
Dielectric surface loss in superconducting resonators with flux-trapping
holes

B. Chiaro,1 A. Megrant,1, 2 A. Dunsworth,1 Z. Chen,1 R. Barends,3 B. Campbell,1 Y. Chen,3 A. Fowler,3 I.C.
Hoi,1 E. Jeffrey,3 J. Kelly,3 J. Mutus,3 C. Neill,1 P. J. J. O’Malley,1 C. Quintana,1 P. Roushan,3 D. Sank,3 A.
Vainsencher,1 J. Wenner,1 T. C. White,1 and John M. Martinis1, 3
1)Department of Physics, University of California, Santa Barbara, California 93106,
USA
2)Department of Materials, University of California, Santa Barbara, California 93106,
USA
3)Google Inc., Santa Barbara, California 93117, USA

(Dated: 9 August 2016)

Surface distributions of two level system (TLS) defects and magnetic vortices are limiting dissipation sources
in superconducting quantum circuits. Arrays of flux-trapping holes are commonly used to eliminate loss
due to magnetic vortices, but may increase dielectric TLS loss. We find that dielectric TLS loss increases
by approximately 25% for resonators with a hole array beginning 2µm from the resonator edge, while the
dielectric loss added by holes further away was below measurement sensitivity. Other forms of loss were not
affected by the holes. Additionally, we estimate the loss due to residual magnetic effects to be 9× 10−10/µT for
resonators patterned with flux-traps and operated in magnetic fields up to 5µT. This is orders of magnitude
below the total loss of the best superconducting coplanar waveguide resonators.

Superconducting coplanar waveguide (SCPW) res-
onators are extensively used in astronomy1,2 and quan-
tum information3–5. An important frontier in SCPW
resonator development is increasing the intrinsic qual-
ity factor Qi = 1/loss. This is an especially important
proxy for qubit performance, since the resonator Qi is
strongly correlated with the qubit relaxation time T1 be-
cause qubits and resonators are subject to many of the
same dissipation mechanisms.6–13 Quantum computers
require small operating temperatures . 100mK, single-
photon excitation energies, low magnetic fields . 5µT,
and high coherence Qi & 106. In this quantum com-
puting regime, dominant loss mechanisms are two-level
state (TLS) defects in amorphous dielectrics located at
surfaces and loss from trapped flux in magnetic vortices.

In this Letter, we examine the tradeoff between in-
creased TLS loss and reduced magnetic vortex loss that
occurs when the ground plane of SCPW resonators is
patterned with an array of holes. Fractal resonators also
reduce magnetic losses, but are typically optimized for
use in high magnetic fields and have not demonstrated
quality factors as high as coplanar designs in small field
environments.14 Although hole arrays have long been
known to eliminate dissipation from trapped flux,15–17
these structures have not been studied in the quantum
computing regime for the possibility of increasing TLS
loss. Our data shows that dielectric TLS loss from flux-
trapping holes is an important physical limitation if de-
signed incorrectly.

When a thin-film superconductor is cooled through its
transition temperature Tc in a magnetic field Bcool, it is
energetically favorable for magnetic flux to be trapped as
vortices at some defect18. The typical spacing between
vortices or an edge of the superconducting film to a vortex
is
(
Φ0/Bcool

)1/2. As the superconducting order parame-
ter has to vanish19, this normal core produces dissipation

in response to currents flowing past the core8. With a
hole in the film, vortices form without a normal core and
produce no dissipation. We note that suitably positioned
normal-core vortices may be beneficial as quasiparticle
traps9,10. For this application, hole arrays should be po-
sitioned properly to engineer the number and position of
the normal-core vortices.

Because the holes have sharp edges and expose the sub-
strate, they introduce new dissipation sites from surface
TLS defects. As modern high-Q resonators are sensitive
to nanometer thick amorphous dielectrics at surfaces20,
these additional edges can increase loss if the holes are
placed near the resonator where the electric fields are the
largest. Consequently, we must determine how closely
holes can be safely placed from the resonator.

We characterize this loss with quarter-wavelength
SCPW resonators that are capacitively coupled to a
feedline, with frequency multiplexing to measure 10 res-
onators per chip. An optical image of a device wire-
bonded in a mount is shown in Fig. 1(a). The res-
onators have fundamental frequencies between 4.6GHz
and 5.5GHz and center trace and gap dimensions of
15µm and 10µm. Our circuit contains both resonators
with and without ground-plane holes for direct compari-
son. Our arrays are made from square holes of side length
2µm and an edge to edge separation d of 2µm, 6µm, or
10µm. The distance d is also the distance between the
edge of the resonator gap and the nearest hole.21 An ex-
ample is shown in Fig. 1(b). The equivalent circuit dia-
gram for this device near resonance is shown in Fig. 1(c)
and was analysed in detail in Ref. 22.

Our resonator circuits were fabricated from 100 nm
aluminium thin films grown on c-plane sapphire sub-
strates. The first type is made in a conventional elec-
tron beam deposition system with base pressure of 3 ×
10−8 Torr. Films from this tool yield resonators with



2

Qi ' 8 × 105 near a measurement photon number
Nphoton = 1 and are thus representative of resonators
made with standard deposition techniques. The sec-
ond type was prepared in a molecular beam epitaxy
(MBE) system with a base pressure of 1 × 10−11 Torr.
With an in-situ O2 plasma cleaning of the substrate at
650 ◦C22, we found lower resonator loss Qi ' 1.5 × 106

for Nphoton = 1. The high quality factors make the MBE
grown resonators sensitive probes of subtle decoherence
mechanisms that may be induced by the holes. We re-
port measurements from two circuits from each film for
a total of four circuits. The resonators and holes were
etched simultaneously in an inductively coupled plasma.
The etch was performed at 0.7 Pa using BCl3 and Cl2
flow rates of 20 and 40 SCCM and 70 W bias power.

For measurement, individual devices were wirebonded
in Al sample mounts and anchored to the cold stage
of an adiabatic demagnetization refrigerator (ADR). A
schematic of our apparatus is shown in Fig. 1(d). The
40mK ADR base temperature is well below the transi-
tion temperature Tc ' 1.1K of Al, so the thermal quasi-
particle density is negligible. Additionally, our cryostat
includes extensive infra-red (IR) radiation shielding com-
posed of in-line coaxial IR filters and a light tight sample
compartment that reduces the non-equilibrium quasipar-
ticle population below our measurement sensitivity23. A
circulator on the output line of the chip reduces noise
from the input of the high electron mobility transistor
(HEMT) amplifier. A solenoid encircles the sample com-
partment allowing us to apply a magnetic field perpen-
dicular to the film, with 50 nT resolution to measure the
magnetic field dependence of our resonator Qi. We sur-
round the mount with a magnetic shield and remove all
magnetic components. We test each component that
we use inside the sample compartment for magnetism
and use non-magnetic SMA connectors (EZ Form Ca-
ble Corp. model #705626-301), cables (EZ Form Cable
Corp. model #301844), brass screws, and custom exper-
imental hardware. This reduces the ambient magnetic
field at the device to . 1.5µT.

The loss is determined by measuring the res-
onator intrinsic quality factor Qi using transmission
spectroscopy22. In the initial measurement phase, we
measure Qi versus applied magnetic field at high power
for better signal to noise ratio, since vortex loss has weak
power dependence16. To vary Bcool, we raise the de-
vice temperature above Tc, set the applied magnetic field
Bcool
applied, and cool the sample back through its Tc in this

field thereby trapping magnetic vortices. Once the device
has returned to its base temperature we extract the res-
onator Qi from S21 measurements with a vector network
analyzer (VNA).

Figure 2 (a) shows the magnetic field dependence
of Qi for resonators with and without ground plane
holes from the MBE device. For resonators without a
patterned ground plane there is a well defined maximum
of Qi that identifies the applied field that zeros the
total magnetic field.21 The offset between Bcool

applied and

FIG. 1. (color) Device and apparatus. (a) Optical micro-
graph of a chip wirebonded inside sample mount, showing
hole edge to edge separation d. (b) Scanning electron micro-
scope (SEM) image showing a λ/4 resonator with a ground-
plane hole array, displayed near the antinode of current. (c)
The equivalent circuit for a λ/4 resonator capacitively near
resonance22, coupled to a transmission line. Included is the ef-
fect of small in-line impedance asymmetries characterized by
∆Z1 and ∆Z2. (d) Apparatus diagram and wiring schematic
with signal path in red.
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FIG. 2. (Color) Measurement results (a) and (b) Loss 1/Qi and resonator fractional frequency shift δf versus applied magnetic
field when cooled through Tc Bcool

applied, taken at high power Nphoton ∼ 107. Data is for the MBE-grown film and hole patterns of
varying density. The resonators with no holes have the greatest sensitivity to magnetic fields, so the minimum of loss identifies
the true zero giving the cryostat offset field. (c) The dependence of Qi on measurement drive power for the MBE sample, fit to a
standard TLS dissipation model from Eqn. 1. (d) - (g) Extracted TLS model parameters from power dependence measurements
as shown in (c) for the MBE and e-beam samples, showing loss attributed to unsaturated TLS (low power) and due to power
independent mechanisms (high power) vs the edge to edge hole spacing d. In all plots the data shows mean value for resonators
of a common hole density, with error bars indicating 1 standard deviation.

Bcool is indicated by the arrow. We observe a gradual
but significant increase in loss away from this field
that is attributed to a greater density of magnetic
vortices trapped in the ground plane. As expected,
for resonators with holes we find that Qi is nearly
independent of applied magnetic field until the critical
field for vortex formation in the center trace has been ex-
ceeded. Figure 2 (b) shows the fractional frequency shift
δf = (f0(Bcool

applied = 0)− f0(Bcool
applied))/f0(Bcool

applied = 0)
we observe that resonators with patterned ground planes
are less susceptible to field induced frequency shifts.

For MBE grown resonators with hole patterns we con-
sider data in the field range of Bcool

applied = 1.4 − 6.4µT.
Fields in this range are less than the critical field for
vortex formation in the center trace of the resonator and
allows us to estimate the residual magnetic loss in the ab-
sence of local magnetic vortices. By assuming an excess
loss model that is linear in Bcool

applied, we estimate the resid-
ual magnetic loss to be 8.6± 1.3× 10−10 /µT. We show
the data supporting this estimate in the supplement.21
Although additional experiments are required to deter-
mine the origin and proper functional dependence of this
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excess loss, we suggest likely models are coupling to vor-
tices in remote areas of the device not protected by the
hole overlays or quasiparticles generated by the local sup-
pression of Tc due to the magnetic field. For typical
shielded devices, this estimate is several orders of magni-
tude below the loss of the best SCPW resonators.22,24,25

After measuring the magnetic field dependence of the
high power Qi we quantify the surface loss from TLS
defects by measuring the power dependence of the res-
onator Qi. We use the value of Bcool

applied that maximizes
Qi at high power, so that Bcool = 0µT as described pre-
viously. The power dependence data for the MBE device
is shown in Fig. 2(c), where the lines are fits to a standard
TLS loss model26

1

Qi
=

1

QTLS

1√
1 +

(
Nphoton
Nsat

)α +
1

Q0
(1)

This model decomposes the total internal loss of the res-
onator 1/Qi into a power independent loss term 1/Q0

that includes such loss modes from quasiparticles and
radiation, and a power dependent term of magnitude
1/QTLS that comes from TLS defects. Here Nphoton is
the excitation number of photons in the resonator and
Nsat describes the saturation field of the TLS bath. The
parameter α is related to the electric field distribution
of the resonator, and may be influenced by interactions
between TLS defects within the bath.27,28

Figure 2(d) and (e) show the quality factors for the low
power (QTLS) and high power (Q0) regimes, extracted
from the fits in (c). The data points represent resonators
from two circuits from each film. In (d), we see that the
densest hole pattern increases TLS loss by roughly 25%
relative to resonators without holes for both the MBE
and ebeam grown resonators. Dielectric TLS loss is often
decomposed as 1/QTLS = Σi pi tan δi where tan δi is the
loss tangent of dielectric volume i and the participation
ratio pi is the fraction of the electric energy of the res-
onator excitation that is stored within that volume.6,13,29
We presume that the increase in TLS loss is not due to
an increase in the dielectric loss tangent, but rather due
to an increase in the participation ratio resulting from a
redistribution of the electric field.

To quantify the excess loss due to the dense hole pat-
tern we perform linear regression analysis controlling for
the difference between the MBE and ebeam films.21 This
analysis includes the results from 23 resonators, 11 mea-
sured on two circuits from the MBE film and 12 measured
on two circuits from the ebeam film. We find that the
TLS loss 1/QTLS directly attributable to the dense hole
pattern is 2.5± 1.3× 10−7, where the uncertainty repre-
sents the standard error. The p-value for this regression
coefficient is 0.07.

When using the resonators for quantum devices at low
magnetic fields, this increase in loss is undesirable. The
hole spacing should thus be carefully chosen, first to be
close enough to provide protection from external fields of
magnitude ∼ Φ0/d

2, where d is the edge to edge spac-

ing between holes18. However, the spacing from the res-
onator to the first row of holes should be greater than
about 6µm, a value that did not exhibit measurable ex-
cess TLS loss. In (e) we observe that the Q0 of resonators
with the densest hole pattern is nearly the same as that
without any hole overlay. This indicates that power in-
dependent loss mechanisms were not affected by the hole
patterns.

We have characterized dissipation from arrays of flux-
trapping holes in SCPW resonators. We find that excess
dielectric loss can be made vanishingly small by increas-
ing the distance between the resonator edge and the ar-
ray. In our experiment, a 6µm separation was enough
to remove excess dielectric loss; power-independent loss
mechanisms were not affected by the arrays. We also esti-
mate the residual magnetic loss in resonators with ground
plane holes to be ∼ 10−9 /µT, showing that SCPW res-
onators can be made insensitive to small magnetic fields
without magnifying other loss mechanisms.
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