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Here we present theoretical and technical details on the design of the bandpass filter and mea-
surement resonators used in the experiment. We also describe the method used to measure the
quantum efficiency of the detector. Finally we show a full diagram of the experimental set-up.

ENVIRONMENTAL LIMIT OF QUBIT
COHERENCE

In this section we present analytic and numerical mod-
els of the response-lifetime product κrT1. Because the
qubit is nearly harmonic we can use linear circuit theory
to calculate T1 of the excited state |1〉 [1]. We calculate
the Q of an equivalent linear circuit element and then
write it in terms of T1 using Qq ≡ ωqT1.

Theory

We first present an analytic calculation. A diagram
of the theoretical model is shown in Fig. 1. The quality
factor of the qubit Qq is defined as

Qq ≡
energy stored in qubit

energy lost per radian
. (1)

The energy stored in the qubit is Eq = 1
2Cq |Vq|

2
where

Cq is the qubit capacitance and Vq is the voltage ampli-
tude at the qubit node as indicated in Fig. 1. Assuming
that the only lossy element in the system is the filter, we
use the definition of the filter quality factor QF to write

energy lost per radian = EF /QF , (2)

where EF = 1
2CF |VF |

2
is the energy stored in the filter.

Inserting Eq. (2) into (1) yields

Qq = QF
Cq
CF

∣∣∣∣ VqVF
∣∣∣∣2 , (3)

where CF and VF are the filter capacitance and voltage
amplitude. See Fig. 1(a). To compute the ratio Vq/VF
we use voltage division. We make the crucial observa-
tion that to calculate the qubit damping we must ana-
lyze the circuit impedances at the qubit frequency. Be-
cause the qubit is off resonance from the measurement
resonator, the measurement resonator’s impedance Zr is
lower than the impedance Zg of the coupling capacitor
Cg, ie. Zr � Zg. Therefore with voltage Vq across the
qubit, we have a current Ig = Vq/Zg flowing through Cg.
By similar reasoning Zκ � Zr, so most of the current
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FIG. 1: (color online) Lumped element circuit model of the
measurement system. The qubit (cross), measurement res-
onator (r), and filter (F ) are connected through coupling ca-
pacitors. (a) For qubit loss we assume the filter is the only
lossy element, so system energy only leaves through the fi-
nite QF of the filter. (b) For calculation of Qr we work at
the measurement resonator frequency. The measurement res-
onator and filter are on resonance, so the filter impedance is
nearly real and modelled as a resistor. The qubit and cou-
pling capacitor Cg, indicated with dotted lines, are lossless
and therefore ignored.

Ig flows through the measurement resonator. This gives
Vr = IgZr = VqZr/Zg. Using similar arguments to work
through each stage of the circuit we arrive at

Vq
VF

=
ZgZκ
ZrZF

. (4)
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Note the shunt impedances in the denominator and the
coupling impedances in the numerator.

Next we compute Zr and ZF in terms of their char-
acteristic impedances. The impedance of a parallel har-
monic mode is

1

Z
=

i

Z0

2δx+ δx2

1 + δx
, (5)

where δx ≡ (ω − ω0)/ω0, ω0 is the resonance frequency,
and Z0 is the characteristic impedance of the resonance
(equal to

√
L/C for a parallel LC). Inserting Eq. (5) into

(4) we get ∣∣∣∣ VqVF
∣∣∣∣ =
|Zg| |Zκ|
Z0
rZ

0
F

(
2δx+ δx2

1 + δx

)2

, (6)

where here δx ≡ (ωq−ωr)/ωr, ωr is the measurement res-
onator frequency, and we assume the measurement res-
onator and filter have the same resonance frequencies.
Inserting Eq. (6) into (3) yields

Qq = QF
Cq
CF

(
|Zg| |Zκ|
Z0
rZ

0
F

)2(
2δx+ δx2

1 + δx

)4

. (7)

Equation (7) expresses Qq in terms of circuit element
values, but to produce a more useful design formula we
must eliminate Zκ in favor of Qr. To calculate Qr we
work at the measurement resonator frequency. With
the measurement resonator and filter assumed to be
nearly on resonance the filter appears as a pure resis-
tance RF = QFZ

0
F , as shown in Fig. 1(b). We assume

the qubit to be lossless so the filter resistance sets Qr.
Using a method similar to that which led to Eq (7) we
find

Qr =
|Zκ|2

RFZ0
r

=
|Zκ|2

QFZ0
FZ

0
r

. (8)

Substituting Eq. (8) into (7) and using Qq = ωqT1 and
Qr = ωr/κr we find

κrT1 = Q2
F

(
ωr
ωq

)2(
Cq
Cg

)2 Z0
q

Z0
r

(
2δx+ δx2

1 + δx

)4

. (9)

Equation (9) is most useful when comparing with re-
sults from numerical circuit simulators and when choos-
ing values for the actual circuit hardware. For the present
experiment in which we use λ/4 resonators it is conve-
nient to use the relation between the filter characteristic
impedance and the line impedance Z0

r = (4/π)Z0 result-
ing in

κrT1 =
π

4
Q2
F

(
ωr
ωq

)2(
Cq
Cg

)2 Z0
q

Z0

(
2δx+ δx2

1 + δx

)4

. (10)

We used Eq. (10) as our design formula.
For an equation applicable to other physical systems

we eliminate capacitances and impedances in favor of
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FIG. 2: Circuit model used in SPICE simulation. Elements
shown in solid line were simulated. The resistor Re models the
50 Ω environment imposed by the amplification chain. The
impedance of the circuit shown in solid line is measured by
sourcing Vs and measuring Is.

coupling constants. Using the standard formula for ca-
pacitive coupling between harmonic modes

g =
1

2

Cg√
CqCr

√
ωqωr , (11)

and keeping only the leading order in δx we can re-
express Eq. (10) as

κrT1 = 4
∆4

g2ω2
q/Q

2
F

=

(
∆

g

)2(
ωr
ωq

2∆

ωr/QF

)2

, (12)

where ∆ ≡ ωq − ωr, and ωr/QF is the filter
bandwidth. Equation (12) provides the link be-
tween measurement time and qubit coherence. With
our design parameters QF = 30, ∆/2π = 800 MHz,
g/2π = 90 MHZ, ωr/2π = 6.8 GHz, and ωq/2π = 6 GHz
we get κrT1 = 5050. An engineered leakage rate of
κr = 1/50 ns gives T1 = 250µs. We designed our four
κr values to range from 1/12 ns to 1/71 ns.

Numerics

We compared Eq. (10) against a numerical simulation
of the circuit in SPICE [? ]. The circuit model is shown
in Fig. 2. The quality factor of the qubit is determined
in a simple two step procedure. First, we replace the
qubit with a voltage source. We activate the voltage
source with an amplitude Vs at frequency ω and record
the complex current Is flowing into the rest of the circuit.
The admittance of the circuit external to the qubit is then

Ye(ω) = Is/Vs . (13)

Second, we compute the T1 of the qubit as [1]

T1 = Cq/ |ReYe(ωq)| . (14)

Results of the simulation with corresponding predictions
from Eq. (10) are shown in Fig. 3. We plot the T1 limit
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FIG. 3: (color online) Analytic (Eq. 7) and numerical (SPICE)
qubit T1 limits for several values of κr.

versus detuning between the qubit and measurement res-
onator for several values of Qr. We note that the simple
linear theory agrees very well with the numerical result
up to ∆/(2π) ≈ 1 GHz. The disparity at larger detunings
probably comes from the assumption, made in deriving
Eq. (4), that the coupling capacitance impedances Zg and
Zκ are much larger than the resonator impedances at the
qubit frequency.

DEVICE PARAMETERS

The superconducting Xmon transmon qubits were fab-
ricated from etched Al films on a sapphire substrate as
in Ref. [2]. We include additional lithography and depo-
sition steps to form Al on SiO2 dielectric wire crossovers
to suppress spurious modes on the chip and reduce par-
asitic inductances responsible for large unwanted fre-
quency shifts in the filter resonance [3, 4]. In Table I
we give the measured and target parameters for the four
qubits used in the experiment. The measurement res-
onator ring-down time κr was varied across the four
qubits. The qubit-resonator coupling g was adjusted for
each κr to keep the IQ clouds corresponding to the two
qubits states maximally separated.

QUANTUM EFFICIENCY

The rate of separation fidelity improvement during the
equilibrium part of the measurement increases with in-
creasing flux of detected measurement photons. Each
measurement photon carries information about the qubit
state and therefore incurs dephasing of the qubit [5]. This
results in a direct relationship between the separation
of the measured IQ clouds and the qubit phase coher-
ence (ignoring any additional decoherence channels in the

ωr/2π [GHz] g/2π [MHz] 1/κr [ns]

Q1 6.835 (6.805) 100 (146) 19 (12)

Q2 6.789 (6.765) 86 (102) 37 (23)

Q3 6.848 (6.735) 76 (84) 50 (35)

Q4 6.737 (6.705) 50 (59) 147 (71)

TABLE I: Parameters for the four qubits. Each was designed
with a different target κr in order to test the tradeoff between
damping and measurement speed. Target design values are
given in parentheses. Disparity between target and measured
values probably comes from errors in predicting in-plane ca-
pacitances between structures.

qubit)

|ρ10| = exp

[
− s2

8σ2

]
. (15)

Here ρ10 is the amplitude of the off-diagonal elements
of the qubit density matrix, s is the distance between
the centers of the |0〉 and |1〉 IQ clouds, and σ is their
widths (assumed to be equal). Equation (15) provides
a means of determining the fraction of photons lost to
dissipation in the measurement system. Lost photons
decohere the qubit, but do not contribute to the separa-
tion of the IQ clouds. Therefore, by measuring the cloud
separation and the dephasing induced on the qubit, we
can extract the fraction of photons lost in the measure-
ment process. We found a photon collection efficiency of
-9 dB, or 12.6%. We attribute -3 dB to using a parametric
amplifier (paramp) in phase preserving mode [6], -2 dB
from infrared filters used on the signal output line, and
the rest to a combination of losses in microwave switches,
circulators, and connectors. There is also a small amount
of added noise from the HEMT amplifier due to the finite
gain of the paramp.

EXPERIMENTAL SET-UP

Here we describe the experimental set-up. A schematic
is shown in Fig. 4. Measurement pulses are generated
through sideband mixing. A custom dual channel 14-bit
1 GS/s arbitrary waveform generator (AWG) generates
20-200 MHz signals which are mixed with a local oscilla-
tor (LO) to generate shaped pulses at GHz frequencies.
The AWG signal is a superposition of frequencies, one for
each measurement resonator, so that the signal sent to
the chip consists of four frequency multiplexed measure-
ment pulses. The signal arriving at the chip is mostly
reflected by the input capacitor of the bandpass filter,
and only a small fraction enters the filter. Each one of
the frequency multiplexed pulses is then phase shifted
by one of the measurement resonators before leaving the
chip through the output port. The small input capacitor
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ensures only a small fraction of the phase shifted signal
is lost by exiting the chip through the input port. Af-
ter leaving the chip the signal passes through a series
of filters, switches and isolators before it is amplified by
a parametric amplifier. The signal is then further am-
plified by a high mobility electron transistor (HEMT)
amplifier and room temperature amplifiers before it is
down-mixed to MHz frequencies, digitized and recorded
by a custom analog to digital converter (ADC). Digital
processing then separates the signal into its frequency
components and extracts the phase shifts for each com-
ponent.
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FIG. 4: The experimental set-up. Only components used for state measurement are shown. Pulses are generated by the
AWG and mixed to gigahertz frequencies. Cold attenuators, microwave filters, and infra-red filters prevent noise and thermal
radiation from reaching the qubits. The transmitted signal is directed through switches to one of two paramps. This allows
switching between multiple samples, noise references, and paramps. The signal is further amplified by the HEMT and room
temperature amplifiers and digitized. The paramp flux bias is generated by a custom voltage source and filtered by RC and
copper powder filters.


