
FPGA Lab 1 & 2

Purpose: In this lab we will be getting acquainted with the FPGA software and hardware with
some simple design problems. You will learn how to edit and save designs, compile them, and
then program the code into the FPGA.

1) Plug in the power connection to the “Live Design” Board (upper center of board). The red

LED near the power connector should light up. Plug in the ribbon cable from the parallel
port to the connector on the upper right of the board.

2) Please create your own folder on your computer. You will use this folder for the entire 127B
class. Copy the folders for Lab 1 and Lab 2 (“Lab1.1” to “Lab1.2”, “Lab2.1” to “Lab2.5”)
from the lab server file to your folder as well as these instructions.

3) Lab1.1 : LED display of dip switch settings. Open the Lab1.1
folder and double click on the “LiveDesign” icon with the double
sheet of paper and blue symbol. This is the project file for the first
hardware design, and will start up the program with the proper compiler and programmer
settings. The schematic design should be visible under the name “LEDtest”.

4) The input pins to the FPGA are the symbols at the left (SW_DIP[7..0]); each of the eight pins
are connected to a 5K Ohm pull up resistor and a switch to ground. When you slide the DIP
switches to the ON position, these inputs then go low (ground). The output pins on the right
side (LED[7..0]) are each connected to light emitting diodes through a 270 Ohm resistor to
ground. The LEDs produce light when the output pin is high. The DIP switch and the LEDs
are on the lower left-center part of the Live Design board.

5) Connect each input pin to each output pin with wires. Click the wire tool button on the left
hand side bar (thin wire). Click and hold on the right hand side of the input
symbol, then DRAG the wire across to the output symbol. Repeat for each set of
inputs and outputs. Wires now connect the inputs and outputs.

6) Save your schematic “LEDtest” with the “File/Save” command.

7) Compile your design with the
“Processing/StartCompilation” command. After a minute the compilation will finish. Please
look for any errors being displayed in the message box at the bottom of the screen. Warnings
are ok – there may be many of them because I have defined a lot of input and output pins that
we are not using in this schematic.

8) Load the compiled program into the FPGA by using the “Tools/Programmer” command.
The file to be programmed should be “LiveDesign.sof”, and the program/configure box
should be checked. Click on the start button (upper left), and the program will download
onto the board. The taskbar on the right hand side should show the progress of the download.
Look for any error messages in the message box.

9) When the program loads successfully, the green LED at the lower right hand side of the
LiveDesign board should light up.

10) Now test your program. Change the DIP switch settings, and check that all the LEDs light
up when the dip switch is not in the ON position. Why does ON for the DIP switch
correspond to the LED off?

11) Lab 1.2 : LED display using bus wiring. In this lab you will see the advantage of using

buses, as connecting many wires in a bus is as much work as one wire. The basic project is
the same as last time. Open the LiveDesign project in the folder Lab1.2.

12) Note that now there is only one input symbol that represents all eight input pins
SW_DIP[7..0]. Similarly, the eight output pins are represented by the one output
symbol LED[7..0]. Wire all eight lines together with a bus, created by selecting
the thick wire on the left hand side bar. Click and drag the heavy wire from the
input to output symbols

13) Compile, program, and test as in last project.

14) Lab 1.3 : Gates. In this lab you will design simple gate circuits using NANDs. Load the

LiveDesign project in folder “Lab1.3”. Note: all gates of this lab can be made using one
schematic, 8 DIP switch inputs and 7 LED outputs.

15) Wire two DIP switch pins to the input of the NAND
gate, and its output to an LED. Compile and test for
proper operation of the NAND gate.

16) Make an OR gate from multiple NAND gates. You
may copy the NAND gate by right clicking the gate,
and using the copy and paste commands. You may
also move the gates and input/output pins by dragging,
or box-selecting and dragging the objects.

17) Make an XOR gate from multiple NAND gates.
18) Make a DECODE circuit from multiple NAND gates. This circuit takes 2 input bits

“inbits[1..0]”, and sets high one of 4 output bits “outbits[3..0]” according to
outbits[3..0]=B”0001” when inbits[1..0]=B”00”
outbits[3..0]=B”0010” when inbits[1..0]=B”01”
outbits[3..0]=B”0100” when inbits[1..0]=B”10”
outbits[3..0]=B”1000” when inbits[1..0]=B”11”.

Connect inbits to two bits of the DIP switch, and outbits to 4 LEDs. Compile and test for
proper operation.

19) Lab 2.1 : 7-segment LED display. This project will take the 8 input bits from the DIP
switch and display these 8 bits as two hexadecimal digits on the two rightmost 7-segment
displays. Because hexadecimal displays 4 bits, you will have to
practice wiring to parts of buses, that is breaking up an 8-bit bus to
two 4-bit buses. Load the LiveDesign project in folder “Lab2.1”.

20) In the LEDtest module you see a submodule named “7segment”.
This module takes the 4 bit hex code and converts it into 7 bits
driving the LED 7 segment display (plus one bit driving a decimal
point). We’ll look at this more closely in a moment, but for now
wire up the output bus of the top submodule to the output pins of the 7-segment display
DIG5_SEG[7..0], where the 5 in DIG5 represent the rightmost (5th) 7-segment
display. Do the same for lower submodule and the DIG4_SEG[7..0] output
pins.

21) Connect the dp and blank input pins to ground since we don’t want to display
a decimal point, and don’t want to blank the display.

22) The upper submodule has its 4 bits of input connected to the lowest 4 input
bits, which are labeled as data[3..0]. Note that wires with the same names are
connected together within each sheet of a schematic. Connect the lower
submodule to the upper 4 bits of the input data[7..4] by naming this bus
data[7..4]. Do this by clicking this bus and typing data[7..4].

23) Compile and program the FPGA. Cycle through the numbers 0 through F on
the DIP switches, and test for proper decoding of the hex into the LED display
segments. Note that you will find 3 errors in the coding, which we will now
fix.

24) When displaying the LEDtest schematic, double
click on the submodule “7segment”. A window
will open showing text code that defines the logic
for the 7 segment decoder using a truth table. The
beginning lines define the name of the submodule
and the input and output connections of the
submodule. The logic is defined between the
BEGIN and END commands. Note that I have
comment text defining the 7 segment bus
number for each segment of the display. The
truth table defines what the output should be for
each possible input. The first line defines the
input and output variables, and the following
lines defines input-output relation. The “X”
symbol means any number, and is used for the last entry because when blank is high the
display is turned off no matter what hex number is at the input. Note that after the truth table
there is a text definition for the logic to display the decimal point, which also gets blanked.

25) Fix the 3 errors in the truth table. Save the file using “File/Save”, then recompile, program,
and test.

26) Try connecting an input “dp” or “blank” to one of the input bits, eg. data[7]. Verify proper
operation of the dp and blank logic.

27) Lab2.2 : Gray code translator. In this lab we will convert a 4 bit Gray code into
hexadecimal. Open Lab2.2.

28) We want to make the circuit in Fig. 8.7B, page 480 of Horowitz and Hill. The
XOR gate may be found by clicking on the device icon (looks like an AND gate),
on the left tool bar. When
the symbol menu pops up,
type xor (circled at right) and
a list of gates will appear in
the box, with the XOR gate
selected. Click ok, and the
symbol may be inserted 3
times into your schematic.
Try clicking on this again,
and note the many possible
gates that are available in this
library. As we will see later,
the use of these prefabricated
modules makes FPGA
programming very powerful.

29) Wire up the gates according to Fig. 8.7B. Note that we have to break out the individual bits
of the inputs to connect them to the XOR gates, but we have to get them grouped back into a
bus to use the 7 segment display. This is done by naming wires and buses as we saw in the
last lab. Also note how the raw input bits are grouped into a bus and connected to the
LED[3..0].

30) Cycle through all inputs of the Gray code. Note how much easier it is to check all 16
possible inputs now that you only have to change 1 switch at a time. That’s the point of the
Gray code!

31) Lab2.3 : Adder. In this lab we will make a 4 bit adder, using logic we

defined in class. Open Lab2.3
32) First, double click on the “Adder” submodule. The truth table for adding

a, b, and cin is given for 2 out of the 8 possible input states. Complete the
truth table.

33) Complete the wiring for the 4 bits of the adder stage. Note how the a[3..0]
and b[3..0] inputs are set by the dipswitch, and are broken out into the individual bit stages of
the adder by naming wires. Also note the output 7 segment displays. The leftmost 7-
segment display is a[3..0], the 3rd display is b[3..0], and rightmost is sum[3..0].

34) Test the adder stage for various inputs. What happens when the output is
greater than 15?

35) Explain how the carry output display works. Note that the submodule
named “mf_constant” produces a 4 bit bus with the (constant) value
B”0001”.

36) Lab2.4 : Multiplier. In class we discussed how, in principle, to make a multiplier. But why
should you have to make one of these when engineers have already figured out how to do it
really well? In this lab we will show how very powerful functions can be generated by the
FPGA software using megafunctions. Open up Lab2.4

37) We want to build a circuit to square an 8 bit number set by the
dipswitch. We will build the multiplier with the megafunction
tool, which can be found by selecting the symbol tool (AND
gate symbol on left tool bar). In the symbol dialog box, press
the megawizard plug-in manager button. Then select next
since we want to create a function. In the left box, click
arithmetic, then LPM_MULT to choose the multiplier function.
Enter a name of the function, say “mf_multiplier” in the text box on the middle right hand
side, and then click next. The next few dialog boxes define your multiplier. As you want an
8 bit by 8 bit multiplier, just click next. Click next since you want unsigned multiplication.
Click next again because you don’t need it to be pipelined (to be explained later when we do
flip-flops). Finally, click finish and insert the function onto your schematic.

38) Each input to the multiplier is 8 bits, so connect the input dipswitch to both inputs of the
multiplier to get a squaring function. Name the output bus of the multiplier, and connect this
16 bit bus, 4 bits at a time, to the top four 7-segment display modules. Connect the 8 input
bits to the two 7-segment displays at the bottom of the schematic.

39) Compile, program, and test your module.
40) How “big” is this multiplier hardware? Compile the module again, but now in the

compilation report dialog box note the number of total logic elements that were used by your
design. This is larger than you could breadboard easily, yet how much of the FPGA have
you used?

41) Lab2.5 : Why a Hexidecimal Display? In the previous labs we have been displaying bus

data as hexadecimal numbers, not as decimal numbers. This is the easiest way to display bus
data, but takes a while to get comfortable with. In a digital computer, binary or hexadecimal
numbers are usually converted to decimal in software display routines, so the conversion is
“transparent” to the user. Let’s try to do it here. We want to show that although it is takes
some more coding, it’s not all that bad because of divider megafunctions. (Try thinking
about building a divider yourself!)

42) Use lab2.4 and construct a squaring circuit
with the input and output now displayed as
decimal numbers. Conversion to decimal
may be accomplished by using the
megafunction divider module that is
displayed just above the megafunction
multiplier. With a divisor of 10 created from the “constant” megafunction, use the quotient
and remainder outputs to compute all of the decimal digits.

