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The superposition principle is a fundamental tenet of quantum mechanics: The quantum

state of a physical system can simultaneously include measurably different physical states,

thus allowing a quantum system to be “in two places at the same time.” The preparation

of such superposed states, and their subsequent use, is the basis for quantum computation

and simulation1. Creating these complex superpositions in harmonic systems, such as the

motional state of trapped ions2, microwave resonators3–5 or optical cavities6, has presented

a significant challenge, because these superpositions cannot be obtained with classical con-

trol signals. Here we demonstrate the preparation and measurement of arbitrary quantum

states in an electromagnetic resonator, superposing states with different numbers of photons

in a completely controlled and deterministic manner. We synthesise the states using a super-

conducting phase qubit to phase-coherently pump photons into the resonator, employing an

algorithm7 that generalises our previously-demonstrated method of generating photon num-

ber (Fock) states in a resonator8. We completely characterise the resonator quantum state

using Wigner tomography, equivalent to measuring the resonator’s full density matrix.

The quantum state of a resonator is extraordinarily rich, with infinitely many energy levels,
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of which each can have a non-zero amplitude. However, this richness is difficult to access when

driving a resonator with a classical signal, as the two adjustable parameters of an on-resonant

drive, the amplitude and the phase, give very limited control. Creating an arbitrary quantum state

instead requires a non-linear element and a control scheme with many parameters. Here we demon-

strate quantum state generation in a resonator by interposing a highly non-linear Josephson phase

qubit9 between a superconducting resonator and a classical signal. A qubit4, 5, 10–14 has two quan-

tum degrees of freedom, the relative amplitude and phase of its ground |g〉 and excited |e〉 energy

eigenstates. This simplicity allows full quantum control of a qubit with a classical signal15. By

following a sequence of steps developed for trapped ions2, 7 (and later adapted to charge qubits16),

where each step involves creating a particular qubit state and then having the qubit interact with

the resonator for a controlled time, we synthesise arbitrary states in the resonator. The prepara-

tion is deterministic, unlike methods involving probabilistic projective measurements17. After the

preparation, we analyse the resonator state using Wigner tomography18–22, mapping out the Wigner

quasi-probability distribution23, 24, from which we extract the resonator’s full density matrix.

The quantum circuit we used is shown in Fig. 1a. The phase qubit is capacitively coupled to

a superconducting coplanar waveguide resonator, and the circuit includes control lines for the qubit

and resonator, and a qubit measurement circuit described elsewhere25. This circuit is similar to that

used previously to generate Fock states in a resonator8; here, however, most of the superconducting

wiring is made of rhenium in place of aluminium, and we removed unnecessary dielectric, reducing

dissipative elements in the circuit.
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The qubit frequency ωq/2π can be externally adjusted, while the resonator frequency

ωr/2π = 6.570 GHz is fixed. This allows us to describe the system with a Hamiltonian in the

resonator rotating frame, so that the resonator states have zero frequency:

H

~
= ∆(t)σ+σ− +

(
Ω

2
σ+a +

Ωq(t)

2
σ+ +

Ωr(t)

2
a†

)
+ h.c. (1)

Here σ+ and σ− (a† and a) are the qubit (resonator) raising and lowering operators, and h.c. is the

Hermitian conjugate of the terms in parentheses. The first term is the qubit energy, which appears

as the qubit–resonator de-tuning ∆(t) = ωq(t) − ωr. The first term in the parentheses gives the

qubit-resonator interaction, proportional to the fixed interaction strength Ω/2π = 19 MHz, while

the second and third terms give the effect of the external microwave drive signals applied to the

qubit and resonator; these parameters Ωq(t) and Ωr(t) are complex to account for amplitude and

phase. All control signals in Eq. (1) vary on a ∼ 2 ns time scale, long compared to 2π/ωr, so

counter-rotating terms in Eq. (1) are neglected.

Although the coupling Ω is fixed, we control the qubit-resonator interaction by adjusting the

qubit frequency between two operating points, one with qubit and resonator exactly on resonance

(∆on = 0), the other with the qubit well off-resonance (|∆off | À Ω). On resonance, the coupling

will produce an oscillation where a single photon transfers between qubit and resonator with unit

probability, alternating between states with e.g. the qubit in its ground state with n photons in

the resonator, |g〉 ⊗ |n〉 = |g, n〉, and the qubit in its excited state with n − 1 photons in the

resonator, |e, n − 1〉; this occurs at the n-photon “Rabi-swap” frequency
√

nΩ. Off resonance,
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the system oscillates at a higher frequency
√

nΩ2 + ∆2 but with reduced |e, n − 1〉 probability

nΩ2/(nΩ2 + ∆2) < 1. This de-tuning dependence is shown in Fig. 1 for n = 1 photon and

small de-tunings |∆| . Ω. At our typical off-resonance operating point ∆off ≈ −25Ω, the photon

transfer probability is only 0.0016 n, so the coupling is essentially turned off.

We determine from Fig. 1 the flux bias for on-resonance tuning (∆ = 0) and the one-photon

swap time. Using these parameters, we can pump photons one at a time into the resonator by

repeatedly exciting the de-tuned qubit from |g〉 to |e〉 using a qubit microwave π-pulse, followed

by a controlled-time, on-resonance photon swap8, where we scale the swap time for the n-th photon

by 1/
√

n. Precise scaling of this swap time is crucial for proper control, and was verified for up to

15 photons (see Supplementary Information).

Our goal is to synthesise arbitrary N -photon states in the resonator with the qubit in its

ground state, disentangled from the resonator. Our target state for the coupled system is

|ψ〉 = |g〉 ⊗
N∑

n=0

cn|n〉 (2)

with complex amplitude cn for the n-th Fock state. Law and Eberly7 showed that these states can

be generated by sequentially exciting the qubit into the proper superposition of |g〉 and |e〉, and then

performing a partial transfer to the resonator. As illustrated in Fig. 2, and detailed in Table 1, a

sequence generating the desired state can be found by solving the time-reversed problem: Starting

with the desired final state, we first transfer the amplitude of the highest occupied resonator Fock

state to the qubit, then remove the excitation from the subsequently de-tuned qubit using a classical

microwave signal, and repeat until the ground state |g, 0〉 is reached. The actual control signals are
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sequenced in the normal (un-reversed) order to generate the desired final state from the initial

ground state. We note that the Law and Eberly protocol7 assumes an adjustable phase for the

qubit-resonator coupling Ω, which Eq. (1) does not allow; instead, we correct the relative phases

of |g, n〉 and |e, n− 1〉 by adjusting the time tn over which the qubit and resonator are de-tuned.

To calibrate the actual microwave signals needed to implement this sequence, it is impractical

to individually tune each sequence step, because the intermediate states are quite complex and

measuring them time-consuming. Instead we perform careful calibrations of the experimental

system independent of the particular state preparation (see Supplementary Information).

An initial check of the outcome of the preparation is to determine if the qubit ends up in

the ground state |g〉, as desired. We find that this holds with a probability typically greater than

80 %, the remaining 20 % being compatible with decoherence during the preparation sequence (see

Supplementary Information).

With the qubit near its ground state and not entangled with the resonator, we can use the

qubit to measure the resonator state. By bringing the qubit and resonator into resonance for a

variable time τ and subsequently measuring the probability Pe for the qubit excited state, we can

determine8 the n-photon probabilities Pn = |cn|2, correcting for measurement fidelity and initial

qubit state probability (see Supplementary Information). In Fig. 2c we compare Pe(τ) for the

experimentally prepared states |ψa〉 = |1〉 + |3〉 and |ψb〉 = |1〉 + i|3〉, showing the expected

superposed oscillations corresponding to the |1〉 and |3〉 Fock states. This measurement however

only yields the probabilities Pn: The relative phases of the Fock states are lost, so the states |ψa〉
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and |ψb〉 cannot be distinguished.

To measure the complex amplitudes cn, we need to probe the interference between the super-

posed Fock states. This may be done using Wigner tomography19, 21, 24, which maps out the Wigner

quasi-probability distribution W (α) as a function of the phase space amplitude α of the resonator

(see Supplementary Information). Wigner tomography is performed by following the functional

definition

W (α) =
2

π
〈ψ|D†(−α) Π D(−α)|ψ〉. (3)

The resonator state |ψ〉 is first displaced by the operator D(−α), implemented with a microwave

drive pulse −α = (1/2)
∫

Ωr(t)dt. The photon number probabilities Pn are then measured and

finally the parity 〈Π〉 =
∑

n(−1)nPn evaluated. The corresponding pulse sequence is depicted in

Fig. 2b.

Measured and calculated Wigner functions are shown in Fig. 3 for the resonator states |0〉+

|N〉, with N = 1 to 5. The structures of the Wigner functions match well, including fine details,

indicating that the superposed states are created and measured accurately. The density matrices for

each state are also calculated (see Supplementary Information) and are as expected. The Wigner

function of non-classical states has been measured previously, either calculated via an inverse

Radon transform18, 26, 27, or measured at enough points to fit the density matrix3, 28, from which the

Wigner function is reconstructed. The high resolution direct mapping of the Wigner function used

here is an important verification of our state preparation. The good agreement in shape shows that

very pure superpositions of |0〉 and |N〉 have been created. Slight deviations in amplitude can be
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due to small errors in the read-out process, the relative amplitudes of the |0〉 and |N〉 states, or

statistical mixtures with other Fock states.

The data in Fig. 3 do not demonstrate phase control between Fock states, as a change in the

relative phase of a two-state superposition only rotates the Wigner function. The phase accuracy

may be robustly demonstrated by preparing states with a superposition of three Fock states, as

changing the phase of one state then changes the shape of the Wigner function. Figure 4 shows

Wigner tomography for a superposition of the |0〉, |3〉 and |6〉 Fock states, where the phase of the

|3〉 state has been changed in each of the five panels. The shape of the calculated and measured

Wigner functions again agree, including small details, indicating that precise phase control has

been achieved. The calculated and measured density matrices also match well.

In conclusion, we have generated and measured arbitrary superpositions of resonator quan-

tum states. State preparation is deterministic and “on-demand”, requiring no projective measure-

ments, and limited to about ten photons, mainly by decoherence29. The accuracy of the prepared

states demonstrates that a qubit, when controlled with high fidelity, is ideally suited for synthesis-

ing and measuring arbitrary quantum states of light.
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3. Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots of their

decoherence. Nature 455, 510–514 (2008).

4. Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331

(2007).
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|ψ〉 |g〉(0.707|1〉+ 0.707i|3〉)

S3 τ3Ω 1.81

Q3 q3 3.14

|ψ2〉 |g〉(−0.557i|0〉+ 0.707|2〉) + 0.436|e〉|1〉

Z2 t2∆ 4.71

S2 τ2Ω 1.44

Q2 q2 −2.09− 2.34i

|ψ1〉 (0.553− 0.62i)|g〉|1〉 − (0.371 + 0.416i)|e〉|0〉

Z1 t1∆ 3.26

S1 τ1Ω 1.96

Q1 q1 −2.71− 1.59i

|ψ0〉 (0.197− 0.98i)|g〉|0〉

Table 1: Sequence of operations to generate the resonator state |ψ〉 = |1〉+ i|3〉, used for

the measurements described in Fig. 2. The sequence is computed top to bottom, but ap-

plied bottom to top. The area and phase for the n-th qubit drive Qn is qn =
∫

Ωq(t)e
i∆off tdt

(t = 0 being the time when the qubit is tuned into resonance directly after the step Qn),

the time on resonance for the qubit-resonator swap operation Sn is τn, and the time off

resonance (mod 2π/∆) for the phase rotation Zn is tn. We note that the initial state |ψ0〉

differs by an overall phase factor from the ground state |g〉|0〉, but this is not detectable.
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Figure 1 Circuit diagram and one photon Rabi-swap oscillations between qubit and

resonator. a, The qubit (black) is made from a Josephson junction (cross) and a capacitor,

biased through a shunting inductor. The qubit de-tuning ∆ is adjusted through a flux

bias coil, and the qubit state is read out by a three-Josephson junction superconducting

quantum interference device (SQUID). The coplanar waveguide resonator (blue) has fixed

capacitive coupling Ω to the qubit, and small capacitors couple external microwave signals

Ωq and Ωr to the qubit and resonator. The device was measured in a dilution refrigerator

at 25 mK. The qubit relaxation and dephasing times were T1,q ≈ 650 ns and T2,q ≈ 150 ns

and the resonator relaxation time was T1,r ≈ 3.5 µs with no measurable dephasing. b,

Schematic of Rabi-swap pulse sequence. The qubit starts in its ground state, de-tuned

at its typical off-resonance point by ∆off/2π = −463 MHz ≈ −25 Ω/2π from the resonator.

A resonant qubit microwave π-pulse brings the qubit to its excited state |e〉, injecting one

quantum of energy into the system. A flux bias pulse reduces the qubit de-tuning ∆ from

the resonator for a controlled time τ , and the qubit state is then measured with a current

pulse. c, Excited state probability Pe versus de-tuning ∆ and interaction time τ . Pe is

obtained by averaging 600 repetitions. d, Fourier transform of c, showing the expected

hyperbolic relation between de-tuning ∆ and swap frequency
√

Ω2 + ∆2/2π (dotted line),

and the expected fall-off in probability (colour scale). Resonance ∆ = 0 corresponds to

lowest swap frequency and maximum probability amplitude.

Figure 2 Sequence to synthesise an arbitrary resonator state. a, Qubit-resonator en-

ergy ladder. Levels are depicted by dotted and solid lines when tuned (∆ = 0) and
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de-tuned, respectively. Three types of operations are used in state preparation: Qubit

drive operations Qn, indicated by undulating lines; qubit–resonator swap operations Sn,

indicated by straight horizontal lines; and phase rotations of the qubit state Zn, indicated

by circles. Each operation affects all the levels in the diagram. b, Microwave pulse se-

quence. The sequence is computed in reverse order by emptying energy levels from top

to bottom. To descend the first step of the ladder in a, a swap operation SN transfers

the highest occupied resonator state to the qubit, |g, N〉 → |e, N−1〉. This operation also

performs incomplete transfers on all the lower-lying states, as do the succeeding steps.

A qubit microwave drive QN then transfers all the population of |e, N−1〉 to |g, N−1〉 (in

general this step is not a π pulse as |g, N−1〉 is not completely emptied by pulse SN ).

For the second step down the ladder, a rotation ZN−1 first adjusts the phase of the qubit

excited state |e〉 relative to the ground state |g〉. The succeeding swap pulse SN−1 can then

move the entire population of |g, N−1〉 to |e, N − 2〉. This sequence is repeated N times

until the ground state |g, 0〉 is reached. Steps Qn are performed with resonant qubit mi-

crowave pulses of amplitude qn, swaps Sn achieved by bringing the qubit and resonator on

resonance for time τn, and phase rotations Zn completed by adjusting the de-tuning time

tn; see Table 1 for a detailed example. After state preparation, tomographic read-out is

performed: A displacement D(−α) of the resonator is performed by a microwave pulse R

to the resonator, then the resonator state is probed by a qubit-resonator swap S for a vari-

able interaction time τ , and finally the qubit state measured by the measurement pulse M.

c, Plot of the qubit excited state probability Pe versus interaction time τ for the resonator
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states |ψa〉 = |1〉 + |3〉 (blue) and |ψb〉 = |1〉 + i|3〉 (red), taken with α = 0. We clearly

observe oscillations at the |1〉 and |3〉 Fock state frequencies. Nearly identical traces for

|ψa〉 and |ψb〉 indicate the same photon number probability distribution, as expected. d,

Photon number distributions for |ψa〉 and |ψb〉. Both states are equal superpositions of |1〉

and |3〉 but the phase information that distinguishes the two states is lost.

Figure 3 Wigner tomography of superpositions of resonator Fock states |0〉 + |N〉. The

top row displays the theoretical form of the Wigner function W (α) as a function of the com-

plex resonator amplitude α in photon number units, for states N = 1 to 5. The measured

Wigner functions are shown in the second row, with colour scale bar on the far right. Neg-

ative quasi-probabilities are clearly measured. The experimental Wigner functions have

been rotated to match theory, compensating for a phase delay between the qubit and res-

onator microwave lines; the measured area is bounded by a dotted white line. The third

row displays the calculated (grey) and measured (black) values for the resonator density

matrix ρ, projected onto the number states ρmn = 〈m|ρ|n〉. The magnitude and phase of

ρmn is represented by the length and direction of an arrow in the complex plane (for scale,

see legend on right). The fidelities F =
√
〈ψ|ρ|ψ〉 between the desired states |ψ〉 and the

measured density matrices ρ are, from left to right, F = 0.92, 0.89, 0.88, 0.94, and 0.91.

Each of the 51 by 51 pixels (61 by 61 for N = 5) in the Wigner function represents a local

measurement. The value of W (α) is calculated at each pixel from 50 (41 for N = 4 and

5) interaction times τ , each repeated 900 times to give Pe(τ). This direct mapping of the

Wigner function takes ∼ 108 measurements or ∼ 5 hours.
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Figure 4 Wigner tomography of the states |0〉 + eikπ/8|3〉 + |6〉 for five values of phase

k = 0 to 4. The first row is calculated, whereas the second row shows measurements.

The third row displays the calculated (grey) and measured (black) values for the density

matrix obtained from the Wigner functions, displayed as for Fig. 3. The fidelities between

the expected states and the measured density matrices are, from left to right, F = 0.89,

0.91, 0.91, 0.91, and 0.91.
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