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Spin systems and harmonic oscillators comprise two archetypes in quantum mechanics1. The
spin-1/2 system, with two quantum energy levels, is essentially the most nonlinear system found in
nature, while the harmonic oscillator represents the most linear, with an infinite number of evenly-
spaced quantum levels. A significant difference between these systems is that a two-level spin can
be prepared in an arbitrary quantum state using classical excitations, whereas classical excitations
applied to an oscillator generate a coherent state, nearly indistinguishable from a classical state2.
Quantum behaviour in an oscillator is most obvious in Fock states, states with specific numbers
of energy quanta, but such states are hard to create3–7. Here we demonstrate the first controlled
generation of multi-photon Fock states in a solid-state system. We use a superconducting phase
qubit8, a close approximation to a two-level spin system, coupled to a microwave resonator, acting
as a harmonic oscillator, to prepare and analyse pure Fock states with up to 6 photons. We contrast
the Fock states with coherent states generated using classical pulses applied directly to the resonator.

The difficulty of generating quantum number states in
a linear resonator has been overcome by interposing a
nonlinear quantum system, such as an ion, between a
classical radiation source and the resonator. A classical
pulse applied to the nonlinear system creates a quan-
tum state that can subsequently be transferred to the
resonator. Repeating this process multiple times results
in a quantum number state in the resonator. Such a
method was used to deterministically generate Fock num-
ber states for the mechanical motion of ions in a har-
monic ion trap3. The analogous deterministic creation of
Fock states in electrodynamic resonators has only been
demonstrated for states with one or two photons5,6, al-
though Fock states with larger photon numbers have
been recorded using projective measurements7,9. The de-
terministic creation of pure Fock states in a solid-state
system, as described here, represents a significant step
forward. Solid-state systems permit highly complex, in-
tegrated circuitry to employ such bosonic states in, for
example, quantum computational architectures. The in-
tegration of microwave resonators with solid state qubits
has recently attracted significant interest10–16, but to
date such implementations have only used zero or one
photons in the resonator, a regime where the bosonic na-
ture of the linear resonator is not apparent.

The method we use here to generate multi-photon Fock
states is scalable to arbitrary photon numbers3,17, lim-
ited only by decoherence times and the speed at which
photons can be transferred into the resonator. We gen-
erate the Fock states using the qubit as an intermedi-
ary between a classical microwave source and the res-
onator, and following generation, measure the resulting
states using the qubit. The Fock states are compared to
coherent states, generated by driving the resonator di-
rectly with a classical radiation pulse. The complexity
of the pulse sequences used to create and analyse the
resonator states, and the high fidelity of the resulting
measurements, demonstrate a significant advance in the
control of superconducting quantum circuits.

Our experimental system (see Fig. 1a) is based on

the superconducting phase qubit, a device developed for
quantum computation8. To a good approximation this
qubit is represented by a two-level spin system, with
ground state |g〉 and excited state |e〉. These states are
separated in energy by a transition frequency νq that may
be tuned from about 6 to 9 GHz using an external flux
bias. With the application of classical microwave pulses,
the quantum state of the qubit can be fully controlled18.
The qubit state is measured by a destructive single-shot
measurement, achieved by applying a flux-bias pulse to
the qubit. This pulse causes the |e〉 state to tunnel to a
state that can be easily distinguished from the |g〉 state
with a flux measurement performed using a readout dc
SQUID19. Decoherence of the qubit is characterised by
measurement of the energy relaxation time T q

1 ≈ 550ns
and phase coherence time T q

2 ≈ 100ns.
The qubit is coupled to a superconducting coplanar

waveguide resonator, which serves as a harmonic os-
cillator, with a resonance frequency νr = 6.565GHz.
The coupling is achieved using a capacitor, which sets
the coupling strength Ω/2π = 36MHz, measured us-
ing spectroscopy20 (see Fig. 1b). Achieving strong cou-
pling (Ω ≫ 1/T1) between a phase qubit and a res-
onator is straightforward21,22, as the qubit characteristic
impedance of ∼ 30 ohm is well-matched to the resonator
characteristic impedance of ∼ 50 ohm. The coupling
between the qubit and the resonator can be effectively
turned off by biasing the qubit well out of resonance, at a
frequency νq = νoff = 6.314GHz where the coupling is ef-
fectively reduced by a factor of (νr−νoff)2/(Ω/2π)2 ≈ 50.
Microwaves can also be injected directly into the res-
onator through a separate microwave feedline. The de-
coherence times of the resonator were measured to be
T r

1 ≈ 1 µs and T r
2 ≈ 2 µs ≈ 2T r

1 (to be published). All
measurements were performed in a dilution refrigerator
operating at 25mK ≪ hνr,q/kB (kB and h are the Boltz-
mann and Planck constants, respectively), so thermal
noise in this system is negligible.

When the qubit and resonator are tuned off-resonance,
so that |νr − νq| ≫ Ω/2π, no photons are exchanged
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FIG. 1: Device description and spectroscopy. a, Photomicrograph of a phase qubit (left) coupled to a coplanar waveguide
resonator (right). The resonator has a total length of 8.76 mm. A microwave line capacitively coupled to the qubit is used
to inject individual photons into the qubit. A second capacitor between the qubit and resonator couples these two quantum
systems, with the resonant interaction controlled by tuning the qubit via a flux bias. The resonator can also be directly excited
using a second capacitively-coupled microwave line. b, Spectroscopy of qubit and resonator. The false colour image shows the
excited state probability Pe of the qubit as a function of driving frequency and flux bias in units of the flux quantum Φ0 = h/2e.
A dark line is seen when the frequency of the microwave drive matches an eigenfrequency of the qubit–resonator system. An
avoided crossing appears when the qubit is tuned through the resonator frequency νr, shown by the dashed horizontal line. The
magnitude of the splitting gives the coupling strength Ω/2π = 36MHz. The dashed vertical lines display the qubit operating
points for qubit–resonator coupling “on” and “off”.

between the qubit and resonator. On resonance, for
νr − νq ≪ Ω/2π, energy can be exchanged between
the two systems, and the state of the system can os-
cillate. The dynamics of energy exchange between the
resonator and qubit can be approximated within the
rotating-wave approximation by the Jaynes-Cummings
model Hamiltonian23,

Hint =
h̄Ω

2

(

aσ+ + a�σ−

)

, (1)

where a� and a are the photon creation and annihilation
operators for the resonator, and σ+ and σ− the qubit
raising and lowering operators. If the system is prepared
in the state |g〉|n〉 (qubit in ground state, n photons in the
resonator), the system will oscillate between this state
and the state |e〉|n − 1〉 at an angular frequency Ωn =√

nΩ. This
√

n dependence of the oscillation frequency
is the cavity quantum electrodynamic (cQED) equivalent
of stimulated emission: A photon is transferred between
resonator and qubit more rapidly when more photons
are present in the resonator. This increase in oscillation
frequency is the key to our measurement of the resonator
state.

In order to prepare the resonator in a Fock number
state, we begin with the qubit detuned from the resonator
and wait a time much larger than T r,q

1 , allowing both
qubit and resonator to relax to their ground states |g〉 and
|0〉. As shown in Fig. 2b, we then apply a Gaussian mi-
crowave pulse to the qubit at νq = νoff whose amplitude
and duration are calibrated to yield the |e〉 state. We ob-
tain ∼ 98% fidelity for this operation when implemented
with properly shaped pulses24. The qubit and resonator
are then tuned into resonance for a time π/Ω1 = π/Ω

so that the excitation in the qubit is swapped into the
resonator. The time and amplitude of the tuning pulse
is adjusted to yield the best state transfer, determined
by maximising the probability to find the qubit in the
|g〉 state directly after the pulse. A second microwave
pulse is then applied to the qubit to re-prepare it in the
|e〉 state. The qubit and resonator are brought back into

resonance, but for a reduced time π/Ω2 = π/
√

2Ω. After
this procedure is repeated n times, with an appropriate
reduction in the transfer time for each successive pho-
ton, we obtain a final state |g〉|n〉 that corresponds to an
n-photon Fock state in the resonator.

To analyse the resonator state, we tune the qubit and
resonator into resonance for an adjustable interaction
time τ and then read out the qubit state. The proba-
bility Pe(τ) for measuring the state |e〉 is obtained by
averaging 3,000 pulse sequences for each interaction time
τ .

The probability is expected to oscillate in the absence
of decoherence according to2

Pe(τ) =

∞
∑

n=1

Pn

1 − cos(Ωnτ)

2
, (2)

where Pn is the probability to initially have n photons
in the resonator. For a pure Fock state |n〉, Pe oscil-
lates at the frequency Ωn/2π. When several different |n〉
states are occupied, the time dependence of Pe(τ) be-
comes more complex due to the irrational ratios of the
oscillation frequencies Ωn. Note that although P0 does
not enter Eq. (2) directly, it is given by the time average
Pe =

∑

∞

n=1 Pn/2 = (1 − P0)/2.
The experimental time dependence of Pe(τ) is dis-
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FIG. 2: Preparation and measurement of Fock states. a, Quantum program and b, pulse sequence for the qubit microwave
signal and flux bias used to implement it. An excitation is created in the qubit with a resonant microwave pulse and then
transferred into the resonator by tuning the qubit into resonance for half an oscillation period. This sequence is repeated until
the desired photon number is reached, 3 in the example depicted here. The length of the tuning pulse decreases as 1/

√
n with

the number of photons n. To analyse the resonator state the qubit is tuned into resonance for a variable interaction time τ and
the qubit state is finally read out but applying a high flux bias pulse that makes the excited state tunnel into a state which
can be easily distinguished from the ground state. c, Plot of the probability of the excited qubit state Pe versus interaction
time τ for Fock states from n = 1 to 6. The time traces show sinusoidal oscillations with a period that shortens with increasing
photon number n. d, The false colour image shows the Fourier amplitude of the traces in panel c, showing a clear peak at the
n-photon oscillation frequency Ωn, indicating the high purity of the Fock states. The white line indicates the

√
n scaling of the

oscillation frequency expected from the Jaynes-Cummings model in Eq. (1). The Fourier transform was taken with a 100 ns
rectangular window, after subtracting the trace average.

played in Fig. 2c for Fock states from n = 1 to 6. The
time traces are approximately sinusoidal, indicating from
Eq. (2) that for each initial state, one photon number
dominates in the resonator state. The oscillations have
large amplitude up to n = 3. Both the amplitude and
the decay time decrease with increasing photon number n
because the lifetime of an n-photon Fock state decreases
as T r

1/n25 and the time needed to create such a state in-
creases as n. At n = 6, the lifetime of the Fock state and
the length of the preparation sequence are comparable.

The period of the oscillations clearly decreases with n.
The period of the |4〉 state, for example, is approximately
half the period of the |1〉 state, as expected from the

√
n

scaling of the oscillation frequency. A more quantitative
analysis of this dependence is shown in Fig. 2d, where the
Fourier transforms of the time traces are plotted: Each
displays a clear peak at a single frequency, which scales
approximately as

√
n. The actual frequency dependence

is slightly slower, an effect we attribute to higher energy
qubit states not included in the approximate Hamilto-
nian in Eq. (1). We note that a similar deviation has
been observed in the coupling between the internal and
translational degrees of freedom of harmonically-trapped
ions3.

We next highlight the non-classical features of the Fock
states by comparing them to coherent states, the quan-
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FIG. 3: Preparation and measurement of coherent states. a, Quantum program and b, pulse sequence of the resonator
microwave drive and the qubit bias used to implement it. A 100 ns FWHM Gaussian pulse with varying amplitude is directly
applied to the resonator and creates a coherent state. The qubit, in its ground state, is then brought into resonance for a
variable interaction time τ and measured, exactly as for the Fock state measurement. c, Plot of the excited-state probability
Pe versus interaction time τ for six different microwave amplitudes. The time traces are aperiodic because of the irrational
ratios in the oscillation times for the different photon number states |n〉 comprising the coherent state. d, Fourier transform
of the data in panel c, obtained with a 300 ns rectangular window function, after subtracting the averaged value. Dark colour
indicates high amplitude. The data have been smoothed in the drive-pulse direction with a σ = 0.2 µV Gaussian low-pass filter.
The Fourier spectrum reveals a sharp peak at each number-state frequency from n = 1 to 11. e, Evolution of the frequency of
Fourier peaks with photon number n, compared to the expected

√
n scaling. Deviations from theory are consistent with the

Fock-state data in Fig. 2d.

tum equivalent of classical oscillations that are created
when a harmonic oscillator is driven directly with a clas-
sical signal. To create such states we drive the resonator
with a Gaussian-shaped resonant microwave pulse with a
full-width at half maximum envelope (FWHM) of 100ns
(see Fig. 3b) and a range of amplitudes. The qubit is not
involved in this state preparation and stays in the ground
state. The readout of the resonator state is performed
using the qubit exactly as for the Fock-state analysis.

In a coherent state the amplitude and phase of the os-
cillation are well defined, but not the number of photons.
A coherent state |α〉 is a superposition of different Fock
states with the probability Pn for an n-photon Fock state

following the Poisson distribution

Pn(α) = |〈n|α〉|2 = αne−α/n! (3)

that depends on the average photon number α. As a re-
sult, the time dependence Pe(τ) in Fig. 3b is strikingly
different from that observed for the Fock states. At low
drive amplitude, the response Pe(τ) is periodic but has
low visibility since for α ≪ 1 all Pn above P1 are van-
ishingly small and P1 itself is small. At higher drive am-
plitudes, the time traces display a strong initial ringing
with fast collapse, followed by a revival—a characteris-
tic feature for a coherent state coupled to a two-level
system26,27. During the revival, the time dependence is
irregular because a coherent state is composed of differ-
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FIG. 4: Population analysis of the coherent state. The dots
represent the probabilities Pn for photon number n. They are
obtained from the Fourier amplitudes in figure 3d along the
dashed vertical lines, translated into photon number probabil-
ities via Eq. (2). Solid lines are the photon number probabil-
ities predicted by the Poisson distribution Eq. 3. They have
been scaled by the measurement visibilities shown in the inset.
The visibility for n = 0 photons is our measurement visibility,
the visibilities for higher n are smaller because decoherence
lowers the corresponding Fourier amplitudes, increasingly so
for higher n.

ent Fock states that oscillate with irrational frequency
ratios.

The decomposition of the coherent states into Fock
states becomes very clear in the Fourier transform of the
time traces, shown in Fig. 3d. The oscillation frequencies
coming from different photon numbers appear as sharp
vertical lines, indicating the underlying quantum nature
of the coherent states. With increasing pulse amplitude,
the lines corresponding to higher photon numbers be-
come more pronounced, and at any given pulse ampli-
tude there are several sequential photon numbers with
significant occupation probability. In Fig. 3e, the oscil-
lation frequencies corresponding to the maxima of these
lines are plotted versus the corresponding photon num-
ber. The photon number dependence matches that ob-
served previously in the analysis of the Fock states.

These data also shows good quantitative agreement
with the expected Poisson distribution. In Fig. 4 we
plot the photon number probabilities Pn obtained from
the Fourier amplitude along the dashed vertical lines in
Fig. 3d. Their dependence on drive amplitude agrees
very well with the Poisson distribution plotted as solid
lines. The Poisson distribution has been scaled by a visi-
bility for each photon number n. The visibility for n = 0
photons is the measurement visibility. The visibility for
higher photon numbers is lower because the Fourier am-
plitude is reduced by decoherence during the interaction
time of 300ns. We find that shorter interaction times
yield much higher visibilities, but at the cost of lower
frequency resolution in Fig. 3d and e.

We note that, unlike a pure Fock state, the photon
number distribution for a coherent state does not reveal
the entire quantum description of the resonator state
since a number state analysis cannot by itself distin-
guish a statistical mixture from a pure coherent state.
A full quantum analysis would involve a complete tomo-
graphic measurement, yielding, for example, the Wigner
function28. Given our high fidelity for the Fock state
measurements and excellent agreement for the coherent
state analysis, we believe that such an experiment should
be possible in the near future.

In conclusion, we have created multi-photon Fock
states for the first time in a solid-state system. The
highest photon number n = 6 we have achieved to date
is limited only by the coherence times of the qubit and
the resonator. In our experiment, the Fock states are
created on-demand in a completely deterministic fash-
ion. This opens the possibility of using complex bosonic
states in solid-state-based quantum algorithms, which to
date have only involved spin-like (fermionic) states.

Acknowledgments

Devices were made at the UCSB and Cornell Nanofab-
rication Facilities, a part of the NSF-funded National
Nanotechnology Infrastructure Network. This work was
supported by IARDA under grant W911NF-04-1-0204
and by the NSF under grant CCF-0507227.

∗ Present address: Ludwig-Maximilians-Universität,
Geschwister-Scholl-Platz 1, 80539 München, Germany

1 Cohen-Tannoudji, C., Diu, B. & Laloe, F. Quantum Me-

chanics, vol. 1 (Wiley & Sons, 2006).
2 Haroche, S. & Raimond, J.-M. Exploring the Quantum —

Atoms, Cavities and Photons (Oxford, 2006).
3 Meekhof, D. M., Monroe, C., King, B. E., Itano, W. M. &

Wineland, D. J. Generation of nonclassical motional states
of a trapped atom. Phys. Rev. Lett. 76, 1796–1799 (1996).

4 Cirac, J. I., Blatt, R., Parkins, A. S. & Zoller, P. Prepa-
ration of Fock states by observation of quantum jumps in
an ion trap. Phys. Rev. Lett. 70, 762–765 (1993).

5 Varcoe, B. T. H., Brattke, S., Weidinger, M. & Walther,
H. Preparing pure photon number states of the radiation
field. Nature 403, 743–746 (2000).

6 Bertet, P. et al. Generating and probing a two-photon
Fock state with a single atom in a cavity. Phys. Rev. Lett.

88, 143601 (2002).
7 Waks, E., Dimanti, E. & Yamamoto, Y. Generation of

photon number states. New J. Phys. 8, 4 (2006).
8 Devoret, M. & Martinis, J. M. Implementing qubits with

superconducting integrated circuits. Quantum Inf. Pro-

cess. 3, 163–203 (2004).
9 Guerlin, C. et al. Progressive field-state collapse and quan-



6

tum non-demolition photon counting. Nature 448, 889–
893 (2007).

10 Wallraff, A. et al. Strong coupling of a single photon to
a superconducting qubit using circuit quantum electrody-
namics. Nature 431, 162–167 (2004).

11 Johansson, J. et al. Vaccum Rabi oscillatoins in a macro-
scopic superconducnting qubit LC oscillator system. Phys.

Rev. Lett. 96, 127006 (2006).
12 Houck, A. A. et al. Generating single microwave photons

in a circuit. Nature 449, 328–331 (2007).
13 Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coher-

ent quantum state storage and transfer between two phase
qubits via a resonant cavity. Nature 449, 438–442 (2007).

14 Majer, J. et al. Coupling superconducting qubits via a
cavity bus. Nature 449, 443–447 (2007).

15 Schuster, D. I. et al. Resolving photon number states in a
superconducting circuit. Nature 445, 515–518 (2007).

16 Astafiev, O. et al. Single artificial-atom lasing. Nature

449, 588–590 (2007).
17 Liu, Y.-X., Wei, L. F. & Nori, F. Generation of nonclassical

photon states using a superconducting qubit in a microcav-
ity. Europhys. Lett. 67, 941–947 (2004).

18 Steffen, M. et al. State tomography of capacitively shunted
phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502
(2006).

19 Neeley, M. et al. Transformed dissipation in superconduct-
ing quantum circuits. arXiv:0801.2994 (2008).

20 Neeley, M. et al. Process tomography of quantum memory

in a Josephson phase qubit coupled to a two-level state
(2008). To be published in Nature Physics.

21 Devoret, M. H., Esteve, D., Martinis, J. M. & Urbina,
C. Effect of an adjustable admittance on the macroscopic
energy levels of a current biased Josephson junction. Phys.

Scr. T25, 118–121 (1989).
22 Devoret, M. H. et al. Macroscopic quantum effects in

the current-biased Josephson junction. In Kagan, Y. &
Leggett, A. J. (eds.) Quantum Tunnelling in Condensed

Media, chap. 6, 337–338 (Elsevier, 1992).
23 Jaynes, E. & Cummings, F. Comparison of quantum

and semiclassical radiation theories with application to the
beam maser. Proc. IEEE 51, 89–109 (1963).

24 Lucero, E. et al. High-fidelity gates in a Josephson qubit.
arXiv.org:0802.0903 (2008).

25 Lu, N. Effects of dissipation on photon statistics and the
lifetime of a pure number state. Phys. Rev. A 40, 1707–
1708 (1989).

26 Faist, A., Geneux, E., Meystre, P. & Quattropani, P. Co-
herent radiation in interaction with two-level system. Helv.

Phys. Acta 45, 956 (1972).
27 Eberly, J. H., Narozhny, N. B. & Sanchez-Mondragon, J. J.

Periodic spontaneous collapse and revival in a simple quan-
tum model. Phys. Rev. Lett. 44, 1323–1326 (1980).

28 Leibfried, D. et al. Experimental determination of the mo-
tional quantum state of a trapped atom. Phys. Rev. Lett.

77, 4281–4285 (1996).


