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Experimental Calibrations

The classical limit |S| ≤ 2 for the CHSH experiment is derived with very minimal as-

sumptions. These include the reproducibility of the measurement axes a, a′, b, and b′, the

space-like separation and thus independent measurement of the particles (basis for locality

loophole), and the completeness of the ensemble measurement (basis for detection loophole).

But the derivation is, for example, not based on any assumptions about the actual state of

the particle pair before separation, the choice of measurement axes, or even the coherence

of the states or fidelities of the measurement as long as all introduced errors act on the

individual qubits and do not introduce correlations. Thus, it is possible to calibrate almost

all parameters describing the experiment with a global optimization process that maximizes

the Bell signal |S|.
In our experiment, these parameters include all numbers describing the sequence shown

in Fig. 1e, including the phase, frequency, and shape of the initial π-pulse, the shape of

the pulses that sweep the qubits into resonance with the resonator, and even the shape of

the measurement pulses, while ensuring that the two qubits are kept off-resonance from the

resonator to avoid further coupling. The optimal values for most of these parameters depend

on sample properties such as the coupling strengths between the qubits and the resonator,

and are thus not predictable in a useful way. However, the optimal rotation angles for the

measurement, i.e. the measurement axes, are predicted, although not uniquely, by quantum

mechanics and can thus be used to verify the optimization process.

Quantum mechanics predicts a maximal violation, for example, using measurement axes

in the Y/Z-plane that form angles with the z-axis of a = −135◦, a′ = 135◦, b = 0◦, and

b′ = 90◦. Our optimization resulted in angles of a = −149◦, a′ = 156◦, b = 1◦, and

b′ = 92◦ that lie in planes deviating from the Y/Z-plane by less than 15◦. Given the other

non-idealities of the experiment and the fact that, around the maximum, the obtained S-

Value depends only to second order on these angles, this good match with theory makes

us confident that the optimization found a sensible solution. This confidence is supported

further by the fact that several different optimization schemes yield parameters that are

consistently close to these.
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Measurement Crosstalk

As measurement crosstalk poses the greatest challenge to our experiment, we devised a

sensitive test to quantify this error mechanism. This test consists of keeping one qubit in

the |0〉 state while driving a Rabi oscillation on the other qubit. If the qubits are kept off

resonance from the resonator and each other during this experiment, the qubit in the |0〉
state should ideally remain unaffected by the state of the other qubit. However, measurement

crosstalk does cause a small oscillation on the measured state populations of the inactive

qubit at the same frequency as the Rabi oscillation on the other qubit. Thus, a comparison

of the Fourier amplitudes of the observed oscillations in the state populations of the two

qubits yields a direct number for the strength of the measurement crosstalk. Fig. 1 shows

the data resulting from the experiment and yields a value for the measurement crosstalk

pa
c = 0.59% from qubit A to B and pb

c = 0.31% from qubit B to A.

This crosstalk leads to a correction in the limits on the Bell signal dictated by a local

hidden variable theory [1]:

−2 + 4 min{pa
c , pb

c} ≤ S ≤ 2 + 2
∣∣pa

c − pb
c

∣∣ (1)

Using the values for the measurement crosstalk in our sample, we find the new classical limit

to be:

−1.9876 ≤ S ≤ 2.0056 (2)

This correction is small enough to not challenge our claim of a violation.

Statistical Analysis

For the measured Bell signal to carry statistical meaning, it needs to be supplemented

with an estimate of its standard error. As S is determined by sampling the multinomial dis-

tributions that describe the qubits’ state, the standard error on S is dominated by statistical

sampling noise for small sample sizes. As the sample size increases, though, the error on

S shows more and more influence from experimental drifts and 1/f noise. The estimation

of the standard error for large sample sizes therefore requires a noise and drift model that

accounts for these experimental systematic errors.

To circumvent this, we divided the entire dataset into sections, each of which is small

enough to be dominated by statistical sampling noise. For this, we analyzed the internal
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variance in our dataset, as shown in Fig. 2 to determine the maximum acceptable section

size. We found that for sections up to 1.55 million samples, or about 20 minutes worth of

data taking, the variance is sampling-noise-limited, allowing us to employ standard statistical

analysis techniques to estimate the standard error on S for each section. We therefore divided

our dataset of 34.1 million samples into 22 sections that produce violations with values of S

ranging from 2.0666 to 2.0806 and standard errors around 0.0014, corresponding to violations

by about 50 standard deviations. These standard errors can be used in one-sided hypothesis

tests to estimate the certainty with which each respective section indicates a non-classical

Bell signal. If the 22 sections are combined to yield an overall certainty, a corresponding

standard error can be inferred, with which we arrive at our final violation claim of 244

standard deviations.

Quantum Simulation and Sample Performance Parameters

To further verify the experiment, we employed quantum simulations to predict the Bell

signal. For the purposes of the simulation, the resonator is treated as a third qubit, which

is acceptable in the special case of this experiment since the entire quantum circuit never

contains more than one photon while the qubits are coupling to the resonator. The state of

the system is then expressed by an 8 × 8 density matrix in the basis of the system’s eight

states |000〉, |001〉, |010〉, . . . , |111〉. Rotation operations on the qubits are simulated via

the matrix exponentials of the appropriate Pauli matrices, e.g. a 90◦ x-rotation on qubit A

would be simulated via:

ρout = ei π σx⊗I⊗I/4 ρin (3)

Coupling operations are simulated using matrix exponentials of the coupling matrix

C =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0




(4)

For example, a swap operation between the resonator and qubit B is simulated via:

ρout = ei π I⊗C/2 ρin (5)
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Single qubit decoherence and dephasing are added by applying the operations in small

steps interleaved with the Kraus operators [CITE] that relax or dephase the state. Mea-

surement errors are included by modelling them with a classical probability to misidentify

the individual qubits’ states.

Using just the single qubit and resonator performance characteristics T1, T2, F0, and

F1 as shown in Table I and assuming that the coupling operation is ideal, we were able

to explain our data with very high fidelity. From this we conclude that efforts to improve

our architecture need to be focused primarily on single qubit performance, while a scaling

to a larger collection of qubits should not introduce any new error mechanisms (beyond

measurement crosstalk) and should thus be relatively straight forward to achieve.

It is important to note that the quantum simulations did not contain any fit parameters,

and were instead based solely on the actual sequence parameters and the numbers in Table

I, which in turn were measured directly using standard decay and Ramsey techniques. The

measurement fidelities, specifically F1, were somewhat non-trivial to measure well without

assumptions about other experimental fidelities. We devised an experiment based on mul-

tiple pulse-amplitude-driven Rabi oscillations as shown in Fig. 3. With this method, we

found the highest measurement fidelities ever reported in phase qubits as shown in Table I-

well above 90% and within a few percent of the theoretically expected maximum of 96.6%.

Experimental Data and Measurement Correction

Since the reduced measurement visibilities classically affect the two qubits independently

and do not introduce correlations into the measurement, it is theoretically legitimate to

correct our data for these to estimate the Bell signal that we would have obtained with

perfect fidelities. Table II shows the raw state probabilities observed in our experiment

on which the violation claim in this paper is based. Table III shows the corrected state

probabilities and the resulting estimated Bell signal for ideal measurement. The observed

number matches the simulated value of S = 2.337 very well.

We provide this corrected value of S not to claim a larger Bell violation, but instead as a

benchmark of the fidelity of the quantum operations we performed on the qubit pair. The

separation between quantum operations and qubit readout is useful, in our opinion, as the

number of quantum operations required to implement any significant quantum calculation

5



will probably outscale the number of qubit readouts required by a large factor.
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TABLE I: Performance parameters for qubits . T1 and T2 are the qubit energy and phase relaxation

times, Tϕ the pure phase decoherence time, F0 and F1 the measurement fidelities for the |0〉 and

|1〉 state measurements,

Parameter Value

Qubit A:

T1 296 ns

T2 135 ns

Tϕ 175 ns

F0 97.04%

F1 96.32%

Qubit B:

T1 392 ns

T2 146 ns

Tϕ 179 ns

F0 96.18%

F1 98.42%

Resonator:

T1 2, 552 ns

T2 ∼ 5, 200 ns

Tϕ ∼ ∞
Coupling:

Qubit A ↔ resonator 36.2MHz

Qubit B ↔ resonator 26.1MHz

Measurement Crosstalk:

Qubit A → qubit B 0.31%

Qubit B → qubit A 0.59%

7



TABLE II: Bell violation results

Parameter ab a′b ab′ a′b′

P00 0.4162 0.3978 0.1046 0.3612

P01 0.1575 0.1759 0.3700 0.1136

P10 0.0852 0.0731 0.3904 0.1185

P11 0.3412 0.3531 0.1350 0.4066

E 0.5147 0.5019 -0.5208 0.5358

S 2.0732
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TABLE III: Bell violation results, corrected

Parameter ab a′b ab′ a′b′

P00 0.4406 0.4213 0.0900 0.3813

P01 0.1343 0.1539 0.3790 0.0880

P10 0.0726 0.0599 0.4166 0.1092

P11 0.3525 0.3649 0.1145 0.4215

E 0.5862 0.5724 -0.5911 0.6055

S 2.3552
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FIG. 1: Quantifying measurement crosstalk: Measurement crosstalk can be quantified by driving

a Rabi oscillation on one qubit and observing the other qubit’s response. Fourier transforming

the data allows the isolation of the relevant features. (a) Rabi oscillation for qubit A (blue). The

measured state of the qubit B (red) only shows a very weak dependence on whether the qubit A

is in the |1〉 or |0〉 state. Here, x represents a sum over the probabilities for 0 and 1. (b) Fourier

transform of (a). The ratio of the responses of the two qubits at the same frequency as the Rabi

oscillation on A gives a number for the measurement crosstalk, here 19.1/6108 = 0.31%. (c) Rabi

oscillation for qubit B (red); qubit A in blue; x represents a sum over the probabilities for 0 and

1. (d) Fourier transform of (c): Data shows 41.9/7091 = 0.59 % for measurement crosstalk.
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FIG. 2: Standard error analysis: As the sample size increases, the standard error of the estimated

mean changes from being dominated by statistical sampling noise (red line) to being dominated by

1/f drift in the experiments (green line). The point where the two lines cross gives the maximum

sample size that can be statistically analyzed in a meaningful way, without modeling drifts and

1/f noise in the experiment.
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FIG. 3: Visibility analysis (composite of several data sets). Blue dots represent data, red lines

are fits through the data, and green lines are fits through the extrema of the red lines. The

upper parabolas correspond to Rabi oscillations driven with pulses at fixed length and increasing

amplitude around the point where they yield a π-pulse. The bottom parabolas are Rabis driven

around pulse amplitudes that yield a 2π pulse. The horizontal dataset at the bottom corresponds

to no drive on the qubit. The green fits through the parabolas’ extrema (optimal π or 2π pulses)

give the measurement visibility when extrapolated to t = 0, i.e. to an optimal, instantaneous pulse.

The horizontal line checks the method by providing a direct measurement of the |0〉 state visibility.

Since the measurements agree to high precision, the method can be trusted to extract a |1〉 state

fidelity, for which no direct measurement is available. Results are for (a) Qubit A: F0,Rabi =

96.86%, F0,direct = 97.04 %, F1 = 96.32%, and (b) Qubit B: F0,Rabi = 96.06%, F0,direct = 96.18%,

F1 = 98.42%.
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