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Superconducting qubits are solid state electrical circuits fabricated using tech-5
niques borrowed from conventional integrated circuits. They are based on the6
Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit ele-7
ment available at low temperature. In contrast to microscopic entities such as8
spins or atoms, they tend to be well coupled to other circuits, which make them9
appealling from the point of view of readout and gate implementation. Very10
recently, new designs of superconducting qubits based on multi-junction circuits11
have solved the problem of isolation from unwanted extrinsic electromagnetic per-12
turbations. We discuss in this review how qubit decoherence is affected by the13
intrinsic noise of the junction and what can be done to improve it.14

KEY WORDS: Quantum information; quantum computation; superconducting15
devices; Josephson tunnel junctions; integrated circuits.16
PACS: 03.67.−a; 03.65.Yz; 85.25.−j; 85.35.Gv.

17

1. INTRODUCTION18

1.1. The Problem of Implementing a Quantum Computer19

The theory of information has been revolutionized by the discovery20
that quantum algorithms can run exponentially faster than their classical21
counterparts, and by the invention of quantum error-correction proto-22
cols.(1) These fundamental breakthroughs have lead scientists and engi-23
neers to imagine building entirely novel types of information processors.24
However, the construction of a computer exploiting quantum—rather than25
classical—principles represents a formidable scientific and technological26
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challenge. While quantum bits must be strongly inter-coupled by gates27
to perform quantum computation, they must at the same time be com-28
pletely decoupled from external influences, except during the write, control29
and readout phases when information must flow freely in and out of the30
machine. This difficulty does not exist for the classical bits of an ordinary31
computer, which each follow strongly irreversible dynamics that damp the32
noise of the environment.33

Most proposals for implementing a quantum computer have been34
based on qubits constructed from microscopic degrees of freedom: spin of35
either electrons or nuclei, transition dipoles of either atoms or ions in vac-36
uum. These degrees of freedom are naturally very well isolated from their37
environment, and hence decohere very slowly. The main challenge of these38
implementations is enhancing the inter-qubit coupling to the level required39
for fast gate operations without introducing decoherence from parasitic40
environmental modes and noise.41

In this review, we will discuss a radically different experimental42
approach based on “quantum integrated circuits.” Here, qubits are con-43
structed from collective electrodynamic modes of macroscopic electrical44
elements, rather than microscopic degrees of freedom. An advantage of45
this approach is that these qubits have intrinsically large electromagnetic46
cross-sections, which implies they may be easily coupled together in com-47
plex topologies via simple linear electrical elements like capacitors, induc-48
tors, and transmission lines. However, strong coupling also presents a49
related challenge: is it possible to isolate these electrodynamic qubits from50
ambient parasitic noise while retaining efficient communication channels51
for the write, control, and read operations? The main purpose of this arti-52
cle is to review the considerable progress that has been made in the past53
few years towards this goal, and to explain how new ideas about meth-54
odology and materials are likely to improve coherence to the threshold55
needed for quantum error correction.56

1.2. Caveats57

Before starting our discussion, we must warn the reader that this58
review is atypical in that it is neither historical nor exhaustive. Some59
important works have not been included or are only partially covered. The60
reader will be probably irritated that we cite our own work too much,61
but we wanted to base our speculations on experiments whose details we62
fully understand. We have on purpose narrowed our focus: we adopt the63
point of view of an engineer trying to determine the best strategy for64
building a reliable machine given certain design criteria. This approach65
obviously runs the risk of presenting a biased and even incorrect account66
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of recent scientific results, since the optimization of a complex system is67
always an intricate process with both hidden passageways and dead-ends.68
We hope nevertheless that the following sections will at least stimulate dis-69
cussions on how to harness the physics of quantum integrated circuits into70
a mature quantum information processing technology.71

2. BASIC FEATURES OF QUANTUM INTEGRATED CIRCUITS72

2.1. Ultra-low Dissipation: Superconductivity73

For an integrated circuit to behave quantum mechanically, the first74
requirement is the absence of dissipation. More specifically, all metallic75
parts need to be made out of a material that has zero resistance at the76
qubit operating temperature and at the qubit transition frequency. This is77
essential in order for electronic signals to be carried from one part of the78
chip to another without energy loss—a necessary (but not sufficient) con-79
dition for the preservation of quantum coherence. Low temperature super-80
conductors such as aluminium or niobium are ideal for this task.(2) For81
this reason, quantum integrated circuit implementations have been nick-82
named “superconducting qubits”1.83

2.2. Ultra-low Noise: Low Temperature84

The degrees of freedom of the quantum integrated circuit must be85
cooled to temperatures where the typical energy kT of thermal fluctuations86
is much less that the energy quantum �ω01 associated with the transition87
between the states |qubit = 0 > and |qubit = 1 >. For reasons which will88
become clear in subsequent sections, this frequency for superconducting89
qubits is in the 5–20 GHz range and therefore, the operating temperature90
T must be around 20 mK (recall that 1 K corresponds to about 20 GHz).91
These temperatures may be readily obtained by cooling the chip with a92
dilution refrigerator. Perhaps more importantly though, the “electromag-93
netic temperature” of the wires of the control and readout ports connected94
to the chip must also be cooled to these low temperatures, which requires95
careful electromagnetic filtering. Note that electromagnetic damping mech-96
anisms are usually stronger at low temperatures than those originating97

1In principle, other condensed phases of electrons, such as high-Tc superconductivity or the
quantum Hall effect, both integer and fractional, are possible and would also lead to quan-
tum integrated circuits of the general type discussed here. We do not pursue this subject fur-
ther than this note, however, because dissipation in these new phases is, by far, not as well
understood as in low-Tc superconductivity.
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Fig. 1. (a) Josephson tunnel junction made with two superconducting thin films; (b)
Schematic representation of a Josephson tunnel junction. The irreducible Josephson element
is represented by a cross.

from electron-phonon coupling. The techniques(3) and requirements(4) for98
ultra-low noise filtering have been known for about 20 years. From the99
requirements kT ��ω01 and �ω01 ��, where � is the energy gap of the100
superconducting material, one must use superconducting materials with a101
transition temperature greater than about 1 K.102

2.3. Non-linear, Non-dissipative Elements: Tunnel Junctions103

Quantum signal processing cannot be performed using only purely104
linear components. In quantum circuits, however, the non-linear elements105
must obey the additional requirement of being non-dissipative. Elements106
like PIN diodes or CMOS transistors are thus forbidden, even if they107
could be operated at ultra-low temperatures.108

There is only one electronic element that is both non-linear and non-109
dissipative at arbitrarily low temperature: the superconducting tunnel junc-110
tion2 (also known as a Josephson tunnel junction(5)). As illustrated in111
Fig. 1, this circuit element consists of a sandwich of two superconducting112
thin films separated by an insulating layer that is thin enough (typically113
∼1 nm) to allow tunneling of discrete charges through the barrier. In later114
sections we will describe how the tunneling of Cooper pairs creates an115

2A very short superconducting weak link (see for instance Ref. 6) is a also a possible can-
didate, provided the Andreev levels would be sufficiently separated. Since we have too few
experimental evidence for quantum effects involving this device, we do not discuss this oth-
erwise important matter further.
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inductive path with strong non-linearity, thus creating energy levels suit-116
able for a qubit. The tunnel barrier is typically fabricated from oxidation117
of the superconducting metal. This results in a reliable barrier since the118
oxidation process is self-terminating.(7) The materials properties of amor-119
phous aluminum oxide, alumina, make it an attractive tunnel insulating120
layer. In part because of its well-behaved oxide, aluminum is the material121
from which good quality tunnel junctions are most easily fabricated, and it122
is often said that aluminium is to superconducting quantum circuits what123
silicon is to conventional MOSFET circuits. Although the Josephson effect124
is a subtle physical effect involving a combination of tunneling and super-125
conductivity, the junction fabrication process is relatively straightforward.126

2.4. Design and Fabrication of Quantum Integrated Circuits127

Superconducting junctions and wires are fabricated using techniques128
borrowed from conventional integrated circuits3. Quantum circuits are129
typically made on silicon wafers using optical or electron-beam lithogra-130
phy and thin film deposition. They present themselves as a set of micron-131
size or sub-micron-size circuit elements (tunnel junctions, capacitors, and132
inductors) connected by wires or transmission lines. The size of the chip133
and elements are such that, to a large extent, the electrodynamics of the134
circuit can be analyzed using simple transmission line equations or even135
a lumped element approximation. Contact to the chip is made by wires136
bonded to mm-size metallic pads. The circuit can be designed using con-137
ventional layout and classical simulation programs.138

Thus, many of the design concepts and tools of conventional semi-139
conductor electronics can be directly applied to quantum circuits. Nev-140
ertheless, there are still important differences between conventional and141
quantum circuits at the conceptual level.142

2.5. Integrated Circuits that Obey Macroscopic Quantum Mechanics143

At the conceptual level, conventional and quantum circuits differ in144
that, in the former, the collective electronic degrees of freedom such as145
currents and voltages are classical variables, whereas in the latter, these146
degrees of freedom must be treated by quantum operators which do147
not necessarily commute. A more concrete way of presenting this rather148
abstract difference is to say that a typical electrical quantity, such as the149

3It is worth mentioning that chips with tens of thousands of junctions have been successfully
fabricated for the voltage standard and for the Josephson signal processors, which are only
exploiting the speed of Josephson elements, not their quantum properties.
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charge on the plates of a capacitor, can be thought of as a simple num-150
ber is conventional circuits, whereas in quantum circuits, the charge on151
the capacitor must be represented by a wave function giving the proba-152
bility amplitude of all charge configurations. For example, the charge on153
the capacitor can be in a superposition of states where the charge is both154
positive and negative at the same time. Similarly the current in a loop155
might be flowing in two opposite directions at the same time. These situ-156
ations have originally been nicknamed “macroscopic quantum effects” by157
Tony Leggett(8) to emphasize that quantum integrated circuits are display-158
ing phenomena involving the collective behavior of many particles, which159
are in contrast to the usual quantum effects associated with microscopic160
particles such as electrons, nuclei or molecules4.161

2.6. DiVicenzo Criteria162

We conclude this section by briefly mentioning how quantum inte-163
grated circuits satisfy the so-called DiVicenzo criteria for the implemen-164
tation of quantum computation.(9) The non-linearity of tunnel junctions165
is the key property ensuring that non-equidistant level subsystems can be166
implemented (criterion #1: qubit existence). As in many other implemen-167
tations, initialization is made possible (criterion #2: qubit reset) by the168
use of low temperature. Absence of dissipation in superconductors is one169
of the key factors in the quantum coherence of the system (criterion #3:170
qubit coherence). Finally, gate operation and readout (criteria #4 and #5)171
are easily implemented here since electrical signals confined to and travel-172
ing along wires constitute very efficient coupling methods.173

3. THE SIMPLEST QUANTUM CIRCUIT174

3.1. Quantum LC Oscillator175

We consider first the simplest example of a quantum integrated cir-176
cuit, the LC oscillator. This circuit is shown in Fig. 2, and consists177
of an inductor L connected to a capacitor C, all metallic parts being178
superconducting. This simple circuit is the lumped-element version of a179
superconducting cavity or a transmission line resonator (for instance, the180
link between cavity resonators and LC circuits is elegantly discussed by181
Feynman(10)). The equations of motion of the LC circuit are those of an182

4These microscopic effects determine also the properties of materials, and explain phenomena
such as superconductivity and the Josephson effect itself. Both classical and quantum cir-
cuits share this bottom layer of microscopic quantum mechanics.
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LC

Fig. 2. Lumped element model for an electromagnetic resonator: LC oscillator.

harmonic oscillator. It is convenient to take the position coordinate as183
being the flux � in the inductor, while the role of conjugate momentum184
is played by the charge Q on the capacitor playing the role of its conju-185
gate momentum. The variables � and Q have to be treated as canonically186
conjugate quantum operators that obey [�,Q] = i�. The Hamiltonian of187
the circuit is H = (1/2)�2/L+ (1/2)Q2/C, which can be equivalently writ-188
ten as H =�ω0(n+ (1/2)) where n is the number operator for photons in189
the resonator and ω0 =1/

√
LC is the resonance frequency of the oscillator.190

It is important to note that the parameters of the circuit Hamiltonian are191
not fundamental constants of Nature. They are engineered quantities with192
a large range of possible values which can be modified easily by chang-193
ing the dimensions of elements, a standard lithography operation. It is194
in this sense, in our opinion, that the system is unambiguously “macro-195
scopic” . The other important combination of the parameters L and C is196
the characteristic impedance Z =√

L/C of the circuit. When we combine197
this impedance with the residual resistance of the circuit and/or its radi-198
ation losses, both of which we can lump into a resistance R, we obtain199
the quality factor of the oscillation: Q=Z/R. The theory of the harmonic200
oscillator shows that a quantum superposition of ground state and first201
excited state decays on a time scale given by 1/RC. This last equality illus-202
trates the general link between a classical measure of dissipation and the203
upper limit of the quantum coherence time.204

3.2. Practical Considerations205

In practice, the circuit shown in Fig. 2 may be fabricated using pla-206
nar components with lateral dimensions around 10 µm, giving values of L207
and C approximately 0.1 nH and 1 pF, respectively, and yielding ω0/2π �208
16 GHz and Z0 = 10�. If we use aluminium, a good BCS superconduc-209
tor with transition temperature of 1.1 K and a gap �/e�200µV , dissipa-210
tion from the breaking of Cooper pairs will begin at frequencies greater211
than 2�/h � 100 GHz. The residual resistivity of a BCS superconduc-212
tor decreases exponentially with the inverse of temperature and linearly213
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with frequency, as shown by the Mattis-Bardeen (MB) formula ρ (ω) ∼214
ρ0(�ω/kBT ) exp (−�/kBT ),(11) where ρ0 is the resistivity of the metal in215
the normal state (we are treating here the case of the so-called “dirty”216
superconductor,(12) which is well adapted to thin film systems). Accord-217
ing to MB, the intrinsic losses of the superconductor at the temperature218
and frequency (typically 20 mK and 20 GHz) associated with qubit dynam-219
ics can be safely neglected. However, we must warn the reader that the220
intrisinsic losses in the superconducting material do not exhaust, by far,221
sources of dissipation, even if very high quality factors have been demon-222
strated in superconducting cavity experiments.(13)223

3.3. Matching to the Vacuum Impedance: A Useful Feature, not a Bug224

Although the intrisinsic dissipation of superconducting circuits can be225
made very small, losses are in general governed by the coupling of the226
circuit with the electromagnetic environment that is present in the forms227
of write, control and readout lines. These lines (which we also refer to228
as ports) have a characteristic propagation impedance Zc � 50�, which229
is constrained to be a fraction of the impedance of the vacuum Zvac =230
377�. It is thus easy to see that our LC circuit, with a characteristic231
impedance of Z0 = 10�, tends to be rather well impedance-matched to232
any pair of leads. This circumstance occurs very frequently in circuits, and233
almost never in microscopic systems such as atoms which interact very234
weakly with electromagnetic radiation5. Matching to Zvac is a useful fea-235
ture because it allows strong coupling for writing, reading, and logic oper-236
ations. As we mentioned earlier, the challenge with quantum circuits is237
to isolate them from parasitic degrees of freedom. The major task of this238
review is to explain how this has been achieved so far and what level of iso-239
lation is attainable.240

3.4. The Consequences of being Macroscopic241

While our example shows that quantum circuits can be mass-pro-242
duced by standard micro-fabrication techniques and that their parameters243
can be easily engineered to reach some optimal condition, it also points244
out evident drawbacks of being “macroscopic” for qubits.245

5The impedance of an atom can be crudely seen as being given by the impedance quantum
RK =h/e2. We live in a universe where the ratio Zvac/2RK , also known as the fine structure
constant 1/137.0, is a small number.
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The engineered quantities L and C can be written as246

L = Lstat +�L(t) ,247

C = Cstat +�C (t) . (1)248

(a) The first term on the right-hand side denotes the static part of the249
parameter. It has statistical variations: unlike atoms whose transition fre-250
quencies in isolation are so reproducible that they are the basis of atomic251
clocks, circuits will always be subject to parameter variations from one252
fabrication batch to another. Thus prior to any operation using the circuit,253
the transition frequencies and coupling strength will have to be determined254
by “diagnostic” sequences and then taken into account in the algorithms.255

(b) The second term on the right-hand side denotes the time-depen-256
dent fluctuations of the parameter. It describes noise due to residual257
material defects moving in the material of the substrate or in the mate-258
rial of the circuit elements themselves. This noise can affect for instance259
the dielectric constant of a capacitor. The low frequency components of260
the noise will make the resonance frequency wobble and contribute to the261
dephasing of the oscillation. Furthermore, the frequency component of the262
noise at the transition frequency of the resonator will induce transitions263
between states and will therefore contribute to the energy relaxation.264

Let us stress that statistical variations and noise are not problems265
affecting superconducting qubit parameters only. For instance when sev-266
eral atoms or ions are put together in microcavities for gate operation,267
patch potential effects will lead to expressions similar in form to Eq. (1)268
for the parameters of the hamiltonian, even if the isolated single qubit269
parameters are fluctuation-free.270

3.5. The Need for Non-linear Elements271

Not all aspects of quantum information processing using quantum272
integrated circuits can be discussed within the framework of the LC273
circuit, however. It lacks an important ingredient: non-linearity. In the274
harmonic oscillator, all transitions between neighbouring states are degen-275
erate as a result of the parabolic shape of the potential. In order to have a276
qubit, the transition frequency between states |qubit=0> and |qubit=1>277
must be sufficiently different from the transition between higher-lying ei-278
genstates, in particular 1 and 2. Indeed, the maximum number of 1-qubit279
operations that can be performed coherently scales as Q01 |ω01 −ω12| /ω01280
where Q01 is the quality factor of the 0 → 1 transition. Josephson tunnel281
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junctions are crucial for quantum circuits since they bring a strongly non-282
parabolic inductive potential energy.283

4. THE JOSEPHSON NON-LINEAR INDUCTANCE284

At low temperatures, and at the low voltages and low frequencies cor-285
responding to quantum information manipulation, the Josephson tunnel286
junction behaves as a pure non-linear inductance (Josephson element) in287
parallel with the capacitance corresponding to the parallel plate capaci-288
tor formed by the two overlapping films of the junction (Fig. 1b). This289
minimal, yet precise model, allows arbitrary complex quantum circuits to290
be analysed by a quantum version of conventional circuit theory. Even291
though the tunnel barrier is a layer of order ten atoms thick, the value of292
the Josephson non-linear inductance is very robust against static disorder,293
just like an ordinary inductance—such as the one considered in Sec. 3—is294
very insensitive to the position of each atom in the wire. We refer to(14)295
for a detailed discussion of this point.296

4.1. Constitutive Equation297

Let us recall that a linear inductor, like any electrical element, can be298
fully characterized by its constitutive equation. Introducing a generaliza-299
tion of the ordinary magnetic flux, which is only defined for a loop, we300
define the branch flux of an electric element by �(t)=∫ t

−∞ V (t1)dt1, where301
V (t) is the space integral of the electric field along a current line inside302
the element. In this language, the current I (t) flowing through the induc-303
tor is proportional to its branch flux �(t):304

I (t)= 1
L

�(t). (2)305306

Note that the generalized flux �(t) can be defined for any electric ele-307
ment with two leads (dipole element), and in particular for the Josephson308
junction, even though it does not resemble a coil. The Josephson element309
behaves inductively, as its branch flux-current relationship(5) is310

I (t)= I0 sin [2π �(t)/�0] . (3)311312

This inductive behavior is the manifestation, at the level of collec-313
tive electrical variables, of the inertia of Cooper pairs tunneling across the314
insulator (kinetic inductance). The discreteness of Cooper pair tunneling315
causes the periodic flux dependence of the current, with a period given316
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by a universal quantum constant �0, the superconducting flux quantum317
h/2e. The junction parameter I0 is called the critical current of the tun-318
nel element. It scales proportionally to the area of the tunnel layer and319
diminishes exponentially with the tunnel layer thickness. Note that the320
constitutive relation Eq. (3) expresses in only one equation the two Joseph-321
son relations.(5) This compact formulation is made possible by the intro-322
duction of the branch flux (see Fig. 3).323

The purely sinusoidal form of the constitutive relation Eq. (3) can324
be traced to the perturbative nature of Cooper pair tunneling in a tunnel325
junction. Higher harmonics can appear if the tunnel layer becomes very326
thin, though their presence would not fundamentally change the discus-327
sion presented in this review. The quantity 2π �(t)/�0 = δ is called the328
gauge-invariant phase difference accross the junction (often abridged into329
“phase” ). It is important to realize that at the level of the constitutive330
relation of the Josephson element, this variable is nothing else than an331
electromagnetic flux in dimensionless units. In general, we have332

θ = δ mod 2π,333

where θ is the phase difference between the two superconducting conden-334
sates on both sides of the junction. This last relation expresses how the335
superconducting ground state and electromagnetism are tied together.336

4.2. Other Forms of the Parameter Describing the Josephson337
Non-linear Inductance338

The Josephson element is also often described by two other parame-339
ters, each of which carry exactly the same information as the critical cur-340
rent. The first one is the Josephson effective inductance LJ0 =ϕ0/I0, where341

I

Φ

Φ0

Fig. 3. Sinusoidal current-flux relationship of a Josephson tunnel junction, the simplest
non-linear, non-dissipative electrical element (solid line). Dashed line represents current-flux
relationship for a linear inductance equal to the junction effective inductance.
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ϕ0 = �0/2π is the reduced flux quantum. The name of this other form342
becomes obvious if we expand the sine function in Eq. (3) in powers of343
� around �=0. Keeping the leading term, we have I =�/LJ0. Note that344
the junction behaves for small signals almost as a point-like kinetic induc-345
tance: a 100 nm × 100 nm area junction will have a typical inductance of346
100 nH, whereas the same inductance is only obtained magnetically with a347
loop of about 1 cm in diameter. More generally, it is convenient to define348
the phase-dependent Josephson inductance349

LJ (δ)=
(

∂I

∂�

)−1

= LJ0

cos δ
.

350

Note that the Josephson inductance not only depends on δ, it can351
actually become infinite or negative! Thus, under the proper conditions,352
the Josephson element can become a switch and even an active circuit ele-353
ment, as we will see below.354

The other useful parameter is the Josephson energy EJ =ϕ0I0. If we355
compute the energy stored in the junction E(t) = ∫ t

−∞ I (t1)V (t1) dt1, we356
find E(t) = −EJ cos [2π �(t)/�0]. In contrast with the parabolic depen-357
dence on flux of the energy of an inductance, the potential associated358
with a Josephson element has the shape of a cosine washboard. The total359
height of the corrugation of the washboard is 2EJ.360

4.3. Tuning the Josephson Element361

A direct application of the non-linear inductance of the Josephson362
element is obtained by splitting a junction and its leads into two equal363
junctions, such that the resulting loop has an inductance much smaller364
the Josephson inductance. The two smaller junctions in parallel then365
behave as an effective junction(15) whose Josephson energy varies with366
�ext, the magnetic flux externally imposed through the loop367

EJ (�ext)=EJ cos (π�ext/�0) . (4)368369

Here, EJ the total Josephson energy of the two junctions. The Josephson370
energy can also be modulated by applying a magnetic field in the plane371
parallel to the tunnel layer.372
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5. THE QUANTUM ISOLATED JOSEPHSON JUNCTION373

5.1. Form of the Hamiltonian374

If we leave the leads of a Josephson junction unconnected, we obtain375
the simplest example of a non-linear electrical resonator. In order to ana-376
lyze its quantum dynamics, we apply the prescriptions of quantum circuit377
theory briefly summarized in Appendix 1. Choosing a representation priv-378
ileging the branch variables of the Josephson element, the momentum cor-379
responds to the charge Q=2eN having tunneled through the element and380
the canonically conjugate position is the flux �=ϕ0θ associated with the381
superconducting phase difference across the tunnel layer. Here, N and θ382
are treated as operators that obey [θ,N ] = i. It is important to note that383
the operator N has integer eigenvalues whereas the phase θ is an opera-384
tor corresponding to the position of a point on the unit circle (an angle385
modulo 2π ).386

By eliminating the branch charge of the capacitor, the hamiltonian387
reduces to388

H =ECJ (N −Qr/2e)2 −EJ cos θ (5)389390

where ECJ = (2e)2

2CJ
is the Coulomb charging energy corresponding to one391

Cooper pair on the junction capacitance CJ and where Qr is the residual392
offset charge on the capacitor.393

One may wonder how the constant Qr got into the hamiltonian, since394
no such term appeared in the corresponding LC circuit in Sec. 3. The con-395
tinuous charge Qr is equal to the charge that pre-existed on the capaci-396
tor when it was wired with the inductor. Such offset charge is not some397
nit-picking theoretical construct. Its physical origin is a slight difference398
in work function between the two electrodes of the capacitor and/or an399
excess of charged impurities in the vicinity of one of the capacitor plates400
relative to the other. The value of Qr is in practice very large compared to401
the Cooper pair charge 2e, and since the hamiltonian 5 is invariant under402
the transformation N → N ± 1, its value can be considered completely403
random.404

Such residual offset charge also exists in the LC circuit. However, we405
did not include it in our description of Sec. 3 since a time-independent406
Qr does not appear in the dynamical behavior of the circuit: it can be407
removed from the hamiltonian by performing a trivial canonical transfor-408
mation leaving the form of the hamiltonian unchanged.409

It is not possible, however, to iron this constant out of the junction410
hamiltonian 5 because the potential is not quadratic in θ . The parameter411
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Qr plays a role here similar to the vector potential appearing in the ham-412
iltonian of an electron in a magnetic field.413

5.2. Fluctuations of the Parameters of the Hamiltonian414

The hamiltonian 5 thus depends thus on three parameters which, fol-415
lowing our discussion of the LC oscillator, we write as416

Qr = Qstat
r +�Qr (t) , (6)417

EC = Estat
C +�EC (t) ,418

EJ = Estat
J +�EJ (t)419

in order to distinguish the static variation resulting from fabrication of the420
circuit from the time-dependent fluctuations. While Qstat

r can be consid-421
ered fully random (see above discussion), Estat

C and Estat
J can generally be422

adjusted by construction to a precision better than 20%. The relative fluc-423
tuations �Qr(t)/2e and �EJ(t)/EJ are found to have a 1/f power spec-424
tral density with a typical standard deviations at 1 Hz roughly of order425
10−3 Hz−1/2 and 10−5 Hz−1/2, respectively, for a junction with a typical426
area of 0.01 µm2.(16) The noise appears to be produced by independent427
two-level fluctuators.(17) The relative fluctuations �EC(t)/EC are much428
less known, but the behavior of some glassy insulators at low tempera-429
tures might lead us to expect also a 1/f power spectral density, but prob-430
ably with a weaker intensity than those of �EJ(t)/EJ. We refer to the431
three noise terms in Eq. (6) as offset charge, dielectric and critical current432
noises, respectively.433

6. WHY THREE BASIC TYPES OF JOSEPHSON QUBITS?434

The first-order problem in realizing a Josephson qubit is to suppress435
as much as possible the detrimental effect of the fluctuations of Qr, while436
retaining the non-linearity of the circuit. There are three main stategies437
for solving this problem and they lead to three fundamental basic type of438
qubits involving only one Josephson element.439

6.1. The Cooper Pair Box440

The simplest circuit is called the “Cooper pair box” and was first441
described theoretically, albeit in a slightly different version than presented442
here, by Büttiker.(18) It was first realized experimentally by the Saclay443



U
nc

or
re

ct
ed

 P
ro

of

Implementing Qubits with Superconducting Integrated Circuits 15

group in 1997.(19) Quantum dynamics in the time domain were first seen444
by the NEC group in 1999.(20)445

In the Cooper pair box, the deviations of the residual offset charge446
Qr are compensated by biasing the Josephson tunnel junction with a volt-447
age source U in series with a “gate” capacitor Cg (see Fig. 4a). One can448
easily show that the hamiltonian of the Cooper pair box is449

H =EC
(
N −Ng

)2 −EJ cos θ. (7)450451

Here EC = (2e)2 /(2
(
CJ +Cg)

)
is the charging energy of the island of the452

box and Ng =Qr +CgU/2e. Note that this hamiltonian has the same form453
as hamiltonian 5. Often Ng is simply written as CgU/2e since U at the454
chip level will deviate substantially from the generator value at high-tem-455
perature due to stray emf’s in the low-temperature cryogenic wiring.456

In Fig. 5, we show the potential in the θ representation as well as457
the first few energy levels for EJ/EC =1 and Ng =0. As shown in Appen-458
dix 2, the Cooper pair box eigenenergies and eigenfunctions can be calcu-459
lated with special functions known with arbitrary precision, and in Fig. 6460
we plot the first few eigenenergies as a function of Ng for EJ/EC = 0.1461
and EJ/EC =1. Thus, the Cooper box is to quantum circuit physics what462
the hydrogen atom is to atomic physics. We can modify the spectrum with463
the action of two externally controllable electrodynamic parameters: Ng,464
which is directly proportional to U , and EJ, which can be varied by apply-465
ing a field through the junction or by using a split junction and apply-466
ing a flux through the loop, as discussed in Sec. 3. These parameters bear467
some resemblance to the Stark and Zeeman fields in atomic physics. For468
the box, however much smaller values of the fields are required to change469
the spectrum entirely.470

We now limit ourselves to the two lowest levels of the box. Near the471
degeneracy point Ng =1/2 where the electrostatic energy of the two charge472

Ug Ib
Cg

L

Φext
(a) (b) (c)

Fig. 4. (a) Cooper pair box (prototypal charge qubit); (b) RF-SQUID (prototypal flux
qubit); and (c) current-biased junction (prototypal phase qubit). The charge qubit and the
flux qubit requires small junctions fabricated with e-beam lithography while the phase qubit
can be fabricated with conventional optical lithography.
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Fig. 5. Potential landscape for the phase in a Cooper pair box (thick solid line). The first
few levels for EJ/EC =1 and Ng =1/2 are indicated by thin horizontal solid lines.
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Fig. 6. Energy levels of the Cooper pair box as a function of Ng, for two values of EJ/EC.
As EJ/EC increases, the sensitivity of the box to variations of offset charge diminishes, but
so does the non-linearity. However, the non-linearity is the slowest function of EJ/EC and a
compromise advantageous for coherence can be found.
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Fig. 7. Universal level anticrossing found both for the Cooper pair box and the
RF-SQUID at their “sweet spot”.

states |N =0〉 and |N =1〉 are equal, we get the reduced hamiltonian(19,21)473

Hqubit =−Ez (σZ +XcontrolσX) , (8)474475

where, in the limit EJ/EC�1, Ez=EJ/2 and Xcontrol=2(EC/EJ)
(
(1/2)−Ng

)
.476

In Eq. (8), σZ and σX refer to the Pauli spin operators. Note that the477
X-direction is chosen along the charge operator, the variable of the box478
we can naturally couple to.479

If we plot the energy of the eigenstates of 8 as a function of the con-480
trol parameter Xcontrol, we obtain the universal level repulsion diagram481
shown in Fig. 7. Note that the minimum energy splitting is given by EJ.482
Comparing Eq. (8) with the spin hamiltonian in NMR, we see that EJ483
plays the role of the Zeeman field while the electrostatic energy plays the484
role of the transverse field. Indeed we can send on the control port cor-485
responding to U time-varying voltage signals in the form of NMR-type486
pulses and prepare arbitrary superpositions of states.(22)487

The expression 8 shows that at the “sweet spot” Xcontrol = 0, i.e., the488
degeneracy point Ng =1/2, the qubit transition frequency is to first order489
insentive to the offset charge noise �Qr. We will discuss in Sec. 6.2 how490
an extension of the Cooper pair box circuit can display quantum coher-491
ence properties on long time scales by using this property.492

In general, circuits derived from the Cooper pair box have been nick-493
named “charge qubits”. One should not think, however, that in charge494
qubits, quantum information is encoded with charge. Both the charge N495
and phase θ are quantum variables and they are both uncertain for a496
generic quantum state. Charge in “charge qubits” should be understood497
as refering to the “controlled variable”, i.e., the qubit variable that couples498
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to the control line we use to write or manipulate quantum information. In499
the following, for better comparison between the three qubits, we will be500
faithful to the convention used in Eq. (8), namely that σX represents the501
controlled variable.502

6.2. The RF-SQUID503

The second circuit—the so-called RF-SQUID(23)—can be considered504
in several ways the dual of the Cooper pair box (see Fig. 4b). It employs505
a superconducting transformer rather than a gate capacitor to adjust the506
hamiltonian. The two sides of the junction with capacitance CJ are con-507
nected by a superconducting loop with inductance L. An external flux508
�ext is imposed through the loop by an auxiliary coil. Using the methods509
of Appendix 1, we obtain the hamiltonian(8)510

H = q2

2CJ
+ φ2

2L
−EJ cos

[
2e

�
(φ −�ext)

]
. (9)

511512

We are taking here as degrees of freedom the integral φ of the voltage513
across the inductance L, i.e., the flux through the superconducting loop,514
and its conjugate variable, the charge q on the capacitance CJ; they obey515
[φ, q]= i�. Note that in this representation, the phase θ , corresponding to516
the branch flux across the Josephson element, has been eliminated. Note517
also that the flux φ, in contrast to the phase θ , takes its values on a line518
and not on a circle. Likewise, its conjugate variable q, the charge on the519
capacitance, has continuous eigenvalues and not integer ones like N . Note520
that we now have three adjustable energy scales: EJ, ECJ = (2e)2/2CJ and521
EL =�2

0/2L.522
The potential in the flux representation is schematically shown in523

Fig. 8 together with the first few levels, which have been seen experi-524
mentally for the first time by the SUNY group.(24) Here, no analytical525
expressions exist for the eigenvalues and the eigenfunctions of the prob-526
lem, which has two aspect ratios: EJ/ECJ and λ=LJ/L−1.527

Whereas in the Cooper box the potential is cosine-shaped and has528
only one well since the variable θ is 2π -periodic, we have now in gen-529
eral a parabolic potential with a cosine corrugation. The idea here for cur-530
ing the detrimental effect of the offset charge fluctuations is very different531
than in the box. First of all Qstat

r has been neutralized by shunting the two532
metallic electrodes of the junction by the superconducting wire of the loop.533
Then, the ratio EJ/ECJ is chosen to be much larger than unity. This tends534
to increase the relative strength of quantum fluctuations of q, making off-535
set charge fluctuations �Qr small in comparison. The resulting loss in the536
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Fig. 8. Schematic potential energy landcape for the RF-SQUID.

non-linearity of the first levels is compensated by taking λ close to zero537
and by flux-biasing the device at the half-flux quantum value �ext =�0/2.538
Under these conditions, the potential has two degenerate wells separated539
by a shallow barrier with height EB = (3λ2/2)EJ. This corresponds to the540
degeneracy value Ng =1/2 in the Cooper box, with the inductance energy541
in place of the capacitance energy. At �ext =�0/2, the two lowest energy542
levels are then the symmetric and antisymmetric combinations of the two543
wavefunctions localized in each well, and the energy splitting between the544
two states can be seen as the tunnel splitting associated with the quantum545
motion through the potential barrier between the two wells, bearing close546
resemblance to the dynamics of the ammonia molecule. This splitting ES547
depends exponentially on the barrier height, which itself depends strongly548
on EJ. We have ES = η

√
EBECJ exp

(−ξ
√

EB/ECJ
)

where the numbers η549
and ξ have to be determined numerically in most practical cases. The non-550
linearity of the first levels results thus from a subtle cancellation between551
two inductances: the superconducting loop inductance L and the junction552
effective inductance −LJ0 which is opposed to L near �ext =�0/2. How-553
ever, as we move away from the degeneracy point �ext =�0/2, the splitting554
2E� between the first two energy levels varies linearly with the applied flux555
E� = ζ(�2

0/2L) (N� −1/2). Here the parameter N� =�ext/�0, also called556
the flux frustration, plays the role of the reduced gate charge Ng. The557
coefficient ζ has also to be determined numerically. We are therefore again,558
in the vicinity of the flux degeneracy point �ext =�0/2 and for EJ/ECJ �559
1, in presence of the universal level repulsion behavior (see Fig. 7) and the560
qubit hamiltonian is again given by561

Hqubit =−Ez (σZ +XcontrolσX) , (10)562
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where now Ez = ES/2 and Xcontrol = 2(E�/ES)((1/2)−N�). The qubits563
derived from this basic circuit(25,33) have been nicknamed “flux qubits”.564
Again, quantum information is not directly represented here by the flux565
φ, which is as uncertain for a general qubit state as the charge q on the566
capacitor plates of the junction. The flux φ is the system variable to which567
we couple when we write or control information in the qubit, which is568
done by sending current pulses on the primary of the RF-SQUID trans-569
former, thereby modulating N�, which itself determines the strength of570
the pseudo-field in the X-direction in the hamiltonian 10. Note that the571
parameters ES, E�, and N� are all influenced to some degree by the crit-572
ical current noise, the dielectric noise and the charge noise. Another inde-573
pendent noise can also be present, the noise of the flux in the loop, which574
is not found in the box and which will affect only N�. Experiments on575
DC-SQUIDS(15) have shown that this noise, in adequate conditions, can576
be as low as 10−8(h/2e)/Hz−1/2 at a few kHz. However, experimental577
results on flux qubits (see below) seem to indicate that larger apparent flux578
fluctuations are present, either as a result of flux trapping or critical cur-579
rent fluctuations in junctions implementing inductances.580

6.3. Current-biased Junction581

The third basic quantum circuit biases the junction with a fixed582
DC-current source (Fig. 7c). Like the flux qubit, this circuit is also583
insensitive to the effect of offset charge and reduces the effect of charge584
fluctuations by using large ratios of EJ/ECJ. A large non-linearity in the585
Josephson inductance is obtained by biasing the junction at a current I586
very close to the critical current. A current bias source can be understood587
as arising from a loop inductance with L → ∞ biased by a flux � → ∞588
such that I =�/L. The Hamiltonian is given by589

H =ECJp
2 − Iϕ0δ − I0ϕ0 cos δ, (11)590591

where the gauge invariant phase difference operator δ is, apart from the592
scale factor ϕ0, precisely the branch flux across CJ. Its conjugate vari-593
able is the charge 2ep on that capacitance, a continuous operator. We594
have thus [δ,p]= i. The variable δ, like the variable φ of the RF-SQUID,595
takes its value on the whole real axis and its relation with the phase θ is596
δ mod 2π = θ as in our classical analysis of Sec. 4.597

The potential in the δ representation is shown in Fig. 9. It has the598
shape of a tilted washboard, with the tilt given by the ratio I/I0. When599
I approaches I0, the phase is δ ≈π/2, and in its vicinity, the potential is600
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Fig. 9. Tilted washboard potential of the current-biased Josephson junction.

very well approximated by the cubic form601

U (δ)=ϕ0 (I0 − I ) (δ −π/2)− I0ϕ0

6
(δ −π/2)3 , (12)602603

Note that its shape depends critically on the difference I0 − I . For I � I0,604
there is a well with a barrier height �U = (2

√
2/3)I0ϕ0 (1− I/I0)

3/2 and605
the classical oscillation frequency at the bottom of the well (so-called606
plasma oscillation) is given by607

ωp = 1√
LJ(I )CJ608

= 1√
LJ0CJ

[
1− (I/I0)

2
]1/4

.
609

Quantum-mechanically, energy levels are found in the well (see Fig. 11)(3)610
with non-degenerate spacings. The first two levels can be used for qubit611
states,(26) and have a transition frequency ω01 �0.95ωp.612

A feature of this qubit circuit is built-in readout, a property missing613
from the two previous cases. It is based on the possibility that states in614
the cubic potential can tunnel through the cubic potential barrier into the615
continuum outside the barrier. Because the tunneling rate increases by616
a factor of approximately 500 each time we go from one energy level to617
the next, the population of the |1〉 qubit state can be reliably measured by618
sending a probe signal inducing a transition from the 1 state to a higher619
energy state with large tunneling probability. After tunneling, the parti-620
cle representing the phase accelerates down the washboard, a convenient621
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self-amplification process leading to a voltage 2�/e across the junction.622
Therefore, a finite voltage V 
= 0 suddenly appearing across the junction623
just after the probe signal implies that the qubit was in state |1〉, whereas624
V =0 implies that the qubit was in state |0〉.625

In practice, like in the two previous cases, the transition frequency626
ω01/2π falls in the 5–20 GHz range. This frequency is only determined by627
material properties of the barrier, since the product CJ LJ does not depend628
on junction area. The number of levels in the well is typically �U/�ωp ≈4.629

Setting the bias current at a value I and calling �I the variations of630
the difference I − I0 (originating either in variations of I or I0), the qubit631
Hamiltonian is given by632

Hqubit =�ω01σZ +
√

�

2ω01CJ

�I (σX +χσZ), (13)
633634

where χ =√
�ω01/3�U �1/4 for typical operating parameters. In contrast635

with the flux and phase qubit circuits, the current-biased Josephson junc-636
tion does not have a bias point where the 0→1 transition frequency has a637
local minimum. The hamiltonian cannot be cast into the NMR-type form638
of Eq. (8). However, a sinusoidal current signal �I (t)∼ sin ω01t can still639
produce σX rotations, whereas a low-frequency signal produces σZ opera-640
tions.(27)641

In analogy with the preceding circuits, qubits derived from this circuit642
and/or having the same phase potential shape and qubit properties have643
been nicknamed “phase qubits” since the controlled variable is the phase644
(the X pseudo-spin direction in hamiltonian 13).645

6.4. Tunability versus Sensitivity to Noise in Control Parameters646

The reduced two-level hamiltonians Eqs. (8), (10) and (13) have been647
tested thoroughly and are now well-established. They contain the very648
important parametric dependence of the coefficient of σX, which can be649
viewed on one hand as how much the qubit can be tuned by an external650
control parameter, and on the other hand as how much it can be dephased651
by uncontrolled variations in that parameter. It is often important to real-652
ize that even if the control parameter has a very stable value at the level of653
room-temperature electronics, the noise in the electrical components relay-654
ing its value at the qubit level might be inducing detrimental fluctuations.655
An example is the flux through a superconducting loop, which in principle656
could be set very precisely by a stable current in a coil, and which in prac-657
tice often fluctuates because of trapped flux motion in the wire of the loop658
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or in nearby superconducting films. Note that, on the other hand, the two-659
level hamiltonian does not contain the non-linear properties of the qubit,660
and how they conflict with its intrinsic noise, a problem which we discuss661
in the next Sec. 6.5.662

6.5. Non-linearity versus Sensitivity to Intrinsic Noise663

The three basic quantum circuit types discussed above illustrate a gen-664
eral tendency of Josephson qubits. If we try to make the level structure665
very non-linear, i.e. |ω01 −ω12| � ω01, we necessarily expose the system666
sensitively to at least one type of intrinsic noise. The flux qubit is contruc-667
ted to reach a very large non-linearity, but is also maximally exposed, rela-668
tively speaking, to critical current noise and flux noise. On the other hand,669
the phase qubit starts with a relatively small non-linearity and acquires it670
at the expense of a precise tuning of the difference between the bias cur-671
rent and the critical current, and therefore exposes itself also to the noise672
in the latter. The Cooper box, finally, acquires non-linearity at the expense673
of its sensitivity to offset charge noise. The search for the optimal qubit674
circuit involves therefore a detailed knowledge of the relative intensities of675
the various sources of noise, and their variations with all the construc-676
tion parameters of the qubit, and in particular — this point is crucial—677
the properties of the materials involved in the tunnel junction fabrication.678
Such in-depth knowledge does not yet exist at the time of this writing and679
one can only make educated guesses.680

The qubit optimization problem is also further complicated by the681
necessity to readout quantum information, which we address just after682
reviewing the relationships between the intensity of noise and the decay683
rates of quantum information.684

7. QUBIT RELAXATION AND DECOHERENCE685

A generic quantum state of a qubit can be represented as a unit vec-686
tor −→

S pointing on a sphere — the so-called Bloch sphere. One distin-687
guishes two broad classes of errors. The first one corresponds to the tip688
of the Bloch vector diffusing in the latitude direction, i.e., along the arc689
joining the two poles of the sphere to or away from the north pole. This690
process is called energy relaxation or state-mixing. The second class corre-691
sponds to the tip of the Bloch vector diffusing in the longitude direction,692
i.e., perpendicularly to the line joining the two poles. This process is called693
dephasing or decoherence.694

In Appendix 2 we define precisely these rates and show that they are695
directly proportional to the power spectral densities of the noises entering696
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in the parameters of the hamiltonian of the qubit. More precisely, we find697
that the decoherence rate is proportional to the total spectral density of698
the quasi-zero-frequency noise in the qubit frequency. The relaxation rate,699
on the other hand, is proportional to the total spectral density at the qubit700
frequency of the noise in the field perpendicular to the eigenaxis of the701
qubit.702

In principle, the expressions for the relaxation and decoherence rate703
could lead to a ranking of the various qubit circuits: from their reduced704
spin hamiltonian, one can find with what coefficient each basic noise705
source contributes to the various spectral densities entering in the rates.706
In the same manner, one could optimize the various qubit parameters707
to make them insensitive to noise, as much as possible. However, before708
discussing this question further, we must realize that the readout itself709
can provide substantial additional noise sources for the qubit. Therefore,710
the design of a qubit circuit that maximizes the number of coherent gate711
operations is a subtle optimization problem which must treat in parallel712
both the intrinsic noises of the qubit and the back-action noise of the713
readout.714

8. READOUT OF SUPERCONDUCTING QUBITS715

8.1. Formulation of the Readout Problem716

We have examined so far the various basic circuits for qubit imple-717
mentation and their associated methods to write and manipulate quantum718
information. Another important task quantum circuits must perform is the719
readout of that information. As we mentioned earlier, the difficulty of the720
readout problem is to open a coupling channel to the qubit for extracting721
information without at the same time submitting it to noise.722

Ideally, the readout part of the circuit—referred to in the follow-723
ing simply as “readout”—should include both a switch, which defines an724
“OFF” and an “ON” phase, and a state measurement device. During the725
OFF phase, where reset and gate operations take place, the measurement726
device should be completely decoupled from the qubit degrees of freedom.727
During the ON phase, the measurement device should be maximally cou-728
pled to a qubit variable that distinguishes the 0 and the 1 state. However,729
this condition is not sufficient. The back-action of the measurement device730
during the ON phase should be weak enough not to relax the qubit.(28)731

The readout can be characterized by 4 parameters. The first one732
describes the sensitivity of the measuring device while the next two733
describe its back-action, factoring in the quality of the switch (see Appen-734
dix 3 for their definition):735
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(i) the measurement time τm defined as the time taken by the measuring736
device to reach a signal-to-noise ratio of 1 in the determination of the737
state.738

(ii) the energy relaxation time �ON
1 of the qubit in the ON state.739

(iii) the coherence decay rate �OFF
2 of the qubit information in the OFF740

state.741
(iv) the dead time td needed to reset both the measuring device and qubit742

after a measurement. They are usually perturbed by the energy expen-743
diture associated with producing a signal strong enough for external744
detection.745

Simultaneously minimizing these parameters to improve readout per-746
formance cannot be done without running into conflicts. An important747
quantity to optimize is the readout fidelity. By construction, at the end of748
the ON phase, the readout should have reached one of two classical states:749
0c and 1c, the outcomes of the measurement process. The latter can be750
described by two probabilities: the probability p00c (p11c ) that starting from751
the qubit state |0〉 (|1〉) the measurement yields 0c(1c). The readout fidelity752
(or discriminating power) is defined as F =p00c +p11c − 1. For a measur-753
ing device with a signal-to-noise ratio increasing like the square of mea-754
surement duration τ , we would have, if back-action could be neglected,755
F = erf

(
2−1/2τ/τm

)
.756

8.2. Requirements and General Strategies757

The fidelity and speed of the readout, usually not discussed in the758
context of quantum algorithms because they enter marginally in the eval-759
uation of their complexity, are actually key to experiments studying the760
coherence properties of qubits and gates. A very fast and sensitive read-761
out will gather at a rapid pace information on the imperfections and drifts762
of qubit parameters, thereby allowing the experimenter to design fabrica-763
tion strategies to fight them during the construction or even correct them764
in real time.765

We are thus mostly interested in “single-shot” readouts,(28) for which766
F is order unity, as opposed to schemes in which a weak measurement is767
performed continuously.(29) If F � 1, of order F−2 identical preparation768
and readout cycles need to be performed to access the state of the qubit.769
The condition for “single-shot” operation is770

�ON
1 τm <1.771

The speed of the readout, determined both by τm and td, should be772
sufficiently fast to allow a complete characterization of all the properties773
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of the qubit before any drift in parameters occurs. With sufficient speed,774
the automatic correction of these drits in real time using feedback will be775
possible.776

Rapidly pulsing the readout on and off with a large decoupling ampli-777
tude such that778

�OFF
2 T2 −1�1779

requires a fast, strongly non-linear element, which is provided by one or780
more auxiliary Josephson junctions. Decoupling the qubit from the read-781
out in the OFF phase requires balancing the circuit in the manner of a782
Wheatstone bridge, with the readout input variable and the qubit variable783
corresponding to two orthogonal electrical degrees of freedom. Finally, to784
be as complete as possible even in presence of small asymmetries, the de-785
coupling also requires an impedance mismatch between the qubit and the786
dissipative degrees of freedom of the readout. In Sec. 8.3, we discuss how787
these general ideas have been implemented in second generation quantum788
circuits. The examples we have chosen all involve a readout circuit which is789
built-in the qubit itself to provide maximal coupling during the ON phase,790
as well as a decoupling scheme which has proven effective for obtaining791
long decoherence times.792

8.3. Phase Qubit: Tunneling Readout with a DC-SQUID On-chip793
Amplifier.794

The simplest example of a readout is provided by a system derived795
from the phase qubit (see Fig. 10). In the phase qubit, the levels in the796
cubic potential are metastable and decay in the continuum, with level n+1797
having roughly a decay rate �n+1 500 times faster than the decay �n of798
level n. This strong level number dependence of the decay rate leads nat-799
urally to the following readout scheme: when readout needs to be per-800
formed, a microwave pulse at the transition frequency ω12 (or better at801
ω13) transfers the eventual population of level 1 into level 2, the latter802
decaying rapidly into the continuum, where it subsequently loses energy803
by friction and falls into the bottom state of the next corrugation of the804
potential (because the qubit junction is actually in a superconducting loop805
of large but finite inductance, the bottom of this next corrugation is in fact806
the absolute minimum of the potential and the particle representing the807
system can stay an infinitely long time there). Thus, at the end of the read-808
out pulse, the sytem has either decayed out of the cubic well (readout state809
1c) if the qubit was in the |1〉 state or remained in the cubic well (read-810
out state 0c) if the qubit was in the |0〉 state. The DC-SQUID amplifier811



U
nc

or
re

ct
ed

 P
ro

of

Implementing Qubits with Superconducting Integrated Circuits 27

WRITE AND
CONTROL

PORT

READOUT
PORT

Fig. 10. Phase qubit implemented with a Josephson junction in a high-inductance super-
conducting loop biased with a flux sufficiently large that the phase across the junction sees
a potential analogous to that found for the current-biased junction. The readout part of the
circuit is an asymmetric hysteretic SQUID which is completely decoupled from the qubit in
the OFF phase. Isolation of the qubit both from the readout and control port is obtained
through impedance mismatch of transformers.

is sensitive enough to detect the change in flux accompanying the exit of812
the cubic well, but the problem is to avoid sending the back-action noise813
of its stabilizing resistor into the qubit circuit. The solution to this prob-814
lem involves balancing the SQUID loop in such a way, that for readout815
state 0c, the small signal gain of the SQUID is zero, whereas for readout816
state 1c, the small signal gain is non-zero.(17) This signal dependent gain is817
obtained by having two junctions in one arm of the SQUID whose total818
Josephson inductance equals that of the unique junction in the other arm.819
Finally, a large impedance mismatch between the SQUID and the qubit is820
obtained by a transformer. The fidelity of such readout is remarkable: 95%821
has been demonstrated. In Fig. 11, we show the result of a measurement822
of Rabi oscillations with such qubit+readout.823

8.4. Cooper-pair Box with Non-linear Inductive Readout: The824
“Quantronium” Circuit825

The Cooper-pair box needs to be operated at its “sweet spot” (degen-826
eracy point) where the transition frequency is to first order insensitive to827
offset charge fluctuations. The “Quantronium” circuit presented in Fig. 12828
is a 3-junction bridge configuration with two small junctions defining a829
Cooper box island, and thus a charge-like qubit which is coupled capaci-830
tively to the write and control port (high-impedance port). There is also a831
large third junction, which provides a non-linear inductive coupling to the832
read port. When the read port current I is zero, and the flux through the833
qubit loop is zero, noise coming from the read port is decoupled from the834
qubit, provided that the two small junctions are identical both in critical835
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Fig. 11. Rabi oscillations observed for the qubit of Fig. 10.

current and capacitance. When I is non-zero, the junction bridge is out836
of balance and the state of the qubit influences the effective non-linear837
inductance seen from the read port. A further protection of the impedance838
mismatch type is obtained by a shunt capacitor across the large junc-839
tion: at the resonance frequency of the non-linear resonator formed by840
the large junction and the external capacitance C, the differential mode841
of the circuit involved in the readout presents an impedance of the order842
of an ohm, a substantial decoupling from the 50 � transmission line car-843
rying information to the amplifier stage. The readout protocol involves a844
DC pulse(22,30) or an RF pulse(31) stimulation of the readout mode. The845
response is bimodal, each mode corresponding to a state of the qubit.846
Although the theoretical fidelity of the DC readout can attain 95%, only a847
maximum of 40% has been obtained so far. The cause of this discrepancy848
is still under investigation.849

In Fig. 13 we show the result of a Ramsey fringe experiment dem-850
onstrating that the coherence quality factor of the quantronium can reach851
25,000 at the sweet spot.(22) By studying the degradation of the qubit852
absorption line and of the Ramsey fringes as one moves away from the853
sweet spot, it has been possible to show that the residual decoherence is854
limited by offset charge noise and by flux noise.(32) In principle, the influ-855
ence of these noises could be further reduced by a better optimization856
of the qubit design and parameters. In particular, the operation of the857
box can tolerate ratios of EJ/EC around 4 where the sensitivity to offset858
charge is exponentially reduced and where the non-linearity is still of order859
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WRITE AND
CONTROL PORT

READOUT
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Fig. 12. “Quantronium" circuit consisting of a Cooper pair box with a non-linear induc-
tive readout. A Wheatstone bridge configuration decouples qubit and readout variables when
readout is OFF. Impedance mismatch isolation is also provided by additional capacitance in
parallel with readout junction.

Fig. 13. Measurement of Ramsey fringes for the Quantronium. Two π/2 pulses separated
by a variable delay are applied to the qubit before measurement. The frequency of the pulse
is slightly detuned from the transition frequency to provide a stroboscopic measurement of
the Larmor precession of the qubit.

15%. The quantronium circuit has so far the best coherence quality factor.860
We believe this is due to the fact that critical current noise, one dominant861
intrinsic source of noise, affects this qubit far less than the others, rela-862
tively speaking, as can be deduced from the qubit hamiltonians of Sec. 6.863

8.5. 3-Junction Flux Qubit with Built-in Readout864

Figure 14 shows a third example of buit-in readout, this time for a865
flux-like qubit. The qubit by itself involves three junctions in a loop, the866
larger two of the junctions playing the role of the loop inductance in the867
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READOUT
PORT

WRITE AND
CONTROL

PORT

Fig. 14. Three-junction flux qubit with a non-linear inductive readout. The medium-size
junctions play the role of an inductor. Bridge configuration for nulling out back-action of
readout is also employed here, as well as impedance mismatch provided by additional capac-
itance.

basic RF-SQUID.(33) The advantage of this configuration is to reduce the868
sensitivity of the qubit to external flux variations. The readout part of869
the circuit involves two other junctions forming a hysteretic DC-SQUID870
whose offset flux depends on the qubit flux state. The critical current of871
this DC-SQUID has been probed by a DC pulse, but an RF pulse could872
be applied as in another flux readout. Similarly to the two previous cases,873
the readout states 1c and 0c, which here correspond to the DC-SQUID874
having switched or not, map very well the qubit states |1〉 and |0〉, with875
a fidelity better than 60%. Here also, a bridge technique orthogonalizes876
the readout mode, which is the common mode of the DC-SQUID, and877
the qubit mode, which is coupled to the loop of the DC-SQUID. Exter-878
nal capacitors provide additional protection through impedance mismatch.879
Figure 15 shows Ramsey oscillations obtained with this system.880

8.6. Too much On-chip Dissipation is Problematic: Do not Stir up the Dirt !881

All the circuits above include an on-chip amplification scheme pro-882
ducing high-level signals which can be read directly by high-temperature883
low-noise electronics. In the second and third examples, these signals lead884
to non-equilibrium quasi-particle excitations being produced in the near885
vicinity of the qubit junctions. An elegant experiment has recently dem-886
onstrated that the presence of these excitations increases the offset charge887
noise.(34) More generally, one can legitimately worry that large energy888
dissipation on the chip itself will lead to an increase of the noises dis-889
cussed in Sec. 5.2. A broad class a new readout schemes addresses this890
question.(31,35,36) They are based on a purely dispersive measurement of891
a qubit susceptibility (capacitive or inductive). A probe signal is sent892
to the qubit. The signal is coupled to a qubit variable whose average893
value is identical in the two qubit states (for instance, in the capacitive894
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Fig. 15. Ramsey fringes obtained for qubit of Fig. 14.

susceptibility, the variable is the island charge in the charge qubit at the895
degeneracy point). However, the susceptibility, which is the derivative of896
the qubit variable with respect to the probe, differs from one qubit state897
to the other. The resulting state-dependent phase shift of the reflected sig-898
nal is thus amplified by a linear low temperature amplifier and finally dis-899
criminated at high temperature against an adequately chosen threshold.900
In addition to being very thrifty in terms of energy being dissipated on901
chip, these new schemes also provide a further natural decoupling action:902
when the probe signal is off, the back-action of the amplifier is also com-903
pletely shut off. Finally, the interrogation of the qubit in a frequency band904
excluding zero facilitates the design of very efficient filters.905

9. COUPLING SUPERCONDUCTING QUBITS906

A priori, three types of coupling scheme can be envisioned:907

(a) In the first type, the transition frequency of the qubits are all equal908
and the coupling between any pair is switched on using one or sev-909
eral junctions as non-linear elements.(37,38)910

(b) In the second type, the couplings are fixed, but the transition frequen-911
cies of a pair of qubits, originally detuned, are brought on resonance912
when the coupling between them needs to be turned on.(39–41)913
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(c) In the third type, which bears close resemblance to the methods used914
in NMR,(1) the couplings and the resonance frequencies of the qubits915
remain fixed, the qubits being always detuned. Being off-diagonal, the916
coupling elements have negligible action on the qubits. However, when917
a strong micro-wave field is applied to the target and control qubits918
at their mean frequency, they become in “speaking terms” for the919
exchange of energy quanta and gate action can take place.(42)920

So far only scheme (b) has been tested experimentally.921
The advantage of schemes (b) and (c) is that they work with purely922

passive reactive elements like capacitors and inductors which should923
remain very stable as a function of time and which also should present924
very little high-frequency noise. In a way, we must design quantum inte-925
grated circuits in the manner that vacuum tube radios were designed in926
the 1950s: only six tubes were used for a complete heterodyne radio set,927
including the power supply. Nowadays several hundreds of transistors are928
used in a radio or any hi-fi system. In that ancient era of classical elec-929
tronics, linear elements like capacitors, inductors or resistors were “free”930
because they were relatively reliable whereas tubes could break down eas-931
ily. We have to follow a similar path in quantum integrated circuit, the reli-932
ability issues having become noise minimization issues.933

10. CAN COHERENCE BE IMPROVED WITH BETTER934
MATERIALS?935

Up to now, we have discussed how, given the power spectral densities936
of the noises �Qr, �EC and �EJ, we could design a qubit equipped with937
control, readout and coupling circuits. It is worthwhile to ask at this point938
if we could improve the material properties to gain in the coherence of the939
qubit, assuming all other problems like noise in the control channels and940
the back-action of the readout have been solved. A model put forward by941
one of us (JMM) and collaborators shed some light on the direction one942
would follow to answer this question. The 1/f spectrum of the materials943
noises suggests that they all originate from 2-level fluctuators in the amor-944
phous alumina tunnel layer of the junction itself, or its close vicinity. The945
substrate or the surface of the superconducting films are also suspect in946
the case of �Qr and �EC but their influence would be relatively weaker947
and we ignore them for simplicity. These two-level systems are supposed948
to be randomly distributed positional degrees of freedom ξi with effective949
spin-1/2 properties, for instance an impurity atom tunneling between two950
adjacent potential well. Each two-level system is in principle characterized951
by three parameters: the energy splitting �ωi , and the two coefficients αi952
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and βi of the Pauli matrix representation of ξi = αiσiz + βiσix . The ran-953
dom nature of the problem leads us to suppose that αi and βi are both954
Gaussian random variables with the same standard deviation ρi . By car-955
rying a charge, the thermal and quantum motion of ξi can contribute to956

�Qr = ∑
i qiξi and �EC = ∑

i ci
β2

i

ωi
σiz. Likewise, by modifying the trans-957

mission of a tunneling channel in its vicinity, the motion of ξi can con-958
tribute to �EJ = ∑

i giξi . We can further suppose that the quality of the959
material of the junction is simply characterized by a few numbers. The960
essential one is the density ν of the transition frequencies ωi in frequency961
space and in real space, assuming a ω−1 distribution (this is necessary to962
explain the 1/f behavior) and a uniform spatial distribution on the sur-963
face of the junction. Recent experiments indicate that the parameter ν is964
of order105 µm−2 per decade. Then, assuming a universal ρ independent965
of frequency, only one coefficient is needed per noise, namely, the average966
modulation efficiency of each fluctuator. Such analysis provides a common967
language for describing various experiments probing the dependence of de-968
coherence on the material of the junction. Once the influence of the junc-969
tion fabrication parameters (oxydation pressure and temperature, impurity970
contents, and so on) on these noise intensities will be known, it will be971
possible to devise optimized fabrication procedures, in the same way per-972
haps as the 1/f noise in C-MOS transistors has been reduced by careful973
material studies.974

11. CONCLUDING REMARKS AND PERSPECTIVES975

The logical thread through this review of superconducting qubits has976
been the question “What is the best qubit design?”. Because some crucial977
experimental data is still missing, we unfortunately, at present, cannot con-978
clude by giving a definitive answer to this complex optimization problem.979

Yet, a lot has already been achieved, and superconducting qubits are980
becoming serious competitors of trapped ions and atoms. The following981
properties of quantum circuits have been demonstrated:982

(a) Coherence quality factors Qϕ =Tϕω01 can attain at least 2×104,983
(b) Readout and reset fidelity can be greater than 95%,984
(c) All states on the Bloch sphere can be addressed,985
(d) Spin echo techniques can null out low frequency drift of offset986

charges,987
(e) Two qubits can be coupled and RF pulses can implement gate oper-988

ation,989
(f) A qubit can be fabricated using only optical lithography techniques.990
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The major problem we are facing is that these various results have not991
been obtained at the same time IN THE SAME CIRCUIT, although suc-992
cesful design elements in one have often been incorporated into the next993
generation of others. The complete optimization of the single qubit+read-994
out has not been achieved yet. However, we have presented in this review995
the elements of a systematic methodology resolving the various conflicts996
that are generated by all the different requirements. Our opinion is that,997
once noise sources are better characterized, an appropriate combination998
of all the known circuit design strategies for improving coherence, as well999
as the understanding of optimal tunnel layer growth conditions for low-1000
ering the intrinsic noise of Josephson junctions, should lead us to reach1001
the 1-qubit and 2-qubit coherence levels needed for error correction.(45)1002
Along the way, good medium term targets to test overall progress on1003
the simultaneous fronts of qubit coherence, readout and gate coupling are1004
the measurement of Bell ’s inequality violation or the implementation of1005
the Deutsch–Josza algorithm, both of which requiring the simultaneous1006
satisfaction of properties (a)–(e).1007
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APPENDIX 1. QUANTUM CIRCUIT THEORY1015

The problem we are addressing in this section is, given a supercon-1016
ducting circuit made up of capacitors, inductors and Josephson junctions,1017
how to systematically write its quantum hamiltonian, the generating func-1018
tion from which the quantum dynamics of the circuit can be obtained.1019
This problem has been considered first by Yurke and Denker(46) in a sem-1020
inal paper and analyzed in further details by Devoret.(47) We will only1021
summarize here the results needed for this review.1022

The circuit is given as a set of branches, which can be capacitors,1023
inductors or Josephson tunnel elements, connected at nodes. Several inde-1024
pendent paths formed by a succession of branches can be found between1025
nodes. The circuit can therefore, contain one or several loops. It is impor-1026
tant to note that a circuit has not one hamiltonian but many, each one1027
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depending on a particular representation. We are describing here one par-1028
ticular type of representation, which is usually well adapted to circuits1029
containing Josephson junctions. Like in classical circuit theory, a set of1030
independent current and voltages has to be found for a particular repre-1031
sentation. We start by associating to each branch b of the circuit, the cur-1032
rent ib flowing through it and the voltage vb across it (a convention has to1033
be made first on the direction of the branches). Kirchhoff’s laws impose1034
relations among branch variables and some of them are redundant. The1035
following procedure is used to eliminate redundant branches: one node of1036
the circuit is first chosen as ground. Then from the ground, a loop-free1037
set of branches called spanning tree is selected. The rule behind the selec-1038
tion of the spanning tree is the following: each node of the circuit must be1039
linked to the ground by one and only one path belonging to the tree. In1040
general, inductors (linear or non-linear) are preferred as branches of the1041
tree but this is not necessary. Once the spanning tree is chosen (note that1042
we still have many possibilities for this tree), we can associate to each node1043
a “node voltage” vn which is the algebraic sum of the voltages along the1044
branches between ground and the node. The conjugate “node current” in1045
is the algebraic sum of all currents flowing to the node through capaci-1046
tors ONLY. The dynamical variables appearing in the hamiltonian of the1047
circuit are the node fluxes and node charges defined as1048

φn =
∫ t

−∞
v (t1) dt1,

1049

qn =
∫ t

−∞
i (t1) dt1.

1050

Using Kirchhoff’s laws, it is possible to express the flux and the1051
charge of each branch as a linear combination of all the node fluxes and1052
charges, respectively. In this inversion procedure, the total flux through1053
loops imposed by external flux bias sources and polarisation charges of1054
nodes imposed by charge bias sources, appear.1055

If we now sum the energies of all branches of the circuit expressed1056
in terms of node flux and charges, we will obtain the hamiltonian of1057
the circuit corresponding to the representation associated with the par-1058
ticular spanning tree. In this hamiltonian, capacitor energies behave like1059
kinetic terms while the inductor energies behave as potential terms. The1060
hamiltonian of the LC circuit written in Sec. 2 is an elementary example1061
of this procedure.1062

Once the hamiltonian is obtained it is easy get its quantum version by1063
replacing all the node fluxes and charges by their quantum operator equiv-1064
alent. The flux and charge of a node have a commutator given by i�, like1065
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the position and momentum of a particle1066

φ → φ̂,1067

q → q̂,1068 [
φ̂, q̂

]
= i�.1069

One can also show that the flux and charge operators corresponding1070
to a branch share the same commutation relation. Note that for the spe-1071
cial case of the Josephson element, the phase θ̂ and Cooper pair number1072
N̂ , which are its dimensionless electric variables, have the property1073

[
θ̂ , N̂

]
= i.

In the so-called charge basis, we have1074

N̂ =
∑
N

N |N〉 〈N | ,
1075

cos θ̂ = 1
2

∑
N

(|N〉 〈N +1|+ |N+〉 〈N |)
1076

while in the so-called phase basis, we have

N̂ =|θ〉 ∂

i∂
〈θ | .

Note that since the Cooper pair number N̂ is an operator with integer1077
eigenvalues, its conjugate variable θ̂ , has eigenvalues behaving like angles,1078
i.e., they are defined only modulo 2π .1079

In this review, outside this appendix, we have dropped the hat on1080
operators for simplicity.1081

APPENDIX 2. EIGENENERGIES AND EIGENFUNCTIONS1082
OF THE COOPER PAIR BOX1083

From Appendix 1, it easy to see that the hamiltonian of the Cooper1084
pair box leads to the Schrodinger equation1085 [

EC

(
∂

i ∂θ
−Ng

)2

−EJ cos θ

]
�k (θ)=Ek�k (θ) .

1086
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The functions �k (θ) e−iNg and energies Ek are solutions of the Mat-1087
hieu equation and can be found with arbitrary precision for all values of1088
the parameters Ng and EJ/EC.(48) For instance, using the program Math-1089
ematica, we find1090

Ek = ECMA

[
k +1− (k +1)mod 2+2Ng(−1)k,−2EJ/EC

]
,1091

�k (θ) = eiNgθ

√
2π

{
MC

[
4Ek

EC
,
−2EJ

EC
,
θ

2

]
+ i(−1)k+1MS

[
4Ek

EC
,
−2EJ

EC
,
θ

2

]}
,

1092

where MA(r, q)=MathieuCharacteristicA[r,q],1093
MC (a, q, z)=MathieuC[a,q,z],1094
MS (a, q, z)=MathieuS[a,q,z].1095

APPENDIX 3. RELAXATION AND DECOHERENCE RATES1096
FOR A QUBIT1097

Definition of the Rates1098

We start by introducing the spin eigenreference frame ẑ, x̂ and ŷ con-1099
sisting of the unit vector along the eigenaxis and the associated orthogonal1100
unit vectors (x̂ is in the XZ plane). For instance, for the Cooper pair box,1101
we find that ẑ = cos αẐ + sin αX̂, with tan α = 2EC

(
Ng −1/2

)
/EJ, while1102

x̂ =− sin αẐ + cos αX̂.1103
Starting with −→

S pointing along x̂ at time t = 0, the dynamics of the1104
Bloch vector in absence of relaxation or decoherence is1105

−→
S 0 (t)= cos (ω01) x̂ + sin (ω01) ŷ1106

In presence of relaxation and decoherence, the Bloch vector will devi-1107
ate from −→

S 0 (t) and will reach eventually the equilibrium value S
eq
z ẑ,1108

where S
eq
z = tanh (�ω01/2kBT ).1109

We define the relaxation and decoherence rates as1110

�1 = lim
t→∞

ln
〈
Sz (t)−S

eq
z

〉
t

,1111

�φ = lim
t→∞

ln

[〈−→
S (t).

−→
S 0(t)

〉
∣∣∣−→S (t)−S

eq
z ẑ

∣∣∣
]

t
.1112

Note that these rates have both a useful and rigorous meaning only if1113
the evolution of the components of the average Bloch vector follows, after1114
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a negligibly short settling time, an exponential decay. The �1 and �φ rates1115
are related to the NMR spin relaxation times T1 and T2

(49) by1116

T1 = �−1
1 ,1117

T2 = (
�φ +�1/2

)−1
.1118

The T2 time can be seen as the net decay time of quantum informa-1119
tion, including the influence of both relaxation and dephasing processes.1120
In our discussion of superconducting qubits, we must separate the contri-1121
bution of the two type of processes since their physical origin is in general1122
very different and cannot rely on the T2 time alone.1123

Expressions for the Rates1124

The relaxation process can be seen as resulting from unwanted tran-1125
sitions between the two eigenstate of the qubit induced by fluctuations in1126
the effective fields along the x and y axes. Introducing the power spectral1127
density of this field, one can demonstrate from Fermi’s Golden Rule that,1128
for perturbative fluctuations,1129

�1 = Sx (ω01)+Sy (ω01)

�
2

.
1130

Taking the case of the Cooper pair box as an example, we find that1131
Sy (ω01)=0 and that1132

Sx (ω)=
∫ +∞

−∞
dt eiωt 〈A(t)A (0)〉+〈B (t)B (0)〉 ,

1133

where1134

A(t) = �EJ (t)Eel

2
√

E2
J +E2

el

,

1135

B (t) = EJ�Eel (t)

2
√

E2
J +E2

el

,

1136
Eel = 2EC

(
Ng −1/2

)
.1137

Since the fluctuations �Eel (t) can be related to the impedance of the1138
environment of the box,(19,21,50) an order of magnitude estimate of the1139
relaxation rate can be performed, and is in rough agreement with obser-1140
vations.(22,51)1141
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The decoherence process, on the other hand, is induced by fluctua-1142
tions in the effective field along the eigenaxis z. If these fluctuations are1143
Gaussian, with a white noise spectral density up to frequencies of order1144
several �φ (which is often not the case because of the presence of 1/f1145
noise) we have1146

�φ = Sz (ω�0)

�
2

.
1147

In presence of a low frequency noise with an 1/f behavior, the formula1148
is more complicated.(52) If the environment producing the low frequency1149
noise consists of many degrees of freedom, each of which is very weakly1150
coupled to the qubit, then one is in presence of classical dephasing which,1151
if slow enough, can in principle be fought using echo techniques. If, one1152
the other hand, only a few degrees of freedom like magnetic spins or1153
glassy two-level systems are dominating the low frequency dynamics, deph-1154
asing is quantum and not correctable, unless the transition frequencies of1155
these few perturbing degrees of freedom is itself very stable.1156
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