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Understanding complex quantum matter
presents a central challenge in condensed matter
physics. The di�culty lies in the exponential
scaling of the Hilbert space with the system
size, making solutions intractable for both ana-
lytical and conventional numerical methods. As
originally envisioned by Richard Feynman, this
class of problems can be tackled using control-
lable quantum simulators [1, 2]. Despite many
e�orts, building an quantum emulator capable
of solving generic quantum problems remains an
outstanding challenge, as this involves control-
ling a large number of quantum elements [3�5].
Here, employing a multi-element superconduct-
ing quantum circuit and manipulating a single
microwave photon, we demonstrate that we
can simulate the weak localization phenomenon
observed in mesoscopic systems. By engineering
the control sequence in our emulator circuit,
we are also able to reproduce the well-known
temperature dependence of weak localization.
Furthermore, we can use our circuit to continu-
ously tune the level of disorder, a parameter that
is not readily accessible in mesoscopic systems.
By demonstrating a high level of control and
complexity, our experiment shows the potential
for superconducting quantum circuits to realize
scalable quantum simulators.

Superconducting quantum circuits have been used to
simulate one- and two-particle problems [6, 7], and may
be useful for simulation of larger systems [8]. Here, we use
a superconducting circuit to simulate the phenomenon
of weak localization, a mesoscopic e�ect that occurs in
disordered electronic systems at low temperatures. The
challenge in this type of problem is that the mesoscopic
observables such as electrical resistance arise from the
interference of many scattering trajectories [9], thus ap-
parently requiring a very large emulator. However, we
�nd that we can simulate weak localization using a time-
domain ensemble (TDE) approach: We sequentially run
through many di�erent circuit parameter sets, each set
simulating a di�erent pair of scattering trajectories in
the mesoscopic system. By �nding a one-to-one corre-
spondence between mesoscopic properties and quantum
circuit parameters, we are able to map the spatial com-
plexity of the mesoscopic system onto a set of complex

yet manageable quantum control sequences in the time
domain.

Weak localization involves the interference of electron
trajectories in a disordered medium [9]. The quantum
nature of the electron allows it to simultaneously follow
multiple trajectories, each with amplitude An and phase
φn. The probability for the electron to reach a certain
point is given by

P =
∑
n

A2
n +

∑
m 6=n

∑
n

AnAm cos(φn − φm), (1)

where the �rst term sums over classical probabilities and
the second represents quantum interference. The quan-
tum term typically averages to zero, as scattering events

randomize the electron wavevector
−→
k and displacement−→

l and thus the accumulated phase φ =
∑
j

−→
kj ·
−→
lj . A very

dominant exception to this occurs in closed trajectories,
as these always have a time-reversed counterpart with
identical accumulated phase φ (Fig. 1(a)). These spe-
cial pairs thus interfere constructively with one another,
yielding a probability Preturn = 4A2, twice the classical
value. Experimentally, weak localization is identi�ed by

applying a magnetic �eld
−→
B , which induces an additional

static phase shift φS = 2
(

2π
−→
B ·
−→
S
)
/Φ0 for closed tra-

jectories with area
−→
S . The magnetic �eld breaks the

time-reversal symmetry and the precise constructive in-
terference of the paired closed trajectories. The mea-
sured electrical resistance is thus maximum at zero ap-
plied �eld, and falls to the classical resistance value as the
magnetic �eld is increased - a hallmark of weak localiza-
tion. Re�ecting quantum coherence from the electron
dynamics, weak localization is most known for its tem-
perature dependence. A elevated temperature increases
the inelastic scattering rates, reduces the phase coher-
ence length Lϕ, and thus suppresses the magnitude of
the weak localization peak at zero magnetic �eld [9, 10].

Replacing the electron with a microwave excitation,
we simulate weak localization in a quantum circuit com-
prising three phase qubits, a readout qubit Q1 and two
control qubits Q2 and Q3, symmetrically coupled to a
bus resonator Re, as shown in Fig. 1b [11]. In this con-
�guration, the quantum circuit can be described by the
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Figure 1. Superconducting quantum circuit implementation of weak localization. a. Schematic illustrating the
basic physics of weak localization. The weak localization contribution to electrical resistance is dominated by the interference
between closed trajectories traversed in opposite directions, which in the small decoherence limit give an increase in the
resistance; here we show one such pair of trajectories. b. Micrograph of the superconducting quantum circuit used to simulate
weak localization. A single microwave excitation is generated in qubit Q1, distributed between Q2 and Q3 and the coupling
resonator Re, then manipulated in the simulation. c. Pulse sequence used to simulate weak localization, decomposed into
three steps: Initialization: A π-pulse creates an excitation in Q1 that is then swapped into resonator Re through an iSWAP
gate. The simultaneous iSWAP gate then transfers the excitation from Re equally to Q2 and Q3 through their three-body
interaction, creating a state |ψ〉 = |Q2Q3Re〉 = 1√

2
(|eg0〉 + |ge0〉) that entangles Q2 and Q3. Control: We apply to Q2 a

relative static detuning δ, as well as a sequence of random detunings δR each lasting for a random time τR, interspersed with a
refocusing π-pulse spaced in time by τπ to vary the e�ective coherence time Tϕe� . We apply the time-reversed sequence to Q3.
Measurement : A simultaneous iSWAP interferes the states of Q2 and Q3 in Re, and a second iSWAP returns the excitation
to Q1; the probability for Q1 to be in the excited state |e〉 is then measured.

Tavis-Cummings model[12]

H = ~ωra+a+

3∑
i=1

~ωiσ+
i σ
−
i +

3∑
i=1

~g(a+σ−i +aσ+
i ), (2)

where ωi and ωr are the frequencies of the qubits and
the resonator, respectively, and g is the qubit-resonator
coupling strength.
As shown in Fig. 1(c), we start the simulation by

splitting the microwave excitation into the two control
qubits, analogous to an incoming electron simultane-
ously traversing two trajectories. This was done by �rst
initializing Q1 in |e〉, swapping the excitation into Re
and then applying a simultaneous iSWAP gate [11, 13].

By bringing Q2 and Q3 simultaneously on resonance
with Re for an time t = π/(2

√
2g), the simultaneous

iSWAP gate transfers the excitation from Re equally to
the two control qubits through their three-body interac-
tion, resulting in the desired state |ψ〉 = |Q2Q3Re〉 =
1√
2
(|eg0〉+ |ge0〉).

To simulate the the di�usion process of the electron in
the presence of magnetic �eld, we then apply a combi-
nation of sequences to the control qubits, following the
mapping between mesoscopic transport and quantum cir-
cuit parameters delineated in Table I. To mimic the ran-
dom scattering, we apply a series of random frequency
detunings δiR to each qubit, each for a random duration
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Electron in mesoscopic system Photon in quantum circuit

Magnetic �eld B Static detuning δ

Path area S Total detune pulse time τtotal

Wavevector
−→
k Random detuning δR

Displacement
−→
l Pulse duration τ

Coherence length Lϕ E�ective coherence time Tϕe�

Level of disorder Width of τtotal distribution σ

Electrical resistance R Photon return probability Preturn

Table I. List of parameters for electron transport in a mesoscopic system, and the corresponding control parameters in a
quantum circuit.

Figure 2. Simulating the temperature dependence of weak localization a. Measured photon return probability Preturn

as a function of the static detuning δ (simulating a magnetic �eld), for six di�erent e�ective coherence times Tϕe� . The Preturn

peak at zero detuning is analogous to the magneto-resistance peak associated with weak localization. Inset shows a magni�ed
view of Preturn near δ = 0, where we can observe the growth of the Preturn peak. This simulates the growth of the magneto-
resistance peak when lowering the temperature. b. The photon return probability Preturn as a function of δ obtained through
numerical calculations, at the same six di�erent e�ective coherence time Tϕe� as the experiment. c. The e�ective coherence
time Tϕe� extracted from the experiments, in comparison to Tϕe� directly measured by Ramsey-type experiments, as a function
of τπ/τtotal.

τi (see the extended pulse sequence in Fig.1(c)), result-
ing in a dynamic phase ϕR =

∑
i

δiR · τ iR. This simulates

the random scattering phase φ =
∑
j

−→
kj .
−→
lj of the elec-

tron following a trajectory, with δR and τR correspond-

ing to the electron wave vector
−→
k and displacement

−→
l ,

respectively. The random detuning sequence applied to
Q3 is the time-reversed sequence applied to Q2, in order
to properly simulate the time-reversal symmetry between
the direct and reversed electron trajectories. At the same
time, we apply a static detuning δ throughout the entire
process, resulting in a static phase ϕS = δ ·τtotal between
the qubits. This simulates the magnetic �eld-induced

phase shift φS = 2
(

2π
−→
B ·
−→
S
)
/Φ0, with δ and τtotal cor-

responding to
−→
B and

−→
S , respectively.

To simulate the temperature dependence of weak lo-
calization, where varying temperatures modi�es the elec-
tron transport coherence length, we insert a refocusing
π-pulses into the sequence described above. Instead of
the conventional Hahn-echo sequence with the refocusing
pulse placed at τπ/τtotal = 1/2 [14], we vary the timing of
the refocusing pulse, such that the e�ective phase coher-
ence time can be continously modulated from ∼ 100 ns to
over 200 ns (measured by Ramsey-type experiments � see
supplement). This projects the e�ective coherence time
Tϕe� onto the electron phase coherence length Lϕ.
Following this control sequence, we perform the mea-

surement to the system. We apply another simultaneous
iSWAP gate, which allows the states of Q2 and Q3 in-
terfere and recombine to Re. At the end, an iSWAP
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brings the interference result back to Q1, with the prob-
ability of �nding Q1 in |e〉 corresponding to the return
probability of the electron in the direct and reversed tra-
jectories. Applying the TDE method discussed ealier,
we sequentially run through 100 di�erent random detun-
ing sequences with di�erent static and random detuning
con�gurations, and �nd the average return probability
Preturn, which is the simulated electrical resistance for
the mesoscopic transport problem.
In Fig. 2(a), we show the experimental Preturn versus

static detuning δ for six di�erent Tϕe� , corresponding to
magneto-resistance measurements at six di�erent tem-
peratures. For all data sets, the probability Preturn has
its maximum at δ = 0, where time-reversal symmetry is
protected. As δ moves away from zero, Preturn rapidly
decreases until it reaches an average value of approxi-
mately 0.35, about which it �uctuates randomly. The
reduction in Preturn with increasing |δ| is consistent with
the well-known negative magneto-resistance in the meso-
scopic system.
With the basic phenomena established, we focus on

the small detuning region to investigate the role of quan-
tum coherence, through variations in Tϕe� (Fig. 2(a) in-
set). While the overall structure remains unchanged, the
Preturn peak grows as Tϕe� is increased; the peak rises
from∼ 0.46 for Tϕe� = 117ns to∼ 0.53 for Tϕe� = 220ns,
consistent with the temperature dependence of weak lo-
calization, where lower temperatures and thus longer
phase coherent lengths increase the magnitude of the neg-
ative magneto-resistance peak [15].
As they are performed on a highly controlled quan-

tum system, our experimental results can be understood
within the Tavis-Cummings model (see supplement). As
shown in Fig. 2b, we numerically evaluated Preturn ver-
sus δ, using the same six Tϕe� in the experiment. In the
calculations we have also included the energy dissipation
time for each qubit, T1 ∼ 500 ns. Except for details in
the aperiodic structures, the numerical results agree re-
markably well with our experimental observations.
Just as the phase coherence length Lϕ can be ex-

tracted from magneto-resistance measurements display-
ing weak localization, we can extract the e�ective co-
herence time Tϕe� from our measured Preturn(δ). We
measured Preturn(δ = 0) for various τπ/τtotal, and
subsequently extracted Tϕe� from the height of the
Preturn peak, based on the relationship ∆Preturn ∝
1
2 exp(−(〈t〉 /Tϕe�)2) exp(−〈t〉 /T1) (see the theory sec-
tion in supplement). The result is shown in Fig. 2c, com-
pared with Tϕe� determined using conventional Ramsey-
type measurements. As τπ/τtotal increases from 0 to 0.5,
Tϕe� increases as expected due to the cancellation of the
qubit frequency drifts. We �nd reasonable agreement
between the values of Tϕe� as measured with the two
techniques, with deviations possibly caused by the �nite
number of ensembles in the simulation.
The importance of the weak localization e�ect is not

only because it reveals quantum coherence in transport,
but also because it is a precursor to strong localiza-
tion, also known as Anderson localization [16]. In the
strong disorder limit, quantum interference completely
halts carrier transmission, producing a disorder-driven
metal-to-insulator transition. Our quantum circuit sim-
ulator allows us to directly and separately tune the level
of disorder, by varying the distribution of pulse durations
τtotal, in contrast with the mesoscopic system where tun-
ing the disorder level typically changes other parameters
such as carrier density [17�19].

To measure the return probability Preturn as a func-
tion of disorder, we average 100 random detuning pulse
sequences with τtotal , where τtotal is randomly generated
from a Gaussian distribution with width σ. We used a
Gaussian distribution to mimic the di�usive nature of
electron transport. The electron displacement at a given
time has a Gaussian distribution, where narrower distri-
butions correspond to greater disorder. Correlating the
disorder with σ, we simulate weak localization at increas-
ing disorder levels by reducing σ from 100 to 50 to 25 ns.

The experimentally measured Preturn versus δ for these
three simulated disorder levels is shown in Fig. 3a. While
the baseline value remains unchanged, the height of the
zero-detuning peak grows as we reduce σ. This growth
in the peak height with smaller σ agrees with the ob-
servation that an increased degree of disorder enhances
localization in electron transport [17�19].

In order to �nd the signature of a disorder-driven
metal-insulator transition, we focus on Preturn at δ =
0 while continuously reducing σ. The results, using
τπ/τtotal = 0.5 for maximum Tϕe� , are displayed in Fig.
3b. Reducing σ results in an increase of the photon re-
turn probability, with Preturn(δ = 0) increasing from 0.47
at σ = 200 ns to 0.62 at σ = 10 ns. However, there
is no clear indication of an abrupt transition to a fully
localized state, which would correspond to Preturn ap-
proaching unity. The metal-insulator transition is there-
fore not observed in our current experiment. Observing
this transition likely requires further increasing the level
of disorder, i.e., increasing the ratio Tϕe�/σ. Such stud-
ies are now possible using the 100-fold improvement in
coherence time recently achieved using the Xmon qubit
[20], and are currently underway.

In closing, we comment on the aperiodic structure at
the baseline of Preturn that appears in both the experi-
mental and numerical results. The shape of this struc-
ture is independent of Tϕe� , while the �uctuation ampli-
tude increases with increasing Tϕe� . These resemble the
universal conductance �uctuations associated with weak
localization in mesoscopic systems: Both emerge from
the frequency beating of the interference fringes [21�23].
Our experiment, however, does not include the cross-
interference terms between trajectories that do not have
time-reversed symmetry, so it is unclear if the �uctua-
tion amplitudes here have a universal value independent
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Figure 3. Simulating the disorder dependence of weak localization. a. Inset: Three distributions used for τtotal values,
with standard deviations σ = 100, 50 and 20 ns. Main panel: Preturn as a function of δ for the distributions shown in the inset.
b. Preturn at zero detuning as a function of the distribution width, showing the return probability increasing as the distribution
is reduced.

of the experimental details. Measurements on a quantum
system of large size are required to clarify this issue.

METHOD

The quantum circuit used in this experiment uses the
same circuit design as that used to implement Shor's al-
gorithm [11]. As shown in Fig.1b, it is composed of four
superconducting phase qubits, each connected to a mem-
ory resonator and all symmetrically coupled to a single
central coupling resonator. The chip was fabricated us-
ing conventional multi-layered lithography and reactive
ion etching. The di�erent metal Al layers were deposited
using DC sputtering and the low-loss dielectric a-Si was
deposited throught plasma-enhanced chemical vapor de-
position (PECVD).

The �ux-biased phase qubit includes a 1 pF paral-
lel plate capacitor and a 700 pH double-coiled inductor
shunted with a Al/AlOx/Al Josephson junction. The
phase qubit can be modeled as a nonlinear LC oscilla-
tor, whose nonlinearity arises from the Josephson junc-
tion. Adjusting the �ux applied to the qubit loop, we
can modulate the phase across the junction and conse-
quently tune the qubit frequency. We are thus able to
tune the qubit frequency over more than several hundred
MHz without introducing any signi�cant variation in the
qubit phase coherence. This property is crucial for this
implementation of the simulation protocol.
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