
FPGA Lab 3 - Counters

Purpose: In this lab we will build digital counters, which are simple and useful examples of
synchronous (clocked) logic. You will also be introduced to the Quartus simulator and learn
how to use this tool to check and debug your logic. Given the complexity of digital designs,
simulators are essential for getting your designs to function properly. You will rely on the
simulator extensively in later labs and will find that a design, once simulated properly, almost
always works when tested on the actual hardware. Because the simulator is very powerful, it
takes some effort to set it up and define parameters properly. It’s not too hard - and certainly
much easier than testing a design with only a signal generator and an oscilloscope!

1) Lab3.1 : Binary counter, simulator. This lab will have you build a simple 20-bit binary

counter, and display in hexadecimal the counter output on the 7-segment LEDs. For this
counter, you will understand how the synchronous-clear and carry-in input lines work. Copy
the Lab1.1 folder and open the project. The 7-segment displays are already entered in the
project, as well as the clock input “fclk” and the pushbutton
switches “SW_USER[1..0]”. These switches are located just
below the 7-segment LED’s on the board.

2) Create the counter function with the megawizard (as done for the
multiplier last lab) with the path “/installed plug-
ins/arithmetic/LPM_COUNTER”. Choose a 40 bit counter, with
carry-in and synchronous-clear input lines.

3) Connect the inputs of the counter function to the switches and clock, and the output to the 7-
segment display. Decide the correct logic for the SW_USER inputs - they are high if not
pushed. You want to design the logic to have the counter clear or stop counting when the
buttons are pushed. You can use the Quartus help command to get the definition of the
carry-in and synchronous clear input lines for this counter function.

4) Compile and test your design. Redefine your bus inputs to the 7-segment modules so that the
rightmost display can be seen to count. From the counting rate of the displays, determine
the clock frequency of fclk.

5) How to use the Quartus simulator: In this exercise we will want to view the counting of
the flip-flops at the counter output, and demonstrate with the simulator that the clear and
carry-in functions are functioning properly.

6) First, create the test inputs for the simulator with a vector waveform
file “LiveDesign.vwf”. Click on “File/New”, then tab to “other
files” and choose “vector waveform file”. Save this file as
“LiveDesign.vwf” by clicking on “File/Save As”, then entering
“LiveDesign” as the file name.

7) Next, specify the pins and nodes you want to monitor in the
simulation. In the .vwf file, right click in the column under “Name”
and choose “insert node or bus”. In this dialog box, click the “Node
Finder…” button. Choose as the “Filter” the “post-compilation” pull down, and then
click the button “List”. In the left column you have a list of possible nodes that you
can choose as inputs and outputs. Notice that you have input (I) pins, output (O)
pins, combinatorial/gate nodes (C), and register/flip-flops outputs (R); also note that
buses are represented as multiple symbols.

8) Double click on the nodes you want to simulate
and they will move to the right hand column.
Choose the inputs “fclk”, “SW_USER[1]”, and
“SW_USER[0]”; and the output bus
“DIG5_SEG”. We have chosen the inputs as
individual lines, not buses, to have separate
control of the two inputs. We have chosen the
output to be a bus because we want to look the
entire bused output. Click “ok” twice to close the
node finder window and add the nodes to the .vwf
file.

9) To ease the interpretation of bus signals, the
waveform entries can have their values displayed
in more convenient ways. Push the “+” box to
display the individual bits of “DIG5_SEG”. To
change number format, right click on
“DIG5_SEG” and choose “properties”. Under the pull-down menu “Radix” one can change
the display of the bus as binary, hexadecimal, octal, signed decimal (via 2’s-complement
encoding), or unsigned decimal. Choose hexadecimal for this output.

10) Now define the time axis. First, set the end time by choosing “edit/endtime..”, and entering
the end time value of 10 us. Click “ok”. Next, you can zoom in and out of the time axis by
right clicking in the center of this window, and choosing “zoom…”. In addition, the bottom
scroll bar and mouse scroll can be used to scroll left and right in time.

11) Now you will define the inputs. First, click on the “fclk” symbol. To define it as a clock
input, click on the stopwatch symbol on the left hand bar, then enter 20 ns for the period of
the clock (fclk runs at 50 MHz). You should now see a square wave in the waveform to
indicate this clock. Change the zoom so that you see times from approximately 0 to 720 ns.
Next, enter the SW_USER[1] and SW_USER[0] inputs. Click on their name, then on the “1”

9

11

11 (dragged)

symbol to set their value to 1 for all time. Next, right click and drag over one of these
waveforms to select a span of time (“dragged” above fig.). This selected time span can be set
to zero by then clicking the “0” symbol. Note that the other useful input functions are invert,
which inverts a selected node, and ‘c”,which increments a bus value at each clock cycle.

12) Save the .vwf file, and then run the simulation by selecting “processing/start simulation”.
Upon completion, a simulation output file will show the simulated input and output
waveforms. You should see the output “DIG5_SEG” changing with time if it is connected
to the lowest bits of the counter in your design.

13) The output “DIG5_SEG” is hard to understand because it is coded to display the 7-segment
LEDs. It would be much easier to check for proper counter operation by directly looking at
the counter output bits. It is possible to look at logic within your design, but unfortunately
the Quartus software is a bit clunky for this task. There are two ways to do this.

14) You may look at any logic state in your design by temporarily attaching that wire to an
output port, then looking at the output port with the simulator, as done previously. In our
LiveDesign board, there are 36 unused input/output lines named “IO[35..0]” that can be used
for this function. First, an output bus is created in the schematic by choosing the “device
tool” and typing “output” in the name field. After insertion, clicking on “pin_name” allows
it to be changed to IO[35..0]. Now connect this output bus to the least significant bits of your
counter. Recompile the design, add the output pin name to the .vwf file using the node finder,
and rerun the simulation. This output bus will now increments by one at each clock cycle.

15) It is also possible to directly look
at the output of registers/flip-
flops within your design.
Without using an output pin,
registers are the only signals you
have access to within your design. Unfortunately, these
registers are named by the computer, and sometimes are hard
to find and decode by name. In our design, look under the
node finder for the register bus. It will have a name that starts
with the name you gave it when the counter was created, and
has an “instance” that is the same as in your schematic. By
inserting this into the .vwf file, you will then see its waveform
in the simulator output.

16) Carefully note the waveforms of the counter outputs. The Quartus simulator has been
carefully programmed to account for all the various delays internal to the FPGA chip, and
you see these in the simulations. The register output is slightly delayed with respect to the
clock and accounts
for the small output
delay of the registers.
The output pins
change at a later time
compared to the
registers and accounts
for the wire delays
between the register
and the output pins.

17) Lab 3.2 : Binary-coded decimal counter. Copy your
entire folder for lab3.1 to a new folder named lab3.2. In this
lab you will design a counter that displays the count in base-
10 (binary-coded decimal) numbers. Make the rightmost
digit of the display count in 1/100 of a second, and display a
decimal point after the first two digits.

18) Counting by 10 may be accomplished by using single
counting modules 4 bits wide, but with a modulus-10 count.
A 4-bit binary counter gives a carry-out signal when the
counter has value 15=H”F”; a modulus-10 counter gives a
carry-out signal at value 9. Connecting together carry-out
and carry-in lines of several modules will give a counter with
multiple digits that count in binary coded decimal.

19) Lab 3.3 : Counter from elementary gates. Make a 4 bit
counter that counts once a second. Construct the counter using only D flip-flops and
elementary gates (ie. ANDs and XORs) according to the design discussed in class and in the
homework. Use a megafunction counter to generate one carry-in pulse per second.

