February 28th, 2012

UCSB

COLLABORATORS

Leon Balents KITP, UCSB

Jason Alicea UC Irvine

Doron Bergman CalTech

Emanuel Gull MPI Dresden

Simon Trebst Cologne University

Physical Review B 84, 064438 (2011)

UNFRUSTRATED CLASSICAL MAGNETS

- Weak/dilute disorder [Imry-Ma 1975, Harris 1974]
 - Random fields: strong effects, but not common
 - Random bonds: weak effects, except at phase transitions

FRUSTRATED MAGNETS

Defined by degeneracy

Effects:

- enhanced thermal/ quantum fluctuations
- sensitivity to weak
 perturbations

ORDER OR DISORDER?

- Issue: Do impurities lead to order or disorder?
- Answer: It depends upon the nature of the frustration / degeneracy
 - Henley (1987): finite degeneracy => order (non-collinear)
 - Saunders+Chalker (2007): extensive degeneracy => disorder (spin glass)
 - This talk: sub-extensive degeneracy => order
 - How do we figure out which order?
 - When does this fail?

OUTLINE

- Spinel context
- Single impurities
- Local or global?
- Results
- Comparison with experiments

A-SITE SPINELS

A-SITE SPINELS

Fritsch et al. 1992, Tristan et al. 2005, Suzuki et al. 2006

A-SITE SPINELS

magnetic

• spinels AB_2X_4

- diamond is bipartite
 - not frustrated
- second and third neighbor exchange not necessarily small
 - exchange paths A-X-B-X-B comparable

Roth 1964

FRUSTRATION: MINIMAL MODEL

 $H = J_1 \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j \qquad J_2 > 0$

■ $J_2 \rightarrow 0$: diamond NN => Néel

• $J_1 \rightarrow 0$: FCC NN => independent planes of spins

GROUND STATE EVOLUTION

Fritsch et al. 1992, Tristan et al. 2005, Suzuki et al. 2006, Krimmel et al. 2006, Bergman et al. 2007

PHASE DIAGRAM (MONTE CARLO)

Krimmel et al. 2006, Bergman, Alicea, Gull, Trebst, Balents 2007

CONTRACTING REHAVIORS:

rde

while CoAl₂O₄ is not? (chemists say quality is similar?)

• Why

 Is the contrasting behavior in these two "similar" materials consistent with a single theory for impurities?

EXTRA B SPIN

$$\begin{split} \prod_{imp}^{impurity "type", a = 1, ..., 4} \\ H_{imp}^{a} &= J_{imp} \sum_{\langle a, i \rangle} \mathbf{S}_{a} \cdot \mathbf{S}_{i} \\ J_{imp} \gg J_{1}, J_{2} \end{split}$$

- any kind of local impurity would do the job!
- expect surface degeneracy breaking

all NN spins aligned

Q PICKING

 \mathbf{q}_0

 $E_a(\mathbf{q}_0) = \text{energy}(\mathbf{q}_0; \text{with impurity}) - \text{energy}(\mathbf{q}_0; \text{without impurity})$

clean system's ground state energy (energy of a ground state spiral) **q**₀

test spiral wave vector

note: impurity energy cost can always be made O(1)

q0

NUMERICS

Classical Monte Carlo with

IMPURITY FAVORED DIRECTIONS

single impurity "phase diagram"

single impurity

 $E_1(\mathbf{q})$

favored directions (minima of $E_1(\mathbf{q})$)

 $\overline{E}(\mathbf{q})$

But what happens with more than one impurity?

LOCAL OR GLOBAL?

 AB_2X_4

4 possibilities

LOCAL OR GLOBAL?

impurities break the degeneracy but favor different **q** vectors, so what happens?

REASON BY CONTRADICTION

- calculate energy of smoothly deformed spirals
- show it is divergent
- deduce that deformations are local

"ORDER PARAMETER"

• spirals: $\mathbf{S}(\mathbf{r}) = \operatorname{Re}\left[\mathbf{d}(\mathbf{r})e^{i\mathbf{q}\cdot\mathbf{r}}\right]$

- $\mathbf{d} = \mathbf{\hat{e}}_1 + i\mathbf{\hat{e}}_2$ $\mathbf{\hat{e}}_1 \cdot \mathbf{\hat{e}}_2 = 0$
- Landau-like expansion of energy density
 - given (d, q) : spiral

• redundancy, e.g.: $\mathbf{q} \rightarrow \mathbf{q} + \delta \mathbf{q}$ $\mathbf{d} \rightarrow \mathbf{d} e^{-i\delta \mathbf{q} \cdot \mathbf{r} - i\delta \gamma}$

• fix this "gauge": $\mathbf{S}(\mathbf{r}) = \operatorname{Re}\left[\mathbf{d}(\mathbf{r})e^{i\mathbf{q}_0\cdot\mathbf{r}}\right]$

 \rightarrow all variations are encoded in **d**

WEAKLY DEFORMED SPIRALS

$$\mathbf{S}(\mathbf{r}) = \operatorname{Re}\left[\mathbf{d}(\mathbf{r})e^{i\mathbf{q}_{0}\cdot\mathbf{r}}\right]$$

physical wavevector: $q^{\mu} = q_0^{\mu} + \frac{1}{2} \operatorname{Im} \left[\mathbf{d}^* \cdot \partial_{\mu} \mathbf{d} \right]$

 $\mathbf{d}(\mathbf{r}) = \mathbf{d}_0 + \delta \mathbf{d}(\mathbf{r})$ $\mathbf{\hat{e}}_3 = -\frac{1}{2} \operatorname{Im} \left[\mathbf{d} \times \mathbf{d}^* \right]$

 $\phi \in \mathbb{R} \quad \psi \in \mathbb{C}$

$$\delta \mathbf{d}(\mathbf{r}) = i\phi(\mathbf{r})\mathbf{d}_0 + \psi(\mathbf{r})\mathbf{\hat{e}}_3$$

rotates **d** within the same plane

takes **S** to another plane

ENERGY DENSITY OF A WEAKLY DEFORMED SPIRAL

- $\mathbf{S}(\mathbf{r}) = \operatorname{Re}\left[\mathbf{d}(\mathbf{r})e^{i\mathbf{q}_{0}\cdot\mathbf{r}}\right] \qquad \delta \mathbf{d}(\mathbf{r}) = i\phi(\mathbf{r})\mathbf{d}_{0} + \psi(\mathbf{r})\mathbf{\hat{e}}_{3}$
- constraints:
 - undeformed spirals: zero energy
 - variation must cost zero energy when **q** stays on spiral surface
 - stability

"stiffness" x

 $\boldsymbol{\hat{n}}\,$: unit vector perpendicular to the spiral surface

 $abla_{\perp} = \hat{\mathbf{n}} \cdot \boldsymbol{\nabla} \qquad \boldsymbol{\nabla}_{\parallel} = \boldsymbol{\nabla} - \hat{\mathbf{n}} \nabla_{\perp}$

consequence of *curved* degeneracy surface for **q**

 $\mathcal{E} = \underbrace{c}_{2} (\nabla_{\perp} \phi)^{2} + \underbrace{c'}_{2} \nabla_{\perp} \phi \nabla_{\parallel}^{2} \phi + \underbrace{c''}_{2} (\nabla_{\parallel}^{2} \phi)^{2} + \underbrace{d}_{2} \psi^{*} \nabla_{\perp} \psi + \underbrace{d'}_{2} \nabla_{\parallel} \psi^{*} \cdot \nabla_{\parallel} \psi$

SPINEL V/S PYROCHLORE

stiffness: measures the energy cost of an *infinitesimal* change of the spin state, deformed in a smooth fashion.

Recall local *real space* degeneracy in pyrochlore

$$H \sim J\left(\sum_{\mu=0}^{3} \mathbf{S}^{\mu}\right)^{2}$$
 local degeneracy => no stiffness

Here *no real space* picture. Stiffness of **q** in reciprocal space.
 Stiffness varies along phase diagram.

SCALING

NOTE: PHASE FLUCTUATION SUBTLETIES

$$\mathcal{E} = \frac{c}{2} (\nabla_{\perp} \phi)^2 + c' \nabla_{\perp} \phi \nabla_{\parallel}^2 \phi + \frac{c''}{2} (\nabla_{\parallel}^2 \phi)^2 + d \nabla_{\perp} \psi^* \nabla_{\perp} \psi + d' \nabla_{\parallel} \psi^* \cdot \nabla_{\parallel} \psi$$

$$\sim \frac{(\delta \phi)^2}{L_{\parallel}^4}$$

$$\delta \phi \sim \underbrace{(\delta q)L}_{\text{prohibited}} + \delta \phi_{\text{non } \delta q}$$

→ large scale fluctuations of ϕ are a priori allowed

$$C_{\phi}(\mathbf{r}) = \langle (\phi(\mathbf{r}') - \phi(\mathbf{r} - \mathbf{r}'))^2 \rangle \sim A |\mathbf{r}|^{\alpha} \qquad \text{for } |\mathbf{r}| \to \infty$$

$$\Rightarrow \quad C_{\mathbf{q}}(\mathbf{r}) = \langle (\mathbf{q}(\mathbf{r}') - \mathbf{q}(\mathbf{r} - \mathbf{r}'))^2 \rangle \sim \tilde{A} |\mathbf{r}|^{\alpha - 2}$$

expect $0 < \alpha < 2$

THE SWISS CHEESE MODEL

spiral

spiral

strong deformation

strong deformation strong deformation

> strong deformation

spiral

strong deformation

strong deformation

spiral

strong deformation

ξ

deform

<u>characteristics:</u>

- which spiral (which q)?
- length scale ξ
- order of magnitude of energy E

strong

FAVORED DIRECTIONS

swiss cheese
$$= \overline{E}(\mathbf{q}) = \frac{1}{4}E_a(\mathbf{q})$$

E_1 impurity-induced order phase diagram:

DECAY LENGTH ξ

WHY DOES IT SOMETIMES BREAK DOWN?

- impurity concentration too high:
 - the "holes" overlap

critical concentration

vanishing stiffness: very high sensitivity to defects

COMPARISON WITH EXPERIMENTS

WHAT WE COMPARE

- Do impurities matter at the order v/s disorder level?
- If order is what happens, is order-by-quencheddisorder the degeneracy-breaking mechanism?
- Interpretation of new experimental data on CoAl₂O₄

COMPARISON WITH EXPERIMENTS $E_1(q)$

• $MnSc_2S_4$

X

• order in 110 direction, $J_2/J_1 \sim 0.85$

 $\overline{E}(\mathbf{q})$

consistent with non-small stiffness x

- direction not that of impurities
 (or that of a different type of impurities)
- also, *J*³ is important, cf. Lee+Balents 2008

Krimmel *et al.* 2006

need parameters of other ordered materials

COMPARISON WITH EXPERIMENTS

COMPARISON WITH EXPERIMENTS

■ glassy state, $J_2/J_1 \sim 0.17 \ge 1/8$

Tristan *et al.* 2005, Krimmel *et al.* 2009

• consistent with vanishing stiffness \varkappa at $J_2/J_1 = 1/8$

MacDougall et al. 2011

SUMMARY AND PERSPECTIVES

Summary:

- very general conclusions
- in general, impurities lead to order
- cause of swiss cheese model: degeneracy manifold is a curved surface
- physics of the swiss cheese model: independent impurities (+subtleties)
- gives criteria for sensitivity to defects
- allows to account for different behaviors in single class of materials
- Perspectives
 - compare with more materials or models
 - need more materials close to Lifshitz point to correlate glassiness with region of phase diagram
 - nature of glassy phase for stronger disorder/smaller stiffness?
 - quantum systems near Lifshitz point

.

. . .

INTERNATIONAL RESEARCH

Thank you for your attention