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DEVICE FABRICATION

The devices were made in a two-step deposition pro-
cess. The qubit capacitor, groundplane, readout res-
onator and control and readout wiring were made in a
first, separate deposition step. We used molecular beam
epitaxy (MBE) Al deposited on a c-plane sapphire sub-
strate. The Al film thickness is approximately 100 nm,
deposited at room temperature. The sapphire substrate
was cleaned by load-lock outgassing at 200 ◦C, followed
by heating to 850 ◦C in ∼ 10−6 Torr activated oxygen,
identical to the process outlined in Ref. [1]. The first Al
layer was patterned by a BCl3/Cl2 reactive ion etch.

In the final step, 0.30 x 0.20 µm2 Al tunnel barriers
(30 nm bottom and 100 nm top layer thickness) were
made using double-angle shadow evaporation. We used
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FIG. S1: (Color online) Optical micrograph of the six ‘Xmon’
qubits on two chips, formed by the Al superconducting (light)
and the exposed sapphire substrate (dark). The qubits are
capacitively coupled to readout resonators, which couple to a
readout line in a frequency multiplexed readout scheme [2].
The central linewidth S and gap width W are varied from
8,4 µm to 24,24 µm. The top three Xmons have a single arm
length of L = 130 µm, the bottom three have L = 165 µm.
Test resonators provide an independent measurement of the
quality factor.

a high vacuum electron-beam evaporator, with a base
pressure of approximately 5 × 10−8 Torr. We used the
Dolan bridge technique with a poly(methyl methacry-
late)/copolymer resist bilayer (approximate thickness:
0.30 and 0.50 µm, respectively), patterned with electron
beam lithography. In order to make galvanic contact
between the first Al layer and the junction layer, we
used a 3 min long Ar ion mill (beam: 400 V, 21 mA;
beam width: ∼3.2”) before shadow-evaporation. Ap-
proximately 40 nm was removed from the top resist layer
during the ion mill. The junctions were oxidized for
80 mins at 5.0 mBar. Lift-off was done in N-methyl-
2-pyrrolidinone at 80 ◦C.

We find that the junctions age very little, the resistance
value changes less than 1% over a period of ten days. An
optical micrograph of the devices is shown in Fig. S1.

Dt (ns)

∆
Z

 /
 Z

a
m

p

-50 -25 0 25 50
-0.5

0

0.5

1

1.5

X

DZ

Dt

Xp

Z
Zamp

0.0 1.0P1

-50 -25 0 25 50
0.0

0.5

1.0

DZ=Z
amp

DZ=0

P
1

Dt (ns)

FIG. S2: (Color online) Z pulse shape measurement. The
qubit is excited with a π-pulse with 20 ns Gaussian envelope,
while a rectangular wave is applied on the Z line. The pulse
sequence is shown in the left inset. We use Zamp = 0.2 (arb.
units) [3], which corresponds to a shift in frequency of 73 MHz.
The right inset is a cross section at ∆Z = 0 (squares) and
∆Z = Zamp (circles), as indicated by the arrows (right). The
solid lines are fits to partial qubit rotations from a π-pulse
with a truncated Gaussian envelope.
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Z PULSE

In order to quantify the response time of the qubit
to a Z pulse, we simultaneously apply a π-pulse with a
Gaussian envelope on the XY control and a rectangular
wave pattern on the Z control line. The pulse sequence
is shown in the left inset in Fig. S2. We slide the rectan-
gular wave in time (∆τ) and offset (∆Z), while retaining
the amplitude of the wave Zamp constant. The excited
state population is plotted in Fig. S2 as a function of
time and amplitude.

A cross section of the main figure at ∆Z = 0 (squares)
and ∆Z = Zamp (circles) is shown in the right inset. The
measured response can be accurately described by qubit
rotation from a partial π-pulse (π-pulse duration: 20 ns),
with a truncated Gaussian as envelope (solid lines): with
the quantum state given by Ψ = cos( θ2 )|0⟩+sin( θ2 )|1⟩, for
the fall at ∆Z = 0: θ =

∫ −∆τ

−∞

√
π/2 exp[−t2/2σ2]/σdt.

No other time constants are included. We find that the
rise at ∆Z = Zamp is best described when assuming a
0.5 ns delay compared to the fall at ∆Z = 0. We conclude
that the qubit frequency is tuned to the desired frequency
on a timescale of nanoseconds.

We find the Z control cross-talk between adjacent
Xmons to be 1.0-1.5%.

QUBIT DECAY RATE

The frequency-dependent decay rate is displayed in
Fig. S3, replotted from the data in Fig. 4 in the main
text.
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FIG. S3: Frequency dependence of Γ1 for six qubits with
different S and W . The frequency stepsize is 5 MHz for S,W
= 8,4 µm and 2 MHz otherwise.
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FIG. S4: (Color online) Qubit excited state probability versus
time, in a simulation of a qubit-defect system. The qubit is
on resonance with the defect, whose energy relaxation time is
Γ1,D. Here, we used a coupling strength g/2π = 1 MHz.

SIMULATION OF A QUBIT-DEFECT SYSTEM

In order to elucidate coherent as well as incoherent de-
cay of the qubit state, we numerically simulate a qubit-
defect system. The system consists of two coupled two-
level systems, with coupling strength g and defect en-
ergy decay rate Γ1,D; the qubit is placed on resonance
with the defect. The qubit excited state probability is
shown in Fig. S4. For Γ1,D < 4g, the excitation coher-
ently swaps back and forth between qubit and defect,
decaying slowly. When the decay rate exceeds the cou-
pling strength (Γ1,D > 4g) coherent swapping vanishes
and an exponential decay appears, as the qubit state de-
cays incoherently. The excitation decays most quickly for
Γ1,D = 4g.

ANALYTICAL EXPRESSION FOR LOSS IN A
QUBIT-DEFECT SYSTEM

Here we derive an analytical expression for the energy
loss rate arising from a qubit coupling to a single two-level
defect. We consider a system with two coupled two-level
systems. We solve the master equation in the Lindblad
form,

ρ̇ = − i

~
[H, ρ] +

∑
i

D [Ci] ρ, (S1)

with D [C] ρ = CρC+ − (C+Cρ+ ρC+C) /2 and the
Hamiltonian given by

H = ~ωQa
+a+ ~ωDb

+b+ ~g(b+ ⊗ a+ b⊗ a+), (S2)

with a and b the lowering operator for qubit
and defect, respectively, and ω the angular tran-
sition frequency. We model Markovian decoher-
ence through the Lindblad terms: Ci=1−4 =
{a

√
Γ1,Q, a

+a
√
2Γϕ,Q, b

√
Γ1,D, b

+b
√
2Γϕ,D}, denoting
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energy and phase relaxation for qubit and defect, respec-
tively. Here we used the number operators a+a and b+b
to express pure dephasing, and Γ1,Q denotes qubit relax-
ation. We take Γ1,Q ≪ Γ1,D. As we are interested in
the relaxation of a single excitation, we only consider the
states {|00⟩, |01⟩, |10⟩}. In the interaction picture and
matrix form the above becomes

H =~

0 0 0
0 0 g
0 g ∆

 , (S3)

ρ̇ =− i

~
[H, ρ]

−Γ1,Q

2

−2ρ22 ρ12 0
ρ21 2ρ22 ρ23
0 ρ32 0

− Γϕ,Q

 0 ρ12 0
ρ21 0 ρ23
0 ρ32 0


−Γ1,D

2

−2ρ33 0 ρ13
0 0 ρ23
ρ31 ρ32 2ρ33

− Γϕ,D

 0 0 ρ13
0 0 ρ23
ρ31 ρ32 0

 ,

(S4)

with ρ the density matrix, and ∆ = ωD − ωQ.
We are interested in the decay of the qubit excited

state probability ρ22, the relevant equations extracted
from above are

ρ̇22 = −ig(ρ23 − ρ23)− Γ1,Qρ22 (S5a)

ρ̇23 = −ig(ρ33 − ρ22) + i∆ρ23 − Γρ23 (S5b)

ρ̇33 = −ig(ρ23 − ρ23)− Γ1,Dρ33 (S5c)

with Γ = Γ1,D/2 + Γϕ,D + Γ1,Q/2 + Γϕ,Q.
In the limit Γ1,D > g, ρ33 ≈ 0, and we can approximate

the system with two coupled differential equations. In-
serting ρ22 = exp(−Γ1t) and ρ23 = (βr + iβi) exp(−Γ1t)
gives

Γ1 = 2gβi + Γ1,Q (S6a)

Γ1βr = ∆βi + Γβr (S6b)

Γ1βi = −g −∆βr + Γβi, (S6c)

The solution for the qubit energy decay rate Γ1 in the
presence of a two-level defect is (for Γ1,D > g > Γ1,Q)

Γ1 =
2g2Γ

Γ2 +∆2
+ Γ1,Q. (S7)

We note that the above equation is similar to the low
power limit of the two-level system response function,
see for example Ref. [4].

MONTE CARLO SIMULATION OF DEFECTS IN
THE XMON QUBIT

In order to quantitatively understand the Xmon
qubit’s energy decay as well as its variation over fre-
quency, we have performed a Monte Carlo simulation
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FIG. S5: (Color online) Monte Carlo simulation for defects
in the Xmon capacitor, with S=8, W=8 µm and the Xmon
arm length L=165 µm. (a) Truncated cumulative distribution
of the defect coupling strength. A total of 210 defects/GHz
have a coupling strength g/2π > 0.1 MHz. A total of 30
defects/GHz have a coupling strength g/2π > 0.22 MHz. (b)
Distribution of the defects along position; number of defects
in each 100 nm wide section is plotted. The cross section of
the capacitor is dashed. The coplanar waveguide geometry
as well as the definition of S and W are shown in Fig. 1b in
the main text. (c) The simulated decay rate in a 0.5 GHz
bandwidth using the distribution in (a,b), and Eq. S7.

for defects in the capacitor. The defect density for
AlOx in tunnel barriers has been established in mea-
surements with phase qubits [5], with the distribution
over dipole moment p, volume, and frequency given by
ρ0
√

1− p2/p2max/p, with ρ0 ≈ 102/µm3/GHz, and the
maximum dipole moment pmax = 6 D. As the capaci-
tor metal oxide and exposed substrate both consist of
Al oxide, we assume that these numbers are a fair rep-
resentation of the defect density in the qubit capacitor.
We only consider defects in the capacitor, the junction is
assumed to contain no defects for this simulation.

We randomly place defects in a 3 nm thick dielectric
layer (ϵr = 10) on the substrate-air and metal-air in-
terfaces (top metal surface as well as the etched edges).
The substrate-metal interface is assumed to be thor-
oughly cleaned [1] and to contain no significant defect
density. Using a thickness of 2 nm instead of 3 nm for
the dielectric layer does not significantly influence the re-
sults. Each defect is given a random dipole moment p,
such that the distribution over dipole moments matches:
ρ0
√

1− p2/p2max/p, as given by Ref. [5]. The coupling
strength g = pE is then calculated for each defect using
a simulation for the electric fields in our geometry. The
results are shown in Fig. S5.

In Fig. S5a, we have plotted the truncated cumulative
defect distribution over coupling strength. We find that,
in a 1 GHz band, 30 defects have a coupling strength
of g/2π & 0.2 MHz (square). This simulated value is
close to the experimentally observed density of ∼30/GHz
in Fig. 3 in the main text. These strongly coupled de-
fects are predominantly located within a ∼100 nm dis-
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tance from the etched metal edges, including the exposed
substrate surface close to the metal edges and capaci-
tor metal oxide, where the electric fields are largest, see
Fig. S5b.
The simulated qubit decay rate for the same defect

distribution is shown in Fig. S5c in a 0.5 GHz band-
width. For the defect decay rate we have assumed, for
defects with g/2π > 0.1 MHz, a uniform distribution
based on the values extracted from Fig. 3 in the main
text: 1/Γ2,D = 50− 100 ns (Γ2,D = Γ1,D/2 + Γϕ,D). The
simulated decay rate reproduces both the peaks as well
as the variation in the background which are observed in
the measurement.
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