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Quantum fluctuations of the vacuum are both a surprising and fun-

damental phenomenon of nature. Understood as virtual photons

flitting in and out of existence, they still have a very real impact,

e.g., in the Casimir effects and the lifetimes of atoms. Engineering

vacuum fluctuations is therefore becoming increasingly important to

emerging technologies. Here, we shape vacuum fluctuations using

a ”mirror” , creating regions in space where they are suppressed.

As we then effectively move an artificial atom in and out of these

regions, measuring the atomic lifetime tells us the strength of the

fluctuations. The weakest fluctuation strength we observe is 0.02

quanta, a factor of 50 below what would be expected without the
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mirror, demonstrating that we can hide the atom from the vacuum.

From the earliest days of exploration of quantum electrodynamics, it was thought that

quantum fluctuations of the vacuum could have important physical effects, for instance,

determining the lifetimes of excited states of atoms (1), giving rise to the Lamb shift (2,3),

and modifying the gyromagnetic ratio of the electron (4,5). This invocation of the vacuum

to explain measurable physical effects was controversial. In the intervening years, however,

the idea that the vacuum itself is physical gained increasing credence with a growing

number of striking vacuum phenomena predicted such as Hawking radiation (6), the

Unruh effect (7) and the Casimir effects (8,9). In recent years, these vacuum effects have

even started to have technological impacts, contributing to stiction in nanomechanics (10)

and limiting the coherence times of superconducting qubits (11, 12). This has led to an

increasing interest in engineering the vacuum. In this work, we demonstrate engineering

of the mode structure of the quantum vacuum. We show that we can shape the modes of

the vacuum itself using a ”mirror”. We use a superconducting qubit as a sensitive probe

of the vacuum modes. Further, we show that we can hide the qubit from these quantum

vacuum fluctuations using this technique.

The effect of a mirror on the radiative decay of natural atoms has been studied pre-

viously (13–17). While achieving impressive results, the work was limited by the small

solid angle of the atomic radiation that could be made to interact with the mirror. In

our work, this problem is solved by strongly coupling our artificial atom, the qubit, to a

one-dimensional superconducting waveguide that collects > 99% of the radiation from the

atom. In addition, we eliminate any motional noise, as the qubit and mirror are fixed in

place. This allows us to observe a modulation of the excited-state lifetime by a factor of
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9.8. In contrast to the Purcell effect (18–21), where a cavity is used to modify the lifetime,

in this work we have a fully open system with a continuous spectrum of modes. Recent

theoretical work has also suggested other novel ways to suppress the effects of vacuum

fluctuations on an artificial atom (22).

In this article, following the new paradigm of waveguide quantum electrodynamics

(wQED) (23–33), we study an artificial atom, a superconducting transmon (34), embed-

ded at a distance L from the end of a Z0 = 50Ω transmission line, where the center

conductor is short-circuited to the ground plane. This imposes a reflecting boundary con-

dition on the electromagnetic (EM) field in the line, creating the equivalent of a mirror.

(A micrograph of the device is shown in Fig. 1a.) In particular, interference between an

incoming field and the field reflected by the mirror creates a standing-wave pattern, with a

voltage node at the mirror plane and a voltage amplitude that varies periodically along the

line (See Fig. 1b). Crucially, quantum electrodynamics tells us that this mode structure

is imposed not only on any classical field in the line, but also on the vacuum fluctuations

of the field. While the structure of the vacuum fluctuations cannot be directly measured

with a classical probe, like a voltmeter, they can be measured by observing the effect of

the vacuum fluctuations on a quantum probe, such as an atom or qubit. The decay rate

of an excited state, |1〉, with a transition frequency ωa to the ground state, |0〉, is propor-

tional to the strength (spectral density) of EM fluctuations near the frequency ωa that

are present in the atom’s environment. If the atom is in an environment at a temperature

T � ~ωa/kB, the excited state lifetime of the atom will be limited by vacuum fluctua-

tions because (classical) thermal fluctuations of the field are exponentially suppressed at

these temperatures. Therefore, measuring the lifetime of the atom, which can be done

through conventional spectroscopy, probes the local strength of vacuum fluctuations at

the transition frequency. In effect, the atom acts as a quantum spectrum analyzer.
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To probe the spatial structure of the modes, we need to change the effective distance

between the atom and mirror. While it is difficult to change the physical distance, L,

in situ, the relevant quantity is in fact the normalized distance, L/λ, where λ is the

transition wavelength of the atom. We can easily change λ by tuning ωa with an external

magnetic flux perpendicular to the transmon. As illustrated in Fig. 1b, tuning λ allows

us to effectively move the qubit from a node to an antinode of the resonant vacuum

fluctuations. By measuring the qubit lifetime as a function of frequency, we can therefore

map out the frequency-dependent spatial structure of the vacuum.

In detail, the transition wavelength of the transmon can be expressed as (34)

λ (Φ) = 2πv/ωa (Φ) ' hv/
(√

8ECEJ(Φ)− EC
)
, (1)

where h is Planck’s constant, v = c/
√
ε is the velocity of the wave propagating along the

transmission line, ε is the effective dielectric constant of the transmission line, and c is

the velocity of light in vacuum. EC and EJ(Φ) are the charging and Josephson energies of

the transmon, respectively, and EJ(Φ) = EJ,0 |cos(πΦ/Φ0)|, where EJ,0 is the maximum

Josephson energy, Φ is the magnetic flux and Φ0 = h/(2e) is the flux quantum.

We characterize the system spectroscopically by sending a coherent microwave field

toward the transmon and measuring the reflection coefficient, rp = 〈Vr〉 / 〈Vin〉, where 〈Vr〉

(〈Vin〉) is the time-averaged reflected (incident) field. Note that rp is a phase-sensitive

average and, therefore, only captures the coherently scattered signal. As demonstrated

in previous experiments, all the fields are reflected either coherently or incoherently and

losses are neglected in the rest of the paper (23,28).

Consider the situation depicted in Fig. 1. The coherent input Vin interacts with the

atom and then continues moving to the left. The scattered field from the atom, propor-

tional to 〈σ−〉 (the expectation value of the atomic lowering operator), is equally divided
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between left- and right-moving states. Vin and the left-moving field from the atom are

then reflected at the mirror and return to interact with the atom once more. Since the

roundtrip time is small compared to the timescale of the atomic evolution, we only need

to take into account the phase factor

θ(Φ) = 2× [2πL/λ(Φ)] + π, (2)

which the field acquires during the roundtrip. Here, the added π phase shift is due to the

reflection at the mirror. Summing up all the fields to get the output, we arrive at the

reflection coefficient (27,35)

rp = −[1 + 2Γ1 〈σ−〉 /Ωp]ei4πL/λ, (3)

where 1/Γ1 is the excited-state lifetime of the atom which is dominated by the coupling

to the transmission line via the coupling capacitor Cc. Ωp is the Rabi frequency, which

is proportional to the probe amplitude Vin. The phase term ei4πL/λ in Eq. (3) does not

affect the dynamics and is removed. However, the phase factor θ is still present in the

definitions of Γ1 and Ωp. The dynamics of the scattered field is governed by 〈σ−〉, which

is found by solving the Bloch equations

∂t 〈σ±〉 = (±iδωp − γ) 〈σ±〉+Ωp 〈σz〉 /2, (4)

∂t 〈σz〉 = −Γ1 (1 + 〈σz〉)−Ωp (〈σ+〉+ 〈σ−〉) , (5)

where σ+ is the atomic raising operator, σz is the third Pauli spin operator, γ = Γ1/2+Γφ

is the decoherence rate, with Γφ being the pure dephasing rate, and δωp = ωa − ωp is the

detuning between ωa and the probe frequency, ωp.

The inverse lifetime, Γ1, is the quantity of greatest interest to us, as it is proportional

to the strength of vacuum fluctuations. The dephasing rate, Γφ, is instead related to

low-frequency fluctuations in the environment (36).
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In Fig. 2a, we plot |rp| as a function of ωa and Φ for a weak probe, i.e., Ωp � γ.

We see a response from the atom for ωa/2π ranging from 4.8 GHz to 5.93 GHz. The

atomic response becomes weaker and weaker when ωa/2π approaches the region around

5.4 GHz, and eventually the response vanishes, because at this frequency the qubit sits at

the node of the probe voltage. In this way, we see that we can hide the atom from the

classical probe field even though it sits fully exposed in an open transmission line. This

phenomenon can be described as an interference between the atom and its mirror image.

To understand the effects of vacuum fluctuations, we must look in more detail at the

spectroscopic line shape of the atom. In Fig. 2b, we plot |rp| as a function of ωp for two

flux biases. These data are line cuts in Fig. 2a, indicated by the blue and red arrows. In

the steady state, where ∂t 〈σi〉 = 0, i = ±, z, Eqs. (3)-(5) give for a weak probe

rp = −1 + Γ1

γ + iδωp
. (6)

The solid curves in Fig. 2b are fits to the data using Eq. (6). The width of the peak

gives us γ directly. The depth of the dip gives the ratio Γ1/γ, allowing us to extract Γ1

directly. We note that Γ1 changes by a factor of 9.8 between the two different flux bias

points, indicating a large modulation in the strength of vacuum fluctuations. In the region

around 5.4 GHz, Γ1 is even smaller and approaches zero. However, since the coupling is

so small, we can no longer measure it. In this region, as expected from Eq. (6), |rp| ' 1

and the atom, in concert with its mirror image, hides from the field.

In Fig. 2c, we use Eq. (6) to extract Γ1(Φ), Γφ(Φ), and ωa(Φ) for each flux bias in

Fig. 2a. In the shaded blue region around ωa/2π = 5.4 GHz, the qubit is hidden and we

cannot extract any data. The inverse lifetime varies as a function of Φ according to (35)

Γ1(Φ) = 2Γ1,b cos2[θ(Φ)/2], (7)

where Γ1,b is the inverse of the bare atomic lifetime. This shows how we can tune the
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inverse lifetime between 0 and 2Γ1,b (corresponding to λ = 2L and λ = 4L, respectively) by

tuning the flux. The factor of two comes from the enhancement of the vacuum fluctuations,

due to constructive interference between the atom and its mirror image, which is not

present in the absence of the mirror. Recently, a similar interference effect has also been

observed with two artificial atoms in an open line (29).

In Table 1, we summarize the parameters extracted from the data in Fig. 2. The value

of Γ1,b is consistent with what we measured in a separate experiment with a very similar

transmon at the end of an open-circuited transmission line (antinode) (27), where we

extracted Γ1 = 63 MHz ∼ 2Γ1,b.

EJ,0/h [GHz] EC/h [GHz] ωa(0)/2π [GHz] Γ1,b/2π [MHz] ε L [mm]
13.1 0.38 5.93 33 6.25 11

Table 1: Parameters of the device.

The inverse lifetime, Γ1, is proportional to the strength of EM fluctuations that are

present in the atom’s environment near the frequency ωa. The strength is quantified

in terms of the spectral density of the fluctuations, S(ωa). We can relate Γ1 to S(ωa)

through the atom-field coupling constant, k, using the relation Γ1 = k2S(ωa) (37). To

extract S(ωa) experimentally, we must therefore measure k in our system. We can do this

using the nonlinear scattering properties of our artificial atom. In Fig. 3, we plot |rp| as a

function of the incident resonant power for the flux bias Φ ' 0 (indicated by green arrows

in Fig. 2a). This nonlinear power dependence allows us to extract k. In particular, for a

resonant field (δωp = 0), Eqs. (3)-(5) give

rp = −1 + Γ 2
1

Γ1γ +Ω2
p

. (8)

For low power (Ωp � γ), we expect rp to approach the asymptotic (positive) value

determined by the ratio Γφ/Γ1 (see above). As the power increases, rp decreases, due to
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increased incoherent scattering, until the coherently reflected signal is zero (28). At this

point, all of the incoming probe is absorbed by the atom and reemitted spontaneously

with a random phase. Beyond this point, rp becomes negative and its magnitude increases

again as the atom saturates and cannot absorb all of the incoming photons. Using the

extracted values for Γ1 and Γφ at the green dashed line in Fig. 2c, Eq. (8) gives the

solid curves in Fig. 3. Fitting these curves allows us to calibrate the atom-field coupling

constant k through the relation Ωp = k
√
P . Through this procedure, we extract ke '

6.1× 1015 Hz/
√

W, where the subscript “e” denotes the experimental value. However, the

absolute value of the incident power P at the sample has an uncertainty of a few dB,

contributing a significant uncertainty to this value.

To reduce the uncertainty, we can alternatively calculate k from its definition in terms

of circuit parameters (38), k = eβ
√
Z0(EJ/2EC)1/4/~. EJ and EC are directly measured

through the spectroscopic data in Fig. 2 (see table 1). Z0 = 50 Ω is well determined by

the geometry of the transmission line. We then use Microwave Office, a commercial EM

simulation software package, to evaluate the coupling coefficient β = Cc/CΣ ' 0.4. Note

the we use the simulation to evaluate only the capacitance ratio which is more accurate

than simulating absolute capacitances. Together with parameters in table 1, this gives

ks ' 8.8 × 1015 Hz/
√

W, where the subscript “s” denotes the simulated value. The ratio

of ks and ke is 1.4, which is reasonable for cryogenic microwave experiments. We use the

average between ks and ke and use the difference as the systematic error bar. This gives

km = (7.45± 1.35)× 1015 Hz/
√

W, where the subscript “m” denotes the mean value.

Using km and the extracted values of Γ1 in Fig. 2c, we plot the measured values of S

as a function of L/λ in Fig. 4. We plot S(ωa) in units of number of quanta by normalizing

it to ~ωa. For an atom in an open line with no mirror, we expect S = 1 quanta. The error

bars indicate the uncertainty in S arising from the uncertainty in km. From theory (39),
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we expect the spectral density to be

S(ωa) = 2~ωa cos2[θ(Φ)/2], (9)

which is shown by the solid black curve in Fig. 4. Fig. 4a is the magnification of the dashed

square region of Fig. 4b. In Fig. 4b, we show a wider range of normalized distance. We

see that the vacuum fluctuations at L/λ = 0.75 (antinode), L/λ = 0.625 (free space), and

L/λ = 0.5 (node) are 2~ωa, ~ωa and 0, respectively, as indicated by the purple arrows. We

see that the black curve falls inside the error bars, indicating a good agreement between

experiment and theory and demonstrating that the atomic lifetime is dominated by the

spatially-engineered vacuum fluctuations.

In conclusion, we have shown that we can shape the modes of the quantum vacuum

using a mirror. We have used an artificial atom placed in front of the mirror to measure

the strength of the quantum fluctuations of the vacuum. We demonstrated an in situ

modulation of the fluctuations by a factor of 9.8 by effectively moving the atom in and

out of a node of the fluctuations. The lower limit of the strength of vacuum fluctuations

we observe is 0.02 quanta, showing that we can effectively hide the atom from vacuum

fluctuations. This result suggests new directions for the engineering of the vacuum.

References

1. P. Dirac, Proc. Roy. Soc. A114, 243 (1927).

2. H. Bethe, Phys. Rev. 72, 339 (1947).

3. W. Lamb, R. Retherford, Phys. Rev. 72, 241 (1947).

4. J. Schwinger, Phys. Rev. 73, 416 (1948).

9



5. T. Welton, Phys. Rev. 74, 1157 (1948).

6. S. W. Hawking, Nature 248, 30 (1974).

7. W. G. Unruh, Phys. Rev. D 14, 870 (1976).

8. H. B. G. Casimir, Proc. K. Ned. Akad. Wet. B 51, 793 (1948).

9. G. T. Moore, J. Math. Phys. 11, 2679 (1970).

10. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, F. Capasso, Science 291,

1941 (2001).

11. A. A. Houck, et al., Phys. Rev. Lett. 101, 080502 (2008).

12. C. M. Wilson, et al., Nature 479, 376 (2011).

13. J. Eschner, C. Raab, F. Schmidt-Kaler, R. Blatt, Nature 413, 495 (2001).

14. U. Dorner, P. Zoller, Phys. Rev. A 66, 023816 (2002).

15. P. Bushev, et al., Phys. Rev. Lett. 92, 223602 (2004).

16. F. Dubin, et al., Phys. Rev. Lett. 98, 183003 (2007).

17. A. Glaetzle, K. Hammerer, A. Daley, R. Blatt, P. Zoller, Optics Communications

283, 758 (2010).

18. E. M. Purcell, Phys. Rev. 69, 681 (1946).

19. D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).

20. F. DeMartini, G. Innocenti, G. R. Jacobovitz, P. Mataloni, Phys. Rev. Lett. 59, 2955

(1987).

10



21. M. Lee, et al., Nature Communications 5, 3441 (2014).

22. A. F. Kockum, P. Delsing, G. Johansson, Phys. Rev. A 90, 013837 (2014).

23. O. Astafiev, et al., Science 327, 840 (2010).

24. A. A. Abdumalikov, et al., Phys. Rev. Lett. 104, 193601 (2010).

25. I.-C. Hoi, et al., Phys. Rev. Lett. 107, 073601 (2011).

26. I.-C. Hoi, et al., Phys. Rev. Lett. 108, 263601 (2012).

27. I.-C. Hoi, et al., Phys. Rev. Lett. 111, 053601 (2013).

28. I.-C. Hoi, et al., New J. Phys. 15, 025011 (2013).

29. A. F. van Loo, et al., Science 342, 1494 (2013).

30. H. Zheng, D. J. Gauthier, H. U. Baranger, Phys. Rev. Lett. 111, 090502 (2013).

31. D. E. Chang, A. S. Sorensen, E. A. Demler, M. D. Lukin, Nature Physics 3, 807

(2007).

32. J. T. Shen, S. H. Fan, Phys. Rev. Lett. 95, 213001 (2005).

33. K. Lalumiere, et al., Phys. Rev. A 88, 043806 (2013).

34. J. Koch, et al., Phys. Rev. A 76, 042319 (2007).

35. K. Koshino, Y. Nakamura, New J. Phys. 14, 043005 (2012).

36. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

37. G. Wendin, V. S. Shumeiko, Low Temp. Phys. 33, 724 (2007).

11



38. B. Peropadre, et al., New J. Phys. 15, 035009 (2013).

39. A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, R. J. Schoelkopf, Rev. Mod.

Phys. 82, 1155 (2010).

40. We acknowledge financial support from STINT, the Swedish Research Council, the

European Union represented by the ERC and the EU project PROMISCE, and

NSERC of Canada. We would also like to acknowledge J. Kimble, G. Milburn, T.

Stace, J. M. Martinis, C. P. Sun and H. Dong for fruitful discussions.

12



a)

    Vr

    Vin

320 um320 um

b)
L

    Vr

    Vin

Figure 1: An artificial atom in front of a mirror. a) A micrograph of the atom-mirror
system, a superconducting transmon embedded at a distance L from the end of a 1D
transmission line. (zoom in) The transmon. The atom size is small compared to the
wavelength of the microwave field. We characterize the system by sending in a coherent
probe field, Vin, at ωp ≈ 5 GHz and measuring the reflected field, Vr. Measurements are
done at T = 50 mK, where thermal excitations of the field are negligible. b) Cartoon of
the atom-mirror system. The blue and red curves show the mode structure of the voltage
along the transmission line at the atom frequency for L = λ/2 and L = 3λ/4, respectively.
By tuning λ of the two-level atom via an external magnetic flux, Φ, the coupling between
the field and the atom can be turned off when the atom sits at a node of the resonant EM
field (blue). The atom is maximally coupled at the antinode (red).
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Figure 2: Spectroscopic measurements of the excited-state lifetime. a) The reflection
coefficient |rp| as a function of ωp and Φ for a weak probe (Ωp � γ). Because the atomic
linewidth is much less than the tuning range, the qubit response appears as a narrow
black line against the white background, which corresponds to |rp| ≈ 1. As we tune Φ,
λ varies according to Eq. (1). When L ≈ λ/2, which corresponds to 5.4 GHz, the qubit
sits at the node of the field and, therefore, is hidden from the probe and no signal is
observed. b) |rp| as a function of ωp at two values of Φ, indicated by the blue and red
arrows in (a). The solid curves are theoretical fits using Eq. (6), from which we extract
Γ1, γ and ωa, where γ = Γ1/2 + Γφ. At the low temperatures of our experiment, the
inverse lifetime Γ1 is proportional to the strength of the vacuum fluctuations. We see Γ1
changing by a factor of 9.8 between these two flux biases, indicating a large modulation
in the amplitude of vacuum fluctuations, which is due to the frequency dependence of the
spatial mode structure. c) For each flux bias in (a), similar to the procedure in (b), we
extract Γ1(Φ) and Γφ(Φ), denoted by the red and purple markers, respectively. We plot
these rates as a function of the normalized distance, L/λ(Φ). The solid red curve is theory
based on Eq. (7). The red and blue dashed lines indicate the two cases displayed in (b).
The green arrow in (a) and the green dashed line in (c) indicate the flux bias point for
Fig. 3. The shaded blue region indicates where the response from the atom is too weak
to measure; this is where the atom is hidden from the vacuum fluctuations.
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p r 

[dBm]P

Figure 3: Calibrating the atom-field coupling. We measure the nonlinear scattering prop-
erties of the atom at Φ ' 0. The plot shows rp as a function of resonant incident power,
P . The real and imaginary response are shown in red and blue, respectively. The markers
are experimental data and the solid curves are a theoretical fit based on Eq. (8). We use
the parameters extracted independently in Fig. 2c (green arrow), leaving as the one free
parameter the atom-field coupling, k, defined through the relation Ωp = k

√
P . At weak

incident power, where Ωp � γ, the atom reflects mostly coherently. As the incident power
increases, |rp| decreases down to zero and then increases again. From Eq. (8), we see that

the zero occurs at Ωp =
√
Γ 2

1 − Γ1γ, where the atom scatters all of the field incoherently.
At high power, Ωp � γ, the atom is saturated by the incident field. Most of the field is
simply reflected by the mirror, resulting in rp approaching −1.
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Figure 4: The measured spectral density of the vacuum fluctuations S(ωa) (red markers) as
a function of L/λ. (The shaded blue region is the same as figure 2c.) S(ωa) is displayed
in units of number of quanta by normalizing it to ~ωa. In the absence of the mirror,
we expect S(ωa) = 1 with half a quanta coming from each side of the transmission
line. The error bars indicate the uncertainty of S arising from uncertainty in β and the
overall attenuation. The solid black curve is the theoretical prediction, without adjustable
parameters, according to Eqs. (9) normalized to ~ωa. We see that the prediction is inside
the error bars, indicating a good agreement between experiment and theory. The lower
limit of the observed spectral density is S = 0.02 quanta, indicated by the blue arrow
in (a), which is a factor of 50 below the value expected without the mirror. In (b), S
oscillates between 2~ωa and 0 as a function of L/λ. The purple arrows in (b) indicate the
vacuum fluctuation at L/λ = 0.75 (antinode), L/λ = 0.625 (free space) and L/λ = 0.5
(node), respectively. (a) is the magnification of the dashed square region of (b).
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