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Tunable inductive coupling of superconducting qubits in the strongly nonlinear regime
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For a variety of superconducting qubits, tunable interactions are achieved through mutual inductive coupling
to a coupler circuit containing a nonlinear Josephson element. In this paper, we derive the general interaction
mediated by such a circuit under the Born-Oppenheimer approximation. This interaction naturally decomposes
into a classical part, with origin in the classical circuit equations, and a quantum part, associated with the
coupler’s zero-point energy. Our result is nonperturbative in the qubit-coupler coupling strengths and in the
coupler nonlinearity. This can lead to significant departures from previous, linear theories for the interqubit
coupling, including nonstoquastic and many-body interactions. Our analysis provides explicit and efficiently
computable series for any term in the interaction Hamiltonian and can be applied to any superconducting qubit
type. We conclude with a numerical investigation of our theory using a case study of two coupled flux qubits,
and in particular study the regime of validity of the Born-Oppenheimer approximation.
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I. INTRODUCTION

Nonlinearity is essential to superconducting circuit imple-
mentations of quantum information. It allows for an indi-
vidually addressable qubit subspace and tunable interactions
between qubit circuits. Qubit-qubit interactions in a variety
of platforms are mediated by coupler circuits inductively
coupled to the qubits, with tunability provided by nonlinear
Josephson elements [1–6]. Several theoretical treatments of
such circuits have been performed, including detailed analyses
for tunably coupled flux qubits [7,8], phase qubits [9], lumped-
element resonators [10], and transmon-type (gmon) qubits
[11]. However, both previous classical and quantum analyses
have either been linear or have treated the qubit-coupler
coupling strengths perturbatively [12], and they are therefore
expected to break down in the regime of strong coupling
or large nonlinearities. In particular, the commonly used
classical linear analysis can create the misconception that
arbitrary interqubit coupling strengths can be achieved with a
sufficiently nonlinear coupler circuit, an artifact of extending
the linear equations beyond their applicable domain. One
platform for which a nonperturbative treatment would be
of immediate use is quantum annealing, where strong yet
accurate two-qubit interactions are necessary and k-qubit or
nonstoquastic [13] interactions are desirable, and where the
ability to controllably operate in the strongly nonlinear regime
could therefore be highly beneficial.

In this work, we present a nonperturbative analysis of two
or more superconducting qubits inductively coupled through
a Josephson coupler circuit. Our treatment is generic in that,
as long as the coupling takes the form depicted in Fig. 1,
it is independent of the individual qubit Hamiltonians. In
fact, it applies within the infinite-dimensional Hilbert space
of the underlying circuits implementing the qubits (which
can be highly nonlinear with any form for their individual
potential energies) and only reduces to the qubit subspace
to compute coupling matrix elements. We numerically inves-
tigate the accuracy of our theory in various regimes, with
focus on the interesting limit of large coupler nonlinearities

βc ≈ 2πLcI
(c)
c /�0 � 1 within the monostable regime of the

coupler and for large dimensionless coupling strengths αj ≡
Mj/Lj . Here, Lc and I (c)

c are the coupler’s inductor and
junction (or dc-SQUID) parameters, and Mj and Lj are the
mutual and self-inductance of the j th qubit, respectively.

To perform the analysis, we eliminate the coupler circuit
using the Born-Oppenheimer approximation. In this approx-
imation, the coupler circuit’s ground-state energy dictates
the qubit-qubit interaction potential. This potential naturally
decomposes into a classical part, whose origin lies in the
classical equations of motion, and a small but non-negligible
quantum part originating from the coupler circuit’s zero-point
fluctuations. We derive an exact expression for the classical
part and an approximate expression for the quantum part
valid in the experimentally relevant limit of small coupler
impedance. Using this interaction potential, we derive explicit
and efficiently computable Fourier series for all terms in
the effective interqubit interaction Hamiltonian, including
nonstoquastic terms and k-body terms with k > 2 (although
these are found to be small for the investigated parameter
regimes). Unlike previous results, the interaction is defined
explicitly and not in terms of quantum mechanical averages
of the coupler system. As a case study, we apply our results
to two coupled flux qubits, using parameters from our recent
flux qubit design, the fluxmon [14]. We find that our results
agree with previous treatments in the appropriate limits, but
significantly differ in the highly nonlinear regime. We quantify
the accuracy of our results by comparing them to an exact
numerical diagonalization of the full system, allowing us
to study when the Born-Oppenheimer approximation breaks
down.

II. INTERACTION MEDIATED BY NONLINEAR CIRCUIT

A. Qubit-coupler Hamiltonian

We wish to derive the interaction between k circuits (the
qubits) inductively coupled through an intermediate circuit
(the coupler) as depicted in Fig. 1. We begin by deriving
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FIG. 1. A generic circuit for inductive coupling of two or more
superconducting circuits (left column). Each smaller circuit {qi,Li}
represents a single qubit. The strength and type of coupling can
be tuned via an external magnetic flux �cx applied through the
main coupler loop (right-hand side). The coupler’s junction may
alternatively be a dc SQUID forming an effective Josephson junction
with tunable I (c)

c via a separate flux bias.

the full Hamiltonian describing both qubits and coupler.
While the coupler circuit is elementary (it contains just an
inductor, capacitor, and Josephson junction in parallel), our
only assumption about the qubit circuits is that they interact
with the coupler through a geometric mutual inductance Mj .
Accordingly, we write the current equations defining their
dynamics as [15,16]

C�̈c + I (c)
c sin(2π�c/�0) − IL,c = 0,

Ij − I ∗
j = 0 (1 � j � k). (1)

For the first equation, �c denotes the flux across the coupler’s
Josephson junction (and capacitor), IL,c denotes the current
through the coupler’s inductor, and �0 = h/(2e) is the flux
quantum. The second equation simply states that the current
Ij through qubit j ’s inductor is equal to the current I ∗

j flowing
through the rest of the qubit circuit (represented by box
“qj ” in the figure). The basic inductive and flux quantization
relationships are then

LcIL,c +
k∑

j=1

MjIj = �L,c,

Lj Ij + MjIL,c = �j, (2)

�L,c = �cx − �c,

where �cx is the external flux bias applied to the coupler
loop and �j is the flux across qubit j ’s inductor. Using
these equations and some algebra, one can rewrite the current
equations in terms of the flux variables

C�̈c + I (c)
c sin(2π�c/�0) + 1

L̃c

⎛
⎝�c − �cx +

k∑
j=1

αj�j

⎞
⎠

= 0, (3)

�j

Lj

+ αj

1

L̃c

⎛
⎝�c − �cx +

k∑
j ′=1

αj ′�j ′

⎞
⎠ − I ∗

j = 0, (4)

where

αj ≡ Mj

Lj

,

L̃c ≡ Lc −
k∑

j=1

αjMj .

The rescaled coupler inductance L̃c represents the shift
in the coupler’s inline inductance due to its interaction with
the qubits. Although we could similarly rescale the qubit
inductances in Eq. (4), we instead keep separate all terms
that depend on the mutual inductance αj .

To complete the derivation of the Hamiltonian, we note
that Eqs. (3) and (4) are just the Euler-Lagrange equations
for the qubits and coupler. Since the �-dependent terms
correspond to derivatives of the potential energy ( ∂U

∂�c
and

∂U
∂�j

), we quickly arrive at the corresponding Hamiltonian for
the coupled systems

Ĥ = Q̂2
c

2C
− EJc

cos(2π�̂c/�0)

+
(
�̂c − �cx + ∑k

j=1 αj �̂j

)2

2L̃c

+
k∑

j=1

Ĥj . (5)

Here, Ĥj (obtained from �j

Lj
− I ∗

j ) denotes the Hamiltonian for
qubit j in the absence of the coupler (i.e., in the limit αj → 0),
Q̂c is the canonical conjugate to �̂c satisfying [�̂c,Q̂c] = ih̄,
and the coupler’s Josephson energy is EJc

= �0I
(c)
c /2π .

B. Born-Oppenheimer approximation

To obtain the effective interaction between the qubits, we
now eliminate the coupler’s degree of freedom. In other words,
we apply the Born-Oppenheimer approximation [17] by fixing
the (slow) qubit degrees of freedom and assuming that the (fast)
coupler is always in its ground state. This is analogous to the
Born-Oppenheimer approximation in quantum chemistry, in
which the nuclei (qubits) evolve adiabatically with respect to
the electrons (coupler). The coupler’s ground-state energy (a
function of the slow qubit variables �j ) then determines the
interaction potential between the qubits. This approximation
is valid as long as the coupler’s intrinsic frequency is much
larger than other energy scales in the system, namely, the
qubits’ characteristic frequencies and qubit-coupler coupling
strength.

We begin by considering the coupler-dependent part of the
Hamiltonian Ĥc = Ĥ − ∑

j Ĥj . We reexpress this operator in
terms of standard dimensionless parameters

Ĥc = EL̃c

[
4ζ 2

c

q̂2
c

2
+ U (ϕ̂c; ϕx)

]
,

U (ϕc; ϕx) = (ϕc − ϕx)2

2
+ βc cos(ϕc),

(6)
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where

EL̃c
= (�0/2π )2

L̃c

,

ζc = 2πe

�0

√
L̃c

C
= 4πZ̃c/RK,

βc = 2πL̃cI
(c)
c /�0 = EJc

/EL̃c
,

q̂c = Q̂c

2e
,

ϕ̂c = 2π

�0
�̂c + π, (7)

ϕcx = 2π

�0
�cx + π,

ϕ̂j = 2π

�0
�̂j ,

ϕx = ϕcx −
⎛
⎝ k∑

j=1

αjϕj

⎞
⎠,

[ϕ̂c,q̂c] = i.

Note that we have defined ϕ̂c and ϕcx with an explicit π

phase shift, which flipped the sign in front of βc cos(ϕc).
Typical coupler inductive energies are on the order of EL̃c

/h ∼
0.5 − 2 THz [3,4,18]. For reasons that will become clear
shortly, we assume βc � 1 (monostable coupler regime) and
low impedance (ζc � 1), consistent with typical qubit-coupler
implementations.1 Importantly, we are momentarily treating
the external flux ϕx as a scalar parameter of the Hamiltonian.
This is analogous to the Born-Oppenheimer approximation in
quantum chemistry, where the nuclear degrees of freedom are
treated as scalar parameters modifying the electron Hamilto-
nian. Since ϕx is a function of the qubit fluxes ϕj , the coupler’s
ground-state energy Eg(ϕx) acts as an effective potential
between the qubit circuits. The full effective qubit Hamiltonian
under Born-Oppenheimer is then ĤBO = ∑

j Ĥj + Eg(ϕ̂x),
where the variable ϕx is promoted back to an operator. (See
Appendix, Secs. A 7 and A 8 for a detailed discussion of this
approximation.)

In order to derive an analytic expression for the ground-state
energy Eg(ϕx), we must first decompose it into classical and
quantum parts. This natural decomposition allows for a very
precise approximation to the ground-state energy because the
classical part (corresponding to the classical minimum value
of Hc) is the dominant contribution to the energy and can be
derived exactly. The quantum part (corresponding to the zero-
point energy) is the only approximate contribution, though it
is relatively small for typical circuit parameters.

To begin our analysis, we write the potential energy
U (ϕ̂c; ϕx) in a more suggestive form

U (ϕ̂c; ϕx) = Umin(ϕx) + UZP(ϕ̂c; ϕx) . (8)

1For example, ζc is estimated to be 0.013 in Ref. [4], 0.04 in the
most recent gmon device [19], and 0.05 in our initial fluxmon coupler
design [14].

Here, the scalar

Umin(ϕx) = min
ϕc

U (ϕc; ϕx) = (ϕ(∗)
c − ϕx)2

2
+ βc cos(ϕ(∗)

c )

is the value of the coupler potential at its minimum point ϕ(∗)
c ,

i.e., its “height” (overall offset) above zero. Setting the qubit-
qubit interaction potential Eg(ϕx) equal to only EL̃c

Umin(ϕx)
corresponds to a completely classical analysis of the coupler
dynamics [originating from Eqs. (3) and (4), prior to quantizing
the Hamiltonian; see Appendix, Sec. A 5]. Unlike Umin(ϕx), the
operator

UZP(ϕ̂c; ϕx) = U (ϕ̂c; ϕx) − Umin(ϕx)

does not have a classical analog: it corresponds to extra energy
due to the finite width of the coupler’s ground-state wave
function. Combining this operator with the charging energy
defines the coupler’s zero-point energy

UZPE(ϕx) = min
〈ψ |ψ〉=1

〈ψ |
[

4ζ 2
c

q̂2
c

2
+ UZP(ϕ̂c; ϕx)

]
|ψ〉. (9)

(This minimization picks out the ground state.) The coupler’s
ground-state energy is then the sum of the classical and zero-
point energy terms

Eg/EL̃c
= Umin(ϕx) + UZPE(ϕx). (10)

Both contributions to the energy are parametrized by the qubit-
dependent flux ϕx , which is what allows us to treat Eg as an
effective qubit-qubit interaction potential. In the following two
sections we compute an exact expression for Umin(ϕx) and an
approximate expression for UZPE(ϕx) as Fourier series in ϕx .
These are combined in Sec. II E to produce an expression for
the full qubit-qubit interaction Hamiltonian (31), the key result
of our work.

C. Classical contribution to the interaction potential

We first discuss the classical component of the coupler’s
ground-state energy. From Eq. (6), the minimum value
Umin(ϕx) can be expressed in terms of the minimum point
ϕ(∗)

c as

Umin(ϕx) = U (ϕ(∗)
c ; ϕx) = [βc sin(ϕ(∗)

c )]2

2
+ βc cos(ϕ(∗)

c ),

(11)

where we have used the fact that ϕ(∗)
c is a critical point,

∂ϕc
U (ϕc; ϕx)|

ϕc=ϕ
(∗)
c

= ϕ(∗)
c − ϕx − βc sin(ϕ(∗)

c ) = 0. (12)

Importantly, the parameter ϕ(∗)
c is a function of ϕx and is

defined implicitly as the solution to Eq. (12). This equation
is identical to the classical current equation (3) in the large
coupler plasma frequency limit L̃cC → 0 (see Appendix,
Sec. A 5).

Although Eq. (11) is exact, it is not useful unless we can
express ϕ(∗)

c as an explicit function of the qubit degrees of
freedom (i.e., the variable ϕx). To motivate how to do this, we
observe that the transcendental equation (12) is unchanged
under the transformation ϕ(∗)

c → ϕ(∗)
c + 2π, ϕx → ϕx + 2π ,

and similarly Umin(ϕx) is a periodic function of ϕ(∗)
c [Eq. (11)].

This suggests that we can express Umin(ϕx) as a Fourier series
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in ϕx . Indeed, as shown in the Appendix, Sec. A 2, for every
integer μ,

eiμϕ
(∗)
c =

∑
ν

eiνϕx A(μ)
ν , (13)

where

A(μ)
ν =

{
δμ,0 − βc

2 (δμ,1 + δμ,−1) ν = 0,

μJν−μ(βcν)
ν

ν �= 0,
(14)

and Jν(x) denotes the Bessel function of the first kind.
(Unless otherwise specified, summation indices in this text
go over all integers.) Using this equation with sin(ϕ(∗)

c ) =
1
2i

(eiϕ
(∗)
c − e−iϕ

(∗)
c ), we define

sinβc
(ϕx) ≡ sin(ϕ(∗)

c )

=
∑

ν

eiνϕx
1

2i

(
A(1)

ν − A(−1)
ν

)

=
∑
ν>0

2Jν(βcν)

βcν
sin(νϕx). (15)

The function sinβc
(ϕx) is the explicit solution to sin(ϕ(∗)

c )
satisfying Eq. (12), and therefore satisfies the identity

sinβc
(ϕx) = sin

[
ϕx + βc sinβc

(ϕx)
]
. (16)

In the context of Josephson junctions, sinβc
(ϕx) represents the

current through the junction as a function of the external flux
bias.2 Since sinβc

(ϕx) = sin(ϕ(∗)
c ) we can also explicitly write

ϕ(∗)
c as

ϕ(∗)
c = ϕx + βc sinβc

(ϕx). (17)

Substituting these results into Eq. (11), we get an explicit
expression for the minimum value Umin(ϕx):

Umin(ϕx) =
[
βc sinβc

(ϕx)
]2

2
+ βc cos

[
ϕx + βc sinβc

(ϕx)
]
.

(18)

We now derive the Fourier series for Umin(ϕx) as a function
of ϕx . Taking the derivative of Eq. (18) with respect to ϕx , one
may verify that

∂ϕx
Umin(ϕx) = −βc sinβc

(ϕx). (19)

Here, we have used the identity

∂ϕx
sinβc

(ϕx) = cos
[
ϕx + βc sinβc

(ϕx)
]

1 − βc cos
[
ϕx + βc sinβc

(ϕx)
] , (20)

which can be derived directly from Eq. (16). Equation (19) is
analogous to

∂ϕx
cos(ϕx) = − sin(ϕx),

which suggests that we define Umin(ϕx) as

Umin(ϕx) = βc cosβc
(ϕx). (21)

2For a loop containing only a linear inductor and a Josephson
junction, the current through the junction as a function of external bias
satisfies IJ /I (c)

c = sin(ϕcx + βcIJ /I (c)
c ). This is exactly the defining

relation of the sinβc
function, Eq. (16).

In analogy with the sine and cosine functions, we define the
cosβ(ϕ) function as the formal integral of sinβ(ϕ):

cosβ(ϕx) ≡ 1 −
∫ ϕx

0
sinβ(θ ) dθ

= β

2
[sinβ(ϕx)]2 + cos[ϕx + β sinβ(ϕx)]

= 1 +
∑
ν>0

2Jν(βν)

βν2
[cos(νϕx) − 1]

= −β

4
+

∑
ν �=0

Jν(βν)

βν2
eiνϕx . (22)

We prove the equality of each of these expressions in the
Appendix, Sec. A 3. Equations (21) and (22) exactly charac-
terize the classical part of the coupler’s ground-state energy Eg .
As shown in Fig. 2(a), Umin(ϕx) is the dominant contribution
to Eg in the small impedance limit ζc � 1. Substituting the
definition ϕx = ϕcx − ∑

j αjϕj into Eq. (21), we can interpret
Umin(ϕx) = βc cosβc

(ϕcx − ∑
j αjϕj ) as a scalar potential

mediating an interaction between the qubit circuits.3

D. Quantum contribution to the interaction potential

We now discuss the quantum part of the coupler ground-
state energy. This is given by the ground-state energy of
Ĥc − EL̃c

Umin(ϕx) [Eq. (9)], which represents the coupler’s
zero-point energy. To approximate this energy we expand
the zero-point potential UZP = U (ϕ̂c; ϕx) − Umin(ϕx) about
the classical minimum point ϕ(∗)

c . Since UZP(ϕc; ϕx) and its
derivative vanish at the minimum point ϕ(∗)

c , the Taylor series
of UZP is of the form

Ĥc/EL̃c
= Umin(ϕx) +

[
4ζ 2

c

q̂2
c

2
+ U ′′

ZP(ϕ(∗)
c ; ϕx)

2
(ϕ̂c − ϕ(∗)

c )2

]

+O((ϕ̂c − ϕ(∗)
c )3), (23)

where

U ′′
ZP(ϕc; ϕx) = ∂2

ϕc
U (ϕc; ϕx) = 1 − βc cos(ϕc). (24)

If we neglect the terms of order O((ϕ̂c − ϕ(∗)
c )3), the zero-point

energy of Ĥc is the same as for a harmonic oscillator,

UZPE � 1

2

√
4ζ 2

c U ′′
ZP(ϕ(∗)

c ; ϕx)

= ζc

√
1 − βc cos(ϕ(∗)

c ). (25)

The harmonic approximation is the second approximation we
use to derive the qubit-qubit interaction potential. (The zero-
point energy EL̃c

UZPE → EL̃c
ζc = h̄

2
√

L̃cC
in the limit βc → 0,

as expected for the linear coupler limit.)
As we did for the classical component Umin(ϕx), we wish

to compute the Fourier series of UZPE in the qubit-dependent
flux parameter ϕx . To do so, we first write UZPE as a Fourier

3This potential emerges from the conservative vector field
S̄(ϕ1,ϕ2, . . . ,ϕk) = βc sinβc

(ϕx)
∑

j αj ēj = −βc∇ cosβc
(ϕcx − ∑

j

αjϕj ), where ēj denotes the unit vector associated with the degree of
freedom ϕj .
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FIG. 2. (a) Coupler ground-state energy as a function of external flux bias ϕx . Solid lines: exact ground-state energy of Ĥc [Eq. (6)]
computed by diagonalizing in the first 50 harmonic oscillator basis states. The coupler parameters correspond to βc = 0.95 and ζc = 0.1 (dark
blue), 0.05 (magenta), 0.01 (light orange), respectively. Dashed, black line: classical component of the coupler ground-state energy, computed
using the scalar function Umin(ϕx) = βc cosβc

(ϕx). (b) Coupler zero-point energy as a function of external flux bias ϕx . Solid lines: difference
between the exact ground-state energy Eg/EL̃c

(computed numerically as above) and the classical energy contribution Umin(ϕx). Overlayed
dashed lines: linearized approximation to the coupler zero-point energy, computed using Eq. (28) and truncating the series at |ν| � νmax = 100.
Inset are the same curves, restricted to the bias range ϕx ∈ [0,0.03] × 2π .

series in ϕ(∗)
c ,√

1 − β cos(ϕ(∗)
c ) =

∑
μ

Gμ(β)eiμϕ
(∗)
c , (26)

where the functions Gμ(β) satisfy4

Gμ(β) =
∑
l�0

(
1/2

μ + 2l

)(
μ + 2l

l

)(
−β

2

)μ+2l

=
(

−β

2

)μ(1/2

μ

)
2F1

(
μ

2
− 1

4
,
μ

2
+ 1

4
; 1 + μ; β2

)
,

(27)

and 2F1(a,b; c; z) is the confluent hypergeometric function.
Combining this with Eq. (13) in the previous section, we obtain
the desired series

UZPE(ϕx) = ζc

⎧⎨
⎩G0(βc) − βcG1(βc)

+
∑
ν �=0

eiνϕx

[
1

ν

∑
μ

μGμ(βc)Jν−μ(βcν)

]⎫⎬
⎭. (28)

We derive the above identities in the Appendix, Sec. A 4.
The functions Gμ(βc) decay exponentially in μ, so numerical

4The generalized binomial (z
k
) = 1

k! (z)(z − 1)(z − 2) . . . (z − k + 1)

for integer k � 0 and is zero for negative integers k.

evaluation of the inner sum typically requires only a few
terms (see Appendix, Sec. A 6). In Fig. 2(b). we compare
our approximate value for UZPE [Eqs. (25) and (28)] to the
numerically exact zero-point energy [Eq. (9)].

E. Total interaction Hamiltonian

Having computed both classical and quantum parts of the
coupler ground-state energy Eg , we now set this quantity equal
to the qubit-qubit interaction potential. In the language of
physical chemistry, Eg(ϕx) is the potential energy surface that
varies with the qubit flux variables ϕj . We can immediately
read off this value from Eqs. (21) and (28),

Eg(ϕx)/EL̃c
= βc cosβc

(ϕx) + UZPE(ϕx)

=
∑

ν

eiνϕx Bν, (29)

where

Bν =
{

− β2
c

4 + ζc[G0(βc) − βcG1(βc)], ν = 0
Jν (βcν)

ν2 + ζc

[∑
μ

μ

ν
Gμ(βc)Jν−μ(βcν)

]
, ν �= 0.

(30)
With this result we can complete the Born-Oppenheimer
approximation: substituting for ϕx = ϕcx − ∑

j αjϕj , the in-
teraction potential mediated by the coupler is thus

Ĥint = Eg

⎛
⎝ϕcx −

∑
j

αj ϕ̂j

⎞
⎠

= EL̃c

∑
ν

Bνe
iνϕcx e−iν(

∑
j αj ϕ̂j ). (31)
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We note that [20] since J−ν(x) = Jν(−x) = (−1)νJ (x) and
G−μ(βc) = Gμ(βc), the Fourier coefficients are symmetric,
Bν = B−ν . Thus, Ĥint is a Hermitian operator (as expected)
and can be expressed as a Fourier cosine series.

We stress two important points related to Eq. (31), which
is the central result of our work. First, our result leads to
quantitatively different predictions from previous treatments
[7,10,11]. These expand the coupler ground-state energy to
second order in the flux variables ϕ̂j to derive an “effective
mutual inductance” between the qubits. As we shall see, the
discrepancy between these results is most pronounced when
the qubit-coupler interaction αj is large or when the coupler
nonlinearity βc approaches 1.5 Second, since the Fourier
coefficients Bν decay quickly to zero [[20], Eq. (9.1.63)], the
interaction Ĥint is a smooth, bounded function of the qubit
flux operators. This remains true even in the regime of large
coupler nonlinearity (βc ≈ 1), and it reinforces the physical
intuition that the qubit-qubit coupling strength cannot diverge
as βc → 1.6

We conclude this section by discussing the approximations
used to reach Eq. (31). First, the Born-Oppenheimer approx-
imation is used to replace the coupler Hamiltonian with its
ground-state energy. This is equivalent to assuming the full
system wave function (in the flux basis) is of the form


(ϕc,ϕ̄q,t) = ψg(ϕc; ϕ̄q) χ (ϕ̄q ,t). (32)

Here, the function ψg(ϕc; ϕ̄q) denotes the ground state of the
coupler Hamiltonian Ĥc [Eq. (6)]. Like Ĥc, we view this wave
function as parametrized by the qubit flux variables ϕ̄q =
(ϕ1,ϕ2, . . . ϕk). Inserting this ansatz into the full Hamilto-
nian’s (Ĥc + ∑

j Ĥj ) Schrödinger equation, in the Appendix,
Sec. A 7, we integrate out the coupler degree of freedom and
obtain a reduced equation of motion for just the qubit wave
function χ (ϕ̄q). Up to a small correction (discussed below),
the resulting dynamics corresponds to an effective qubit
Hamiltonian ĤBO = Eg(ϕ̂x) + ∑

j Ĥj . Although intuitively
similar, the ansatz wave function used above is distinct from
standard adiabatic elimination [21] since that approximation
accounts for virtual transitions into higher-energy excited
states. Born-Oppenheimer is a valid approximation when
transitions out of the coupler ground state [the ansatz (32)] are
suppressed. Heuristically, this holds when the characteristic
qubit energy scale h̄ωq is much less than the gap between
coupler’s ground- and first-excited-state energies. For βc < 1
not too close to one, a good bound for this condition is

h̄ωq � h̄√
L̃cC

√
1 − βc, (33)

where on the right-hand side we have approximated the
coupler’s energy gap by twice its (linearized) minimum
zero-point energy.7 More concretely, there are two corrections

5Note that as αj or βc increase, one must also ensure that the
Born-Oppenheimer approximation remains valid.

6Indeed, since exp(−iν
∑

j αj ϕ̂j ) is a unitary operator, every

matrix element of Ĥint/EL̃c
is bounded by

∑
j |Bν | � βc(1 + βc/4) −

ζc[
√

1 − βc − G0(βc) + βcG1(βc)]. See Appendix, Sec. A 6.
7The right-hand side is only an approximate lower bound for the

coupler’s energy gap, which in fact does not vanish as βc → 1.

to Born-Oppenheimer that determine when it breaks down.
First, the Born-Oppenheimer diagonal correction [22,23] is a
direct modification to the coupler-mediated potential Eg(ϕ̂x),
which requires no change to the ansatz wave function (32). We
analyze this correction in the Appendix, Sec. A 7 and find that
it is negligible for typical circuit parameters. More important
are nonadiabatic corrections to Born-Oppenheimer, which are
associated with transitions from the ansatz wave function
ψg(ϕc; ϕ̄q) χ (ϕ̄q ,t) to excited states of the coupler. We derive
formal expressions for these corrections in the Appendix,
Sec. A 8, though due to their complexity we do not have
concise analytical expressions bounding their size. Instead,
we have carried out a numerical study (Sec. V) to validate
our approximation for typical flux-qubit circuit parameters.
The second approximation used to derive Eq. (31) is the
harmonic approximation to the coupler’s zero-point energy
[Eq. (21)]. This is mainly a concern when the coupler bias
is close to peak coupling, ϕcx ≈ 0 (mod 2π ), and the coupler
nonlinearity βc approaches 1 [cf. inset of Fig. 2(b)]; in that limit
the harmonic approximation to the zero-point energy (UZPE =
ζc

√
1 − βc cos(ϕ(∗)

c )) vanishes and the quartic correction to Ĥc

becomes relevant. As we shall see below, the zero-point energy
component of Eg does have a non-negligible effect on the qubit
dynamics, but for typical coupler impedances and nonzero bias
ϕcx the inaccuracy in the harmonic approximation is small (see
also Fig. 15 in the Appendix).

III. PROJECTION INTO THE QUBIT BASIS

We now describe an efficient method for computing the
qubit dynamics mediated by the coupler. It applies to any
number of qubits interacting through a single coupler and
arises from the generic qubit Hamiltonian derived in the
previous section,

Ĥ = Ĥint +
k∑

j=1

Ĥj . (34)

Here, Ĥj is the local Hamiltonian of qubit j in the absence
of the coupler and Ĥint is the general interaction Hamil-
tonian of Eq. (31). Our method is based on the Fourier
decomposition of Ĥint, a sum of operators of the form
exp(iν

∑
j αj ϕ̂j ) = ∏

j exp(−iναj ϕ̂j ). This product form
means we need only compute matrix elements of single-qubit
operators [cf. Eq. (38)]. Accordingly, the cost of this method
scales only linearly in the number of distinct qubits. The
effect of the local Hamiltonians Ĥj on the qubit dynamics
is implementation dependent.

To compute the dynamics induced by the coupler, we
restrict our analysis to the “qubit subspace” of each qubit
Hamiltonian. (Typically these are spanned by the ground
and first excited states of Ĥj .) Accordingly, we let |0〉j
and |1〉j denote a basis for the local qubit subspace of Ĥj .
The projection operator into this space is then

P̂j = |0〉〈0|j + |1〉〈1|j . (35)

Within this convention we define the Pauli operators
(I,σx,σy,σz) in the usual way. We now consider the projection
of the exponential operators used in the Fourier series descrip-
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tion of Ĥint [Eq. (31)]. Written within the qubit subspace, we
have

P̂j e−isϕ̂j P̂j =
∑

η

c(j )
η (s)σ (j )

η , (36)

where η ∈ {I,x,y,z} indexes the identity operator and three
Pauli operators acting on qubit j . Using the identity

tr[σασβ]/2 = δαβ, (37)

we see that

c(j )
η (s) = tr

[
σ

(j )
η

2
e−isϕ̂j

]
(38)

or, more explicitly (and dropping the qubit index j ),

cI (s) = 〈0|e−isϕ̂ |0〉 + 〈1|e−isϕ̂ |1〉
2

,

cx(s) = 〈0|e−isϕ̂ |1〉 + 〈1|e−isϕ̂ |0〉
2

,

cy(s) = i
〈0|e−isϕ̂ |1〉 − 〈1|e−isϕ̂ |0〉

2
,

cz(s) = 〈0|e−isϕ̂ |0〉 − 〈1|e−isϕ̂ |1〉
2

.

(39)

We note that in general these coefficients are complex valued
and differ between each qubit.

To finish our analysis, we also project Ĥint into the qubit
subspace. We again write this projection as a sum of Pauli
operators

P̂qĤintP̂q =
∑

η̄

gη̄ ση̄, (40)

where P̂q = P̂1 ⊗ P̂2 ⊗ · · · ⊗ P̂k and the vector η̄ =
(η1,η2, . . . ,ηk) denotes the corresponding product of Pauli
operators

ση̄ = σ (1)
η1

⊗ σ (2)
η2

⊗ · · · ⊗ σ (k)
ηk

. (41)

With this decomposition we directly compute

gη̄ = tr

[
ση̄

2k
Ĥint

]

= EL̃c

∑
ν

tr

[
ση̄

2k
Bνe

iνϕcx e−iν(
∑

j αj ϕ̂j )

]

= EL̃c

∑
ν

Bνe
iνϕcx

k∏
j=1

tr

[
σ

(j )
ηj

2
e−iναj ϕ̂j

]

= EL̃c

∑
ν

Bνe
iνϕcx

k∏
j=1

c(j )
ηj

(ναj ). (42)

Each line of the above calculation follows from (37), (31),
(41), and (38), respectively. [This equation also encompasses
the individual qubit operators induced by the presence of the
coupler, e.g., for η̄ = (x,I,I, . . . ,I ).] Thus, the calculation of
gη̄ reduces to computing the single-qubit coefficients c

(j )
ηj

(ναj )
and evaluating the sum in (42). For realistic calculations, the
sum (42) must be truncated at some maximum value νmax,
though for βc < 1 the truncation error decays rapidly with
νmax [since the functions defining Bν decay exponentially in

ν, see [[20], Eq. (9.1.63)]. We give a technique for bounding
this error in the Appendix, Sec. A 6.

We remark that the reduction into the qubit subspace is
actually an approximation of the qubit dynamics. This is
because Ĥint generally has nonzero matrix elements between
the qubit subspace P (represented by projector P̂q) and its
complement Q. Hence, the projection in Eq. (40) is valid
only in the limit that transitions into Q are suppressed. This
occurs if there is a large energy gap between P and Q, but
unfortunately this is not always the case. For example, for
three distinct qubits with low nonlinearity, it is possible to
observe a resonance8 of the form E

(1)
20 = E

(2)
10 + E

(3)
10 . The

multiqubit transition |g,e1,e1〉 → |e2,g,g〉 (where |g〉,|em〉
denote the ground and mth excited states) thus conserves
energy with respect to the local Hamiltonian

∑
j Ĥj . Such

accidental degeneracies can occur even in the highly nonlinear
case where the qubit energies are far from evenly spaced.
As long as these resonant transitions correspond to non-
negligible matrix elements of Ĥint, over time the composite
qubit system can be mapped outside of the qubit subspace
P . One must therefore take special care to account for
degeneracies when using Eq. (42), especially when more than
two qubits interact through the same coupler. A standard
technique accounting for the higher-energy states is the
Schrieffer-Wolff transformation [24]. This treatment is based
on algebraic transformations acting on a Hilbert space with
more than four states, so applying it to continuous variable
circuits would likely preclude any analytical results as we
have obtained for the Born-Oppenheimer approximation.9

A practical approach would be to use the Schrieffer-Wolff
transformation to account for the higher-energy qubit states
after using the Born-Oppenheimer approximation to account
for the coupler. This has the advantage of first removing the
coupler Hilbert space, which greatly reduces the numerical
cost of applying Schrieffer-Wolff.

We note that result (42) in principle allows for couplings
absent in linear theories describing Ĥint. For example, it
predicts nonzero k-body (k > 2) couplings between multiple
qubits, which could be a powerful feature in a quantum
annealer where “tall and narrow” potential barriers allow
quantum tunneling to outperform classical counterparts [25].
From a quantum information perspective, it would also be
interesting to engineer tunable noncommuting couplings, for
example, σx ⊗ σx and σx ⊗ σz + σz ⊗ σx . Interactions of this
second type are nonstoquastic, i.e., they may have positive
off-diagonal elements in any computational basis. These are
believed necessary to observe exponential quantum speedups
over classical algorithms [13,26]. The presented analytic
derivation in this paper makes it possible to consider inductive

8The energy splittings E(j )
mn = E(j )

m − E(j )
n are defined with respect

to the local qubit Hamiltonian Ĥj .
9The Schrieffer-Wolff transformation is not equivalent to the

standard Born-Oppenheimer approximation applied in our text.
Indeed, while the former explicitly depends on matrix elements
involving higher-energy excited states, the latter is only explicitly
dependent on the (scalar) ground-state energy of the coupler degree
of freedom.
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FIG. 3. Standard flux qubits with interaction mediated by an inductive coupler.

couplings to implement such nonstoquastic terms. We consider
these kinds of couplings in Sec. V C.

IV. TWO-QUBIT CASE AND LINEAR APPROXIMATIONS

In this section, we limit our consideration to the case of
two coupled flux qubits (Fig. 3). To compare our analysis to
previous work, we linearize the coupler-mediated interaction
potential Eg(ϕx) [Eq. (29)] about the qubit degrees of freedom
and show that it reproduces the standard picture of an
effective mutual inductance mediated by the coupler [7,10,11].
This result is perturbative in the qubit-coupler interaction
strength αj = Mj/Lj and is therefore equivalent to the weak
coupling limit. In the subsequent section, we will compare the
predictions of this linear theory to our nonlinear result. We
conclude this section with a different treatment of the qubit-
qubit coupling, valid when the qubit basis states have a definite
parity. Interestingly, where the linear theory treats the coupling
in terms of the second derivative of Eg , this (more precise)
theory expresses it as a second-order finite difference [27].
This distinction between continuous and discrete derivatives
allows us to bound the error between the linear theory and
nonlinear theory of the previous section.

A. Flux qubit Hamiltonian

We begin by describing the flux qubit Hamiltonian. The
circuit diagrams of these qubits are identical to those of the
coupler, although their characteristic frequencies are necessar-
ily smaller. Similarly to the coupler, they are characterized by
three parameters:10

ELj
= (�0/2π )2

Lj

, ζj = 2πe

�0

√
Lj

Cj

= 4πZj/RK,

βj = 2π

�0
LjI

(c)
j = EJj

/ELj
. (43)

10Other forms of flux qubit also exist [28–30]. Our analysis can be
similarly applied in these cases, with resulting numerical examples
showing the same qualitative trends.

Here, ELj
represents the characteristic energy of the

qubit’s linear inductor and the dimensionless parameter
ζj represents its characteristic impedance. These param-
eters are related to the LC plasma frequency through
fLC,j = 1

2π
√

Lj Cj

= 2ζjELj
/h. For typical flux qubit imple-

mentations of this type [14,31], ELj
/h is on the order of

hundreds of GHz while ζj is between 0.01 and 0.1, so that fLC,j

ranges from a few to tens of GHz. The parameter βj represents
the nonlinearity in the qubit circuit due to the Josephson
element. This parameter can vary between circuit designs,
and unlike the coupler, within our analysis it is relevant to
consider regimes where βj > 1 (corresponding to a multiwell
potential). The qubit Hamiltonian has an identical form to the
coupler Hamiltonian of Eq. (6):

Ĥj = ELj

[
4ζ 2

j

q̂2
j

2
+ (ϕ̂j − ϕjx)2

2
+ βj cos(ϕ̂j )

]
, (44)

where the qubit charge and flux variables satisfy [ϕ̂j ,q̂j ] = i

and ϕjx denotes an external flux bias. In the following sections,
the basis we use for the qubit subspace is the ground and first
excited state of Ĥj .

B. Linearization of the ground-state energy

To linearize the qubit-qubit interaction potential we assume
the weak coupling limit αj = Mj/Lj � 1. This allows us
to expand the coupler’s ground-state energy to second order
in αj , leading to a quadratic interaction within the Born-
Oppenheimer approximation. To begin, we use Eqs. (29) and
(44) to write the full Hamiltonian for the system∑

j

Ĥj + Eg(ϕ̂x), (45)

where ϕ̂x is defined as

ϕ̂x = ϕcx − α1ϕ̂1 − α2ϕ̂2 (46)

and

Eg(ϕx)/EL̃c
= βc cosβc

(ϕx)

+ ζc

√
1 − βc cos

[
ϕx + βc sinβc

(ϕx)
]
. (47)
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Here, ϕcx denotes the external flux applied to the coupler’s
inductive loop. We have also used Eq. (25) for the defini-
tion of the zero-point energy (it will not be necessary to
compute its Fourier series) and substituted Eq. (17) for ϕ(∗)

c .

We now expand the interaction potential Eg(ϕx) to second
order in the mutual inductance parameters αj (i.e., about
the point ϕx |αj =0 = ϕcx). Using the fact that ∂ϕ̂x

∂αj
= −ϕ̂j [cf.

Eq. (46)], from Eq. (45) we compute the effective Hamiltonian

Ĥeff =
∑

j

Ĥj +
[
E′

g(ϕcx)(ϕ̂x − ϕcx) + 1

2
E′′

g (ϕcx)(ϕ̂x − ϕcx)2

]
+ O(α3)

=
∑

j

[Ĥj − αjE
′
g(ϕcx)ϕ̂j ] + 1

2
E′′

g (ϕcx)
∑
j,k

αjαkϕ̂j ϕ̂k + O(α3). (48)

We use Eqs. (47) and (20) to compute the dependence of these terms on the coupler bias ϕcx :

E′
g(ϕcx)/EL̃c

= − βc sinβc
(ϕcx)

(
1 − ζc

2

{
1 − βc cos

[
ϕcx + βc sinβc

(ϕcx)
]}−3/2

)
, (49)

E′′
g (ϕcx)/EL̃c

= − βc cos
[
ϕcx + βc sinβc

(ϕcx)
]

1 − βc cos
[
ϕcx + βc sinβc

(ϕcx)
] + ζcβc

(
cos

[
ϕcx + βc sinβc

(ϕcx)
] − βc − βc sin2

βc
(ϕcx)/2

2
{
1 − βc cos

[
ϕcx + βc sinβc

(ϕcx)
]}7/2

)
. (50)

The first-order terms in Eq. (48) (proportional to E′
g) cor-

respond to local fields acting on individual qubits, while
the second-order terms are equivalent to an effective mutual
inductance between the qubits. Note that we have neglected
the constant term Eg(ϕcx) since it has a trivial effect on the
qubit dynamics.11

Let us compare the local field terms in Eq. (48) to the
quantum treatment in Ref. [[7], Sec. 4]. These terms (∝E′

g)
can be incorporated into each qubit Hamiltonian as a shift in
its external flux bias,

ϕjx → ϕjx + δϕjx,

δϕjx = −αj

E′
g(ϕcx)

ELj

= −Mj

L̃c

E′
g(ϕcx)/EL̃c

= 2π

�0
MjIc. (51)

In the last line we equated our result to Eq. (45) of Ref. [7],
which identifies δϕjx with the current through the coupler’s
inductor. Indeed, rearranging terms and using βc = 2π

�0
L̃cI

(c)
c

and Eq. (49), we get

Ic = I (c)
c sinβc

(ϕcx)[1 + O(ζc)]. (52)

As expected, the first (ζc-independent) term is exactly the
current flowing through the coupler’s Josephson junction. On
the other hand, the second term (proportional to ζc) has an
inherently quantum origin: the coupler’s zero-point energy
[Eq. (29)].

11On the other hand, it was not valid to ignore the potential minimum
when we computed the ground-state energy of the coupler. In that
case, the potential minimum Umin(ϕx) varied with the qubit flux
variables, whereas here it is completely independent of the qubits’
state.

The description of the coupling terms (∝E′′
g ) in Ĥeff

is analogous to that of the local fields. Writing the qubit
“current operator” as Îj = �0

2πLj
ϕ̂j , the interaction in Eq. (48)

is described in terms of an effective mutual inductance [7]

E′′
g (ϕcx)α1α2ϕ̂1ϕ̂2 = (M1M2χc)Î1Î2, (53)

where the coupler’s linear susceptibility is

χc = 1

L̃c

E′′
g (ϕcx)/EL̃c

. (54)

As it was for the coupler current Ic, the first term describing χc

[cf. Eq. (50)] is in agreement with previous works [7,10] and
corresponds to an essentially classical treatment. Again, the
ζc-dependent term is an added quantum contribution due to the
coupler’s zero-point energy. Finally, we note that Eq. (48) also
includes corrections proportional to χcϕ̂

2
j . These are a source

of “nonlinear cross talk” typical in flux qubit experiments and
have the effect of shifting each qubit’s linear inductance (and
therefore energy gap) [4,6,31].

To calculate the qubit dynamics within the linear theory,
we project the coupler-dependent terms of Ĥeff [Eq. (48)]
into the qubit subspace. We define the basis for this subspace
as the ground and first excited state of the qubit Hamiltonian
Ĥj . The local and coupling terms then become

glin
η1η2

= tr

{
σ (1)

η1
⊗ σ (2)

η2

4

[
E′

g(ϕcx)(α1ϕ̂1 + α2ϕ̂2)

+ 1

2
E′′

g (ϕcx)(α1ϕ̂1 + α2ϕ̂2)2

]}
, (55)

where E′
g and E′′

g are defined in Eqs. (49) and (50). For the
interaction term σ (1)

x ⊗ σ (2)
x , this expression simplifies to

glin
xx = E′′

g (ϕcx)α1α2〈00|ϕ̂1ϕ̂2|11〉
= χc(ϕcx)M1M2I

(1)
p I (2)

p , (56)
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where we have used Eq. (51) and defined the persistent
current12

I (j )
p = (Îj )01 = �0

2πLj

〈0|ϕ̂j |1〉. (57)

A similar calculation can be carried out for the local field
terms.

We stress that Eqs. (49) and (50) are approximations.
This is because, as with the nonlinear theory, the coupler’s
zero-point energy [the second term in Eq. (47)] is obtained
by linearizing the coupler Hamiltonian about its classical
minimum point. Indeed, the zero-point energy contributions
(∝ζc) diverge even more rapidly as βc → 1 (for ϕcx = 0). As
an alternative to this approximation, it is possible to compute
E′

g and E′′
g numerically using standard perturbation theory.

Specifically, for any eigenstate |ψm〉 of Ĥc (parametrized by
ϕx) with eigenvalue Em, we observe that

∂ϕx
Em/EL̃c

= 〈ψm|(∂ϕx
Ĥc/EL̃c

)|ψm〉
= 〈ψm|(ϕx − ϕ̂c)|ψm〉,∣∣∂ϕx

ψm

〉 = −(Em − Ĥc)−1∂ϕx
[(Em − Ĥc)]|ψm〉

= − EL̃c

Em − Ĥc

ϕ̂c|ψm〉. (58)

[Here, (Em − Ĥc)−1 denotes the pseudoinverse, which van-
ishes on |ψm〉.] Carrying out the second derivative for m = g

then gives

∂2
ϕx

Eg(ϕx)/EL̃c
= 1 + 2〈ψg|ϕ̂c

EL̃c

Eg − Ĥc

ϕ̂c|ψg〉. (59)

Thus, the first and second derivatives of Eg can be obtained
diagonalizing Ĥc and performing the above matrix operations.
While this calculation exactly accounts for the coupler’s zero-
point energy, it is computationally more expensive compared
to the analytic theories.

C. Coupling as a finite difference and errors in the linear theory

We now derive an approximate expression for the qubit-
qubit coupling that is more refined than the linear approx-
imation. What results is a nonlinear function of qubit flux
variables’ first and second moments. Whereas the linear theory
coupling is proportional to the second derivative of the coupler
energy (E′′

g ), this approximation expresses the coupling as
a second-order finite difference [27]. It thus accounts for
higher orders in the Taylor series of Eg . This produces a more
accurate approximation in the strong coupling limit that does
not diverge as βc → 1. This analysis will also allow us to
bound the error in the (analytic) linear theory.

We start by defining the “qubit subspace” of the qubit
Hamiltonians. We set the basis as the ground and first excited

12In the absence of bias ϕjx , the Ĥj eigenstates have either
even or odd parity wave functions. This is in contrast to the
“persistent current” basis commonly used in double-well flux qubits,
which correspond to |±〉 = 1√

2
(|0〉 ± |1〉). In that case, we would

interchange σx ↔ σz and redefine I (j )
p → 1

2 [(Îj )00 − (Îj )11].

states of each qubit’s Hamiltonian. For simplicity, we assume
identical qubits and also that the qubits’ local potential energy
functions are symmetric [e.g., zero external bias in Eq. (44)].
This is reflected in the symmetry of the ground- and excited-
state wave functions. The wave functions can then be written
in terms of a reference wave function

〈ϕ|j 〉 = ψr (ϕ − ϕp) + (−1)jψr (−ϕ − ϕp)√
2

, (60)

where j = 0,1 denotes the eigenstate index, as well as the
parity, of each wave function. The (normalized) reference
wave function ψr (ϕ − ϕp) = 1√

2
(〈ϕ|0〉 + 〈ϕ|1〉) is defined

with respect to an offset ϕp so that it is approximately centered
at the origin: ∫

dϕ ψ2
r (ϕ) = 1,

(61)∫
dϕ ψ2

r (ϕ)ϕ = 0.

The flux offset ϕp in Eq. (60) is typically associated with the
persistent current of the flux qubit

ϕp = 〈0|ϕ̂|1〉 = 2π

�0
LjIp. (62)

In the case of a two-well qubit potential, we can intuitively
think of ψr (ϕ − ϕp) as a having a single peak approximately
centered at one of the local minima (near the point ϕ = ϕp). It
will also prove useful to consider the second moment of ϕ̂:

2ζeff ≡
∫

dϕ ψ2
r (ϕ)ϕ2 = 〈0|(ϕ̂ − ϕp)2|0〉 + 〈1|(ϕ̂ − ϕp)2|1〉

2
.

(63)

The effective impedance ζeff thus determines the characteristic
width of ψr .13

We now express the xx coupling predicted by our nonlinear
theory in terms of the reference wave function. Since the
eigenstate wave functions are real valued, this coupling is equal
to the matrix element 〈00|Ĥint|11〉. Using Ĥint = Eg[ϕcx −
α(ϕ̂1 + ϕ̂2)], we substitute Eq. (60) and integrate over the flux
variables to get

gxx =
∫

dϕ1 dϕ2 〈0|ϕ1〉〈ϕ1|1〉〈0|ϕ2〉〈ϕ2|1〉

× Eg[ϕcx − α(ϕ1 + ϕ2)]

= 1

4

∫
dϕ1 dϕ2

[
ψ2

r (ϕ1 − ϕp) − ψ2
r (ϕ1 + ϕp)

]
× [

ψ2
r (ϕ2 − ϕp) − ψ2

r (ϕ2 + ϕp)
]

× Eg[ϕcx − α(ϕ1 + ϕ2)]

= 1

4

∫
dϕ1 dϕ2 ψ2

r (ϕ1)ψ2
r (ϕ2) EFD

g (ϕx). (64)

13In the harmonic limit βj = 0 [cf. Eq. (44)], this definition of the
effective impedance coincides with the qubit impedance ζj = ζeff .
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In the last line we have shifted the flux variables ϕ1,ϕ2 by ±ϕp

and introduced the second-order finite difference of Eg ,

EFD
g (ϕx) = Eg(ϕx + 2αϕp) + Eg(ϕx − 2αϕp) − 2Eg(ϕx),

(65)

where again we have written the total external coupler flux as

ϕx = ϕcx − α(ϕ1 + ϕ2).

Introducing the notation 〈f (ϕ̂1,ϕ̂2)〉r,r = ∫
dϕ1 dϕ2 ψ2

r (ϕ1)
ψ2

r (ϕ2)f (ϕ1,ϕ2), we see that the coupling gxx can be written
as the average of the finite difference of Eg with respect to the
reference wave function ψr :

gxx = 1
4

〈
EFD

g (ϕ̂x)
〉
r,r

. (66)

This definition for gxx is equivalent to the nonlinear theory
result [Eq. (42)].

We can approximate the coupling by assuming the reference
wave function ψr (ϕ) is a Gaussian. Since its first two moments
satisfy 〈ϕ̂〉r = 0 and 〈ϕ̂2〉r = 2ζeff , we have

ψGauss
r (ϕ) = (2πζeff)

−1/4 exp

(
− ϕ2

4ζeff

)
. (67)

Substituting the explicit Fourier series (29) into Eq. (66) then
gives a sum of Gaussian integrals

gGauss
xx = EL̃c

4

∑
ν

Bνe
iνϕcx (eiν2αϕp + e−iν2αϕp − 2)

× 〈e−iνα(ϕ̂1+ϕ̂2)〉r,r
= −EL̃c

∑
ν

Bνe
iνϕcx sin2(ναϕp)e−α2ν2ζeff . (68)

This approximation allows us to still incorporate higher-order
corrections in αj while avoiding the need for computing any
matrix elements beyond those in ϕp and ζeff .

We can recover the linear theory result of the previous
section by making two approximations on Eq. (66). First,
we notice that EFD

g (ϕx)/(2αϕp)2 is the finite-difference
approximation to the second derivative

EFD
g (ϕx) = E′′

g (ϕx)(2αϕp)2 + R1, (69)

where the remainder term R1 is bounded by14

|R1| � 2
(2αϕp)4

4!
max

|δϕx |�2αϕp

∣∣E(4)
g (ϕx + δϕx)

∣∣
� 2

(2αϕp)4

4!
max

ϕx

∣∣E(4)
g (ϕx)

∣∣. (70)

Next, we expand E′′
g (ϕx) to first order about the point ϕx = ϕcx ,

E′′
g (ϕx) = E′′

g (ϕcx) − α(ϕ1 + ϕ2)E(3)
g (ϕcx) + R2, (71)

14This bound can be derived by Taylor expanding Eg(ϕx ± 2αϕp)
to third order and using the Lagrange form for the (fourth order)
remainder. Substituting into Eq. (65) causes the zeroth-, first-, and
third-order terms to cancel.

where the second remainder term is similarly bounded by

|R2| � α2(ϕ1 + ϕ2)2

2
max

|δϕx |�|α(ϕ1+ϕ2)|
∣∣E(4)

g (ϕcx + δϕx)
∣∣

� α2(ϕ1 + ϕ2)2

2
max

ϕx

∣∣E(4)
g (ϕx)

∣∣. (72)

Finally, we substitute Eqs. (69) and (71) into (66) to get15

gxx = 1
4 [(2αϕp)2E′′

g (ϕcx) + 〈(2αϕp)2R̂2 + R̂1〉r,r ]. (73)

The first term on the right-hand side is exactly the linear theory
result glin

xx [Eq. (56)]. Using Eqs. (70) and (72) we can also
bound the error in the linear theory∣∣gxx − glin

xx

∣∣ � α4ϕ2
p

(
2ζeff + 1

3ϕ2
p

)
max

ϕx

∣∣E(4)
g (ϕx)

∣∣. (74)

Further, if we only consider the classical part of Eg(ϕx) (i.e.,
set ζc → 0), it is straightforward but tedious16 to compute the
maximum of E(4)

g (ϕx):

max
ϕx

∣∣E(4)
g (ϕx)

∣∣ ζc=0= ∣∣E(4)
g (0)

∣∣ = EL̃c
βc

(1 − βc)4
. (75)

Hence, assuming the quantum correction to Eg is small, glin
xx

approximates gxx well in the limits

EL̃c
βc

(
α

1 − βc

)4

ϕ2
p

(
2ζeff + 1

3
ϕ2

p

)
� ∣∣glin

xx

∣∣. (76)

This affirms physical intuition regarding the validity of
the linear, analytic approximation: it is comparable to the
nonlinear theory in the limits of weak qubit-coupler interaction
(α = Mj/Lj � 1), small qubit persistent current (Ip ∝ ϕp �
1), and/or coupler nonlinearity βc not too close to one.

V. NUMERICAL STUDY

We have carried out a numerical study to evaluate the
different approximations described in the text. Our first goal is
to validate the Born-Oppenheimer approximation. We numer-
ically test the breakdown of this approximation in Sec. V A.
The following section focuses on the different theories used to
approximate the coupler ground-state energy. The main result
of our work is the exact, analytic expression for the classical
part of Eg (i.e., the classical minimum of Hc) combined
with the harmonic approximation to the coupler zero-point
energy [Eq. (23)]. We refer to this treatment as nonlinear,
analytic (NA) since it expresses Eg as a Fourier series in ϕx .
As a simplification, we may Taylor expand our approximate
expression to second order about the point ϕx = ϕcx (i.e., αj =
0) to get a linear, analytic (LA) form for Eg . Alternatively,
instead of using the analytic expression for the first and second
derivatives of Eg , we may numerically compute them about
ϕx = ϕcx using perturbation theory [see Eq. (58)]. We call
this approximation to Eg the linear, numerical (LN) theory.
Our numerics will focus on distinguishing these theories.
Specifically, we investigate the parameter regimes where each

15The third derivative term vanishes since the reference function is
centered at zero, 〈ϕ̂1 + ϕ̂2〉r,r = 0.

16Take two derivatives of (50) using (20).
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theory is valid and compare their effective qubit dynamics.
Finally, we calculate the size of some nonstoquastic and 3-local
interactions predicted by the nonlinear theory.

A. Breakdown of Born-Oppenheimer approximation

We first numerically probe the limits of the Born-
Oppenheimer approximation.17 To do so, we have calculated
the exact, low-energy spectrum of two flux qubits interacting
with a coupler circuit (treated as an independent degree of
freedom). This is done by representing the full Hamiltonian
in the harmonic oscillator eigenstate basis (see Appendix
Sec. A 1 for details). We then compare the spectrum to the
one predicted under the Born-Oppenheimer approximation.
That is, we consider the Hamiltonian ĤBO = Ĥ1 + Ĥ2 + Ĥint,
where Ĥj is the local Hamiltonian for qubit j and Ĥint =
Eg(ϕ̂x) is the qubit-dependent ground-state energy of the
coupler. As a reference, we consider a parameter regime where
all of our approximations work well: ζj = ζc = 0.05, αj =
0.05, βc = 0.75, EL̃c

/ELj
= 3, and βj � 0.5. This can be

seen in Fig. 5, which shows the different spectrum calculations
at the maximum coupling bias point ϕcx = ϕjx = 0. Tuning
the coupler parameters far beyond this regime causes the
Born-Oppenheimer approximation to fail.

We modify the coupler circuit parameters away from
the reference point to observe their effect on the Born-
Oppenheimer approximation. Generally, we find that Born-
Oppenheimer is valid when the coupler Hamiltonian’s ground-
state energy gap is much larger than the qubit energy gaps.
Since the coupler energy gap scales approximately linearly
with ζc (for fixed EL̃c

), we can test this intuition by decreasing
the coupler impedance.18 Comparing Fig. 19 to the reference
regime (Fig. 5), we see that decreasing ζc from 0.05 to 0.02
causes all of the Born-Oppenheimer theories to break down.
The theory also breaks down when the coupling strength αj =
Mj/Lj is too large because a sufficiently strong qubit-coupler
interaction allows the coupler to populate excited states beyond
its ground state (cf. Sec. A 8). This is seen in Fig. 17, where we
increase the value of αj from 0.05 to 0.1.19 We also consider
the effect of coupler nonlinearity βc. In the limit of zero flux
bias (ϕcx = 0 mod 2π ) corresponding to maximum coupling,
the coupler gap closes exponentially quickly with increasing
βc, and therefore the Born-Oppenheimer approximation breaks
down.20 In Fig. 20 we see that increasing βc from 0.75 to 0.95

17Most of the circuit parameters affect this approximation, so we can
only note some qualitative trends. Detailed, quantitative discussions
of corrections to Born-Oppenheimer are in the Appendix, Secs. A 7
and A 8.

18At the reference parameters and ϕx = 0, the ground-state energy
gap of Ĥc is ∼5.32 × 10−2EL̃c

= 1.60 × 10−1ELj
. Decreasing ζc

to 0.02 decreases the gap to ∼2.06 × 10−2EL̃c
= 6.18 × 10−2ELj

,
which is comparable to the observed qubit spectra.

19An alternative reason for the mismatch in Fig. 17 is that our
approximation to Eg is inaccurate for large αj . But, if that were the
case, the nonlinear, analytic (NA) theory should still work since it
describes Eg to all orders in αj .

20How quickly the gap closes depends on the coupler impedance. A
larger impedance means exponential decay in the gap starts at larger
values of βc.

Increase: EL̃c
/ELj αj ζc βc |ϕcx|

Born-Oppenheimer better∗ worse∗ better worse better
linear analytic (LA) Eg N/A worse worse worse better

linear numerical (LN) Eg N/A worse N/A worse better
nonlinear analytic (NA) Eg N/A N/A worse worse better

FIG. 4. The response of various approximations to increases in
specific circuit parameters. ∗: for k identical qubits, the mutual induc-
tance is physically bounded as Mj � 1

k

√
LjLc, so αj = Mj/Lj �

1
k
(EL̃c

/ELj
)−1/2. Physically, increasing (EL̃c

/ELj
) (by decreasing the

coupler length scale) should correspond to a proportional decrease
in Mj .

causes all of our theories to incorrectly predict the spectrum.
However, in this case the mismatch in the spectrum could
also be due to errors in the approximate representation of Eg ,
discussed below. Despite the observed spectrum mismatch,
Born-Oppenheimer can still hold at large nonlinearity if the
bias ϕcx is finite: as seen in Fig. 10, for ϕcx � 0.02 × 2π

there is good agreement between the exact spectrum and
the one predicted by the NA theory. For sufficiently large
ϕcx , the spectra of all theories for Eg agree with the exact
spectrum (cf. Fig. 16). Finally, the inductive energy EL̃c

sets
the overall energy scale of the coupler, so it scales linearly
with the coupler gap and increasing this parameter should
improve the Born-Oppenheimer approximation. Although EL̃c

also sets the energy scale of the coupling, we mention that for
k-coupled qubits the coupling strength αj ∝ Mj is bounded by
1
k

√
ELj

/EL̃c
, and for typical circuit implementations it should

scale as ∝E−1
L̃c

. A qualitative summary of the observed trends
can be found in Fig. 4.

B. Comparison of linear and nonlinear theories

We now consider the parameter regimes that distinguish
the different theories modeling Eg . These regimes can be
explained by the limitations of each theory’s approximation.
For example, while it is numerically exact, the LN theory
correctly describes the effective potential to only second order
in αj . Hence, we expect it to be inaccurate where the order
O(α3) terms of Eg(ϕx) are relevant. On the other hand, the
NA theory incorporates the effect of α to all orders, but uses
the harmonic approximation to describe the zero-point energy
component of Eg . In the limit βc → 1 this approximation
breaks down,21 although the zero-point energy is a relatively
small contribution to Eg (for small impedance ζc). The LA
theory suffers from both limitations and should only be
accurate in the limit where both previous theories agree;
thus, we will not focus on this theory in our comparisons.
Qualitatively, the breakdown of each approximation occurs in
the limit of large nonlinearity βc, coupling αj , and near the
maximal coupling bias ϕcx = 0. When all of these conditions

21Indeed, the harmonic approximation to the coupler zero-point
energy is EL̃c

ζc

√
1 − βc cos(ϕ(∗)

c ), where ϕ(∗)
c = ϕx + βc sinβc

(ϕx) is
the classical minimum point determined by the total external bias ϕx .
The limit ϕx → 0, βc → 1 causes the harmonic zero-point energy to
vanish.

052333-12



TUNABLE INDUCTIVE COUPLING OF SUPERCONDUCTING . . . PHYSICAL REVIEW A 95, 052333 (2017)

0.8 0.9 1 1.1 1.2 1.3
βj

0

0.01

0.02

0.03

0.04

0.05
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0.08

0.09

0.1
βc = 0.75, ϕcx = 0 × 2π, ζc = 0.05, EL̃c

/ELj
= 3, ζj = 0.05, αj = 0.05

Ej0/EL (Exact)
Ej0/EL (NA)
Ej0/EL (LA)
Ej0/EL (LN)

FIG. 5. All Born-Oppenheimer theories accurately predict the
low-energy spectra in the “reference” regime. We consider a single
coupler circuit interacting with two identical flux qubits for varying
qubit nonlinearity βj . (All circuits are at zero bias, ϕcx = ϕjx = 0.)
Solid curves represent exact numerical diagonalization of the full
Hamiltonian [Eq. (4)]. The black dashed, dark blue crossed, and
light green dotted curves correspond to the nonlinear analytic (NA),
linear analytic (LA), and linear numerical (LN) theories of the
Born-Oppenheimer approximation, respectively. (See the Appendix,
Sec. A 1 for a detailed description of each calculation.)

hold, both the LN and NA theories are insufficient to describe
the interaction. We shall also find intermediate regimes where
one of these theories is more accurate than the other. One
regime where the NA theory holds while the linear theories do
not (βc = 0.95, nonzero ϕcx) corresponds to non-negligible
nonstoquastic and k-local interactions (discussed in the next
section).

The qubit dynamics predicted by both LN and NA theories
can be inaccurate when the coupler is tuned to maximum

coupling ϕcx = 0. This is true, to a small extent, even in
the reference regime (βc = 0.75, αj = 0.05, and ζc = 0.05,
Fig. 5) where all theories predict the spectrum accurately. For
these coupler parameters, the qubit dynamics (i.e., the qubit
Hamiltonian coefficients gη̄) predicted by each theory are close
to equal at almost every coupler bias ϕcx (cf. Fig. 6). However,
there is a slight discrepancy near the maximal coupling limit
|ϕcx | � 0.01 × 2π (cf. inset of Fig. 6), which suggests that at
least one theory is inadequate. To investigate this discrepancy,
we compute the xx couplings for the NA and LN theories at
varying coupler impedances near ϕcx = 0. We first consider
the classical limit of small coupler impedance ζc → 0. The
zero-point energy component of Eg vanishes in this limit, so
that the NA prediction becomes exact. As seen in Fig. 7(a),
the NA and LN predictions still disagree in this limit. Thus,
the LN theory is slightly inaccurate in predicting the effect
on the qubit dynamics of the classical component of Eg .
Since this contribution to Eg does not change when increasing
ζc, the small error in the LN predictions persists even for
ζc = 0.05.22 On the other hand, we can also consider the
weak coupling limit αj � 1, where the LN theory is exact
[up to order O(α3)]. In this limit, the two theories still only
agree when we also take the classical limit of small coupler
impedance ζc = 0.01 [cf. Fig. 7(b)]. This indicates that the
NA theory also has a small but non-negligible error due to
its approximation of the coupler zero-point energy (which is
approximately proportional to ζc). Thus, near the maximum
coupling bias ϕcx = 0, both theories may be slightly inaccurate
in predicting the qubit dynamics. Yet decreasing the coupler
nonlinearity from βc = 0.75 to 0.5 causes the predictions
of both theories to agree, even at maximum coupling bias
ϕcx = 0 [Fig. 7(c)]. This is not surprising, as the harmonic
approximation to the zero-point energy improves as the coupler
nonlinearity decreases, thereby improving the accuracy of the

22Note that the Born-Oppenheimer approximation is only valid for
nonzero ζc. The predicted coupling gxx in the ζc → 0 limit therefore
only illustrates the classical contribution to this coupling.
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FIG. 6. Excluding a small discrepancy near the maximal coupling bias ϕcx = 0, all Born-Oppenheimer theories predict the same qubit
dynamics in the reference regime. Shown are coupler-induced qubit coefficients for Ĥint = Eg(ϕ̂x) at the reference parameters (Fig. 5, with
βj = 1.05). The solid dark blue, dashed magenta, and dotted black curves correspond to the predictions of the nonlinear analytic (NA), linear
analytic (LA), and linear numerical (LN) theories, respectively. Plots (a), (b), and (c) correspond to the xx, xI , and zI terms, respectively. All
calculations were carried out in the “parity” basis (see the Appendix, Sec. A 1 for more details).
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FIG. 7. Discrepancy between the different Born-Oppenheimer theories near the maximal coupling bias, ϕcx = 0. Solid curves: xx coupling
predicted by the nonlinear analytic (NA) theory, for coupler impedance ζc = 0.05 (dark blue), ζc = 0.03 (magenta), and ζc = 0.01 (light
orange). Overlayed dotted curves correspond to the xx coupling predicted by the linear numerical (LN) theory at the same coupler parameters.
The top curves in plot (a) correspond to the “reference” coupler parameters described in the text (βc = 0.75, αj = 0.05, ζc = 0.05). The curves
in plots (b) and (c) correspond to the weak coupling (αj → 0.01) and low nonlinearity βc → 0.5 limits. In all calculations, the qubit parameters
were fixed at βj = 1.05, ζj = 0.05, ϕjx = 0. Since the “parity” basis was used to define the Hamiltonian coefficients, the gxx interaction is
strictly stoquastic (i.e., it is a zz coupling in the computational, “persistent current” basis). All calculations were carried out as done for Fig. 6
(see the Appendix, Sec. A 1 for more details).

analytic theories23 (cf. Fig. 15). Similarly, the derivatives of the
LA theory [Eqs. (49) and (50)] suggest that the higher-order
corrections in α become less important for smaller βc. While
both theories agree in this limit, we also see in Fig. 7(c) that
the coupler zero-point energy still has a significant effect on
the observed coupling. It is therefore important to account
for nonzero coupler impedance, especially for high-precision
modeling and calibration of inductively coupled circuits.

The regime of high coupler impedance draws a sharper
contrast between the NA and LN theories. In Fig. 8, we
compute the energy spectrum of the coupled qubits but increase
the impedance ζc from 0.05 to 0.1. This is expected to improve
the accuracy of the Born-Oppenheimer approximation since
the coupler gap is approximately doubled. At the same
time, it should worsen the NA (and LA) theory because the
harmonic approximation to the zero-point energy (the quantum
contribution to Eg) becomes more significant (cf. the inset
of Fig. 2). Since the LN theory represents the zero-point
energy numerically exactly (at least to second order in α), it is
insensitive to this change. We note that this discrepancy only
exists near ϕcx = 0, since away from this point the NA theory’s
harmonic approximation improves (cf. Fig. 15). Indeed, for
ϕcx � 0.05 × 2π we find that the predicted qubit dynamics
(coefficients gη̄) of each theory all agree, as seen in Fig. 9.

The regime of large coupler nonlinearity allows us to
draw another contrast between the two theories. As noted
previously, at the maximum coupling point ϕcx = 0, neither
theory represents the spectrum accurately (cf. Fig. 20) when
we increase βc from 0.75 to 0.95. Yet, when we bias the

23To see why this is the case, we consider the coupler Hamiltonian
linearized about its classical minimum point [Eq. (23)]. At bias
ϕx = 0, the next leading-order correction is quartic, with effective po-
tential (1−βc)

2 (ϕ̂c − ϕ∗
c )2 + βc

24 (ϕ̂c − ϕ∗
c )4 + O(α6). The higher-order

corrections are therefore small for βc = 0.5.

coupler away from this point, we find that spectrum predicted
by the nonlinear (NA) theory agrees with exact diagonalization
past the bias point ϕcx � 0.01 × 2π (cf. Fig. 10). This is
explained by noting that ϕcx = 0.01 × 2π is approximately
point where the harmonic approximation to the coupler zero-
point energy becomes accurate (up to an additive constant,
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Ej0/EL (NA)
Ej0/EL (LA)
Ej0/EL (LN)

FIG. 8. Increasing coupler impedance decreases the accuracy of
the analytic (NA and LA) theories, while leaving the numerical
theory unchanged. We consider the low-energy spectrum of two
coupled flux qubits, but double the coupler impedance relative to
the reference regime (Fig. 5). Solid curves represent exact numerical
diagonalization of the full Hamiltonian [Eq. (4)]. The black dashed,
dark blue crossed, and light green dotted curves correspond to the
nonlinear analytic (NA), linear analytic (LA), and linear numerical
(LN) theories of the Born-Oppenheimer approximation, respectively.
(See the Appendix, Sec. A 1 for a detailed description of each
calculation.)
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FIG. 9. Increasing coupler impedance ζc increases discrepancy between the analytic and numerical theories (relative to the reference
regime, Fig. 6). For xx and zI terms [plots (a) and (c)], a discrepancy between analytic (NA and LA, solid dark blue and dashed magenta)
and numerical (NL, dotted black) theories exists near maximum coupling ϕcx = 0. The theories match closely for the local xI term [plot (b)].
Calculations were carried out for qubit parameters ζj = αj = 0.05, βj = 1.05, ϕjx = 0 and coupler parameters βc = 0.75, ζc = 0.1 (twice
the impedance of the reference regime). All calculations were carried out in the parity basis (see the Appendix, Sec. A 1 for more details).

as seen in Fig. 15). Indeed, this also explains why, for ϕcx �
0.01 × 2π , both analytic and numerical linear theories (LA
and LN) predict approximately the same spectrum in Fig. 10.

0 0.005 0.01 0.015 0.02
ϕcx

0

0.02

0.04

0.06

0.08

0.1

0.12
βc = 0.95, ζc = 0.05, EL̃c

/ELj
= 3, ζj = 0.05, βj = 1.05, αj = 0.05

Ej0/EL (Exact)
Ej0/EL (NA)
Ej0/EL (LA)
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FIG. 10. Born-Oppenheimer theories fail to predict the low-
energy spectrum for high coupler nonlinearity (near ϕcx = 0). We
consider a single coupler circuit interacting with two identical flux
qubits for varying coupler bias ϕcx � 1. Circuit parameters are
identical to the reference regime (Fig. 5), except qubit nonlinearity is
fixed at βc = 1.05 and coupler nonlinearity βc is increased from 0.75
to 0.95. Solid curves represent exact numerical diagonalization of
the full Hamiltonian [Eq. (4)]. The black dashed, dark blue crossed,
and light green dotted curves correspond to the nonlinear analytic
(NA), linear analytic (LA), and linear numerical (LN) theories of
the Born-Oppenheimer approximation, respectively. The NA theory
agrees well with exact diagonalization for ϕcx � 0.01 × 2π . The large
oscillations observed in the LA spectrum are due to the divergences
in the analytic expressions for the first and second derivatives of Eg as
βc → 1 [Eqs. (49) and (50)]. Figure 16 shows the same calculation for
a larger range of bias values ϕcx ∈ [0,0.2] × 2π . (See the Appendix,
Sec. A 1 for a detailed description of each calculation.)

Importantly, there is an intermediate regime (0.01 × 2π �
ϕcx � 0.02 × 2π ) where the NA theory correctly predicts
the spectrum while both LN and LA theories do not.24 This
stresses the importance of including higher-order terms when
describing the coupler-mediated interaction, as there is also
a discrepancy in the predicted qubit dynamics (cf. Fig. 11) in
this regime. Interestingly, this regime is also where we observe
non-negligible nonstoquastic interactions between the qubits.
We also note that, although we do not expect them to accurately
predict the observed coupling gxx at ϕcx ≈ 0, both NA and LN
in Fig. 11 do not diverge in the high nonlinearity limit. This is
in contrast to the linear, analytic (LA) theory, which predicts
an arbitrarily large value as βc → 1, even coming from the
classical contribution to Eg [Eqs. (50) and (56)].

The strong coupling (αj ) limit shows the same contrast
between the NA and LN theories as the large nonlinearity
limit. Again, while we find that at maximum coupling bias
(ϕcx = 0) and αj = 0.1 neither theory is adequate (Fig. 17),
the NA theory accurately predicts the low-energy spectrum
even for small, nonzero bias ϕcx (Fig. 18). There is also a
similar contrast in the predicted qubit dynamics, as seen in
Fig. 12.

C. Three-body and nonstoquastic interactions

We have also calculated the strength of some 3-local and
nonstoquastic interactions predicted by our nonlinear theory.
Such interactions are absent in linear theories: The quadratic
representation of Eg precludes any k-local qubit couplings
with k > 2. Similarly, in the parity qubit basis, an interaction
of the form ϕ̂1 ⊗ ϕ̂2 can only produce xx couplings due to
symmetry considerations.25 In order to ensure the validity of
our results, we assume coupler and qubit parameter regimes

24For sufficiently large biases, all theories correctly predict the
circuit spectrum and qubit dynamics. This can be seen in Figs. 16
and 11).

25Equivalently, in the standard (persistent current) basis, we would
only observe zz-type couplings.
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FIG. 11. Increasing coupler nonlinearity βc increases discrepancy between the analytic and numerical theories (relative to the reference
regime, Fig. 6). Plots (a), (b), and (c) correspond to the xx, xI , and zI terms, respectively, with coupler nonlinearity increased from βc = 0.75 to
0.95 relative to the reference regime. The solid dark blue, dashed magenta, and dotted black curves correspond to the predictions of the nonlinear
analytic (NA), linear analytic (LA), and linear numerical (LN) theories, respectively. For ϕcx � 0.01 × 2π none of the theories are expected to
be accurate (Fig. 10). The LA and LN theories agree for ϕcx � 0.01 × 2π , indicating that the harmonic approximation to the zero-point energy
converges (Fig. 15). Thus, the NL theory (making only the harmonic approximation) is expected to be accurate for ϕcx � 0.01 × 2π . The
discrepancy between the NA and LN theories for ϕcx ≈ 0.01 × 2π indicates that higher-order terms neglected by the LN theory are significant.
The divergence of the LA calculation is due to the divergences in the analytic expressions for the first and second derivatives of Eg as βc → 1
[Eqs. (49) and (50)]. All calculations were carried out in the parity basis. To account for higher coupler nonlinearity, the sums used in the NA
calculated [Eq. (42)] were truncated at |ν| � 200 (see the Appendix, Sec. A 1 for more details).

for which the nonlinear, analytic Hamiltonian (31) correctly
reproduces the two-qubit spectrum. We note that there are other
proposals in the literature for exotic couplings involving super-
conducting qubits [32–34]. Although the physical mechanisms
driving these exotic couplings differ from those observed in
our work, a key similarity is the need for nonlinearity in
the coupler device. Indeed, the interactions predicted by our
analytic theory vanish in the limit of zero coupler nonlinearity
βc → 0.

In Fig. 13 we consider a system of three flux qubits
interacting with a single coupler circuit and compare the
three-qubit coupling σx ⊗ σx ⊗ σx to analogous 1-local and
2-local terms. Since we have not verified that the exact
spectrum of the three-qubit system matches the one predicted

by our approximations, we have chosen a more conservative
value for the coupler nonlinearity (βc = 0.5) relative to the
reference regime discussed in the previous section (βc =
0.75).26 We find that the maximum three-body coupling
(∼1.71 × 10−5EL̃c

) is more than an order of magni-
tude smaller than maximum two-body coupling (∼5.35 ×
10−4EL̃c

). For qubit energy scale ELj
= 200 GHz and given

EL̃c
/ELj

= 3, these correspond to maximum couplings of
gxxx ∼ 10.3 MHz and gxxI = 321 MHz, compared to the bare

26At the maximal coupling point ϕcx = 0 and impedance ζc = 0.05,
this change increases the ground-state energy gap of Ĥc from 5.32 ×
10−2EL̃c

to 7.19 × 10−2EL̃c
.
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FIG. 12. Coupler-induced qubit coefficients for Ĥint = Eg(ϕ̂x) at strong coupling αj . Shown are coupler-induced qubit coefficients for
Ĥint = Eg(ϕ̂x) in the strong coupling limit (Fig. 5, with βj = 1.05 and αj increased from 0.05 to 0.1). The solid dark blue, dashed magenta,
and dotted black curves correspond to the predictions of the nonlinear analytic (NA), linear analytic (LA), and linear numerical (LN) theories,
respectively. Plots (a), (b), and (c) correspond to the xx, xI , and zI terms, respectively. All calculations were carried out in the parity basis
(see the Appendix, Sec. A 1 for more details).
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FIG. 13. Coupler-mediated 3-local interactions are small for
typical parameter regimes. Comparison of k-qubit x-type couplings
for three interacting qubits (in the parity basis): the value of gη̄ was
computed for η̄ = (x,I,I ) (dark blue), (x,x,I ) (magenta), and (x,x,x)
(light orange) using the nonlinear, analytic theory (Sec. III). (Inset is a
semilogarithmic plot of |gη̄|/EL̃c

.) The qubit and coupler parameters
were βj = 1.05, ζj = 0.05, and ϕjx = 0 and βc = 0.5 and ζc = 0.05,
respectively. All calculations were carried out in the parity basis (see
the Appendix, Sec. A 1 for more details).

(coupler-free) qubit splitting of 884 MHz. We note that the
computed 3-local interaction can be increased significantly
by modifying the circuit parameters,27 although one must be
careful that the approximations we have discussed are still
valid.

The nonlinear theory predicts small but non-negligible
nonstoquastic couplings. These couplings are of the form zz

or xz in our chosen parity basis. Like the typical (stoquastic)
xx couplings, we find that these terms increase with coupler
nonlinearity βc.28 Even so, for even large coupler nonlinearity
βc = 0.95, the nonstoquastic terms tend to be small compared
to the xx couplings, as seen in Fig. 14. As noted previously,
for such large βc the nonlinear, analytic theory is only accurate
away from ϕcx = 0. Yet, this region is specifically where
nonstoquastic interactions are non-negligible (see inset). These
interactions are of order 1 − 2 × 10−4EL̃c

, even for ϕcx �
0.01 × 2π where the nonlinear theory correctly predicts the
qubit spectrum (Fig. 10). For the given circuit parameters

27For example, increasing βc from 0.5 to 0.75 increases the
maximum 3-local coupling approximately fivefold, to gxxx ∼ 8.63 ×
10−5EL̃c

= 51.8 MHz. This occurs at bias ϕcx ∼ 0.0272 × 2π , where
the approximation to the zero-point energy is expected to hold well
(cf. Fig. 15).

28This can be explained from the generic coupling formula (42):
the local z Pauli coefficients cz(ναj ) [Eq. (39)] vanish at ν = 0 and
peak in magnitude for finite values of ν. The Fourier coefficients Bν

defining the interaction decay exponentially with ν but also tend to
increase with increasing βc. The coupling itself is a sum of products
of these terms, so increasing the nonlinearity tends to increase the
magnitude of gzz.
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FIG. 14. The nonlinear theory predicts small but non-negligible
nonstoquastic couplings. Main figure: comparison of two-qubit
couplings depending on coupling type. (Inset is the same plot
for the reduced bias range ϕcx ∈ [0,0.04] × 2π , focused on only
the xz and zz couplings.) The value of gη̄ was computed for
η̄ = (x,x), (x,z), and (z,z). The physical and numerical parameters
used in this calculation were identical to those in Fig. 13, except that
we assume a coupler βc = 0.95. Note that the interaction Hamiltonian
of the nonlinear, analytic (NA) theory closely predicts the two-qubit
spectrum only for ϕcx � 0.01 × 2π (cf. Fig. 10). All calculations
were carried out in the parity basis, so that the nonstoquastic
interactions correspond to (x,z) and (z,z). To account for higher
coupler nonlinearity, the sums used in the NA calculated [Eq. (42)]
were truncated at |ν| � 200 (see the Appendix, Sec. A 1 for more
details).

and typical ELj
= 200 GHz, this corresponds to xz and zz

interactions on the order of 100 MHz.

VI. CONCLUSIONS

We have presented a nonperturbative analysis of a generic
inductive coupler circuit within the Born-Oppenheimer ap-
proximation. This provides an explicit and efficiently com-
putable Fourier series for any term in the effective qubit-qubit
interaction Hamiltonian. We also account for finite coupler
impedance (associated with the coupler’s zero-point energy),
which gives small but non-negligible quantum corrections to
the predicted qubit Hamiltonian. Our results apply when-
ever the Born-Oppenheimer approximation and harmonic
approximation to the coupler ground-state energy are valid
(otherwise, there will be deviations as outlined in the numerical
study). Importantly, the regime of large coupler nonlinearity
and strong coupling Mj/Lj where our results correctly
predict the low-energy spectrum while deviating significantly
from standard linear theories. This regime corresponds to
large observed qubit-qubit couplings, as well as small but
non-negligible nonstoquastic interactions. Our analysis is
also able to accommodate k-body interactions with k > 2.
Although for the considered circuit parameters, both k-body
and nonstoquastic interactions are weak, our theory provides
a means to optimize these interactions without resorting to
perturbative constructions. As another avenue of investigation,
in the Appendix, Sec. A 9 we show how our theory can be
generalized to more complex circuit configurations. We expect
that our work will be of use in more accurately modeling
existing superconducting qubit devices.
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APPENDIX

1. Numerical methods

We briefly describe the numerical methods used to create
Figs. 15–20. In all calculations involving matrix diagonaliza-
tion, the circuit Hamiltonians are represented in a basis of
harmonic oscillator eigenstates [35]. This basis is specified by
the normal modes of the linear part of the Hamiltonian (i.e., the
part independent of the Josephson junctions). The Hamiltonian
can then be decomposed into a linear part (a sum of number
operators) and a sinusoidal part (deriving either directly from
a Josephson junction or from the nonlinear theory in the main
text). In general, the Hamiltonian takes the form

Ĥ =
∑

n

h̄ωn(â†
nân + 1/2)

+
∑
m

Cm exp

[
i
∑

n

rn(ân + â†
n)

]
, (A1)

where the coefficients ωn, Cm, and rm,n are circuit dependent.
The linear part of the Hamiltonian has a diagonal repre-
sentation in the harmonic oscillator basis, while the matrix
elements of the exponential operators can be computed using
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FIG. 15. The harmonic approximation to the coupler zero-point
energy converges for small but nonzero biases (ϕcx � 0.01 × 2π ).
Comparison of coupler zero-point energies for different coupler
nonlinearities βc and fixed impedance ζc = 0.05. Solid curves
correspond to the numerically exact zero-point energy. This is
computed as the difference between the numerically exact ground-
state energy Eg(ϕx)/EL̃c

and the classical potential minimum
Umin(ϕx) = βc cosβc

(ϕx). Dashed curves correspond to the harmonic

approximation to the zero-point energy ζc

√
1 − βc cos(ϕ(∗)

c ), dis-
cussed in Sec. II D. From the top, each pair of solid and dashed curves
corresponds to coupler nonlinearities βc = 0.4 (very light green), 0.75
(light orange), 0.85 (magenta), and 0.95 (dark blue), respectively. The
exact calculation was carried out using 50 harmonic oscillator basis
states, as discussed in the Appendix, Sec. A 1.

the identity [36]

〈j |eir(â+â†)|k〉 = e− r2

2√
j !k!

∑
l�0

l!

(
j

l

)(
k

l

)
(ir)j+k−2l

= (i)3j+k

√
j !

k!
e− r2

2 rk−jL
(k−j )
j (r2). (A2)

Here, L
(k−j )
j (r2) refers to the generalized Laguerre

polynomial.
Spectrum calculations. In Figs. 5, 8, 10, 16, 17, 19, and 20

we compute the spectrum of two flux qubit circuits interacting
with a coupler circuit. For the exact calculation, each circuit
is treated as an independent degree freedom, so that the
exact Hamiltonian [Eq. (4)] is expressed as a sum of three
modes in the form of Eq. (A1). In all figures we truncate the
harmonic oscillator basis at 40 × 40 × 18 states, with the last
mode corresponding to the highest-frequency mode (associ-
ated primarily with coupler motion). Similarly, the spectrum
calculations involving the Born-Oppenheimer approximation
truncate the reduced Hamiltonian Ĥ1 + Ĥ2 + Ĥint to 40 × 40
basis states. For the nonlinear (NA) approximation to Eg(ϕ̂x),
we truncated the Fourier series (31) at |ν| � 100, with the inner
series describing the zero-point energy [Eq. (30)] truncated at
|μ| � 40.

0 0.05 0.1 0.15 0.2
ϕcx

0

0.02

0.04

0.06

0.08

0.1

0.12
βc = 0.95, ζc = 0.05, EL̃c

/ELj
= 3, ζj = 0.05, βj = 1.05, αj = 0.05
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Ej0/EL (LN)

FIG. 16. Even for high coupler nonlinearity, all theories predict
the correct low-energy spectrum at sufficiently large coupler bias.
Circuit parameters are identical to the reference regime (Fig. 5),
except qubit nonlinearity is fixed at βc = 1.05 and coupler nonlin-
earity βc is increased from 0.75 to 0.95. Solid curves represent exact
numerical diagonalization of the full Hamiltonian [Eq. (4)]. The black
dashed, dark blue crossed, and light green dotted curves correspond
to the nonlinear analytic (NA), linear analytic (LA), and linear
numerical (LN) theories of the Born-Oppenheimer approximation,
respectively. The NA theory agrees well with exact diagonalization for
ϕcx � 0.01 × 2π . The large oscillations observed in the LA spectrum
are due to the divergences in the analytic expressions for the first and
second derivatives of Eg as βc → 1 [Eqs. (49) and (50)]. Figure 10
shows the same calculation for bias values focused near ϕcx = 0. (See
Appendix, Sec. A 1 for a detailed description of each calculation.)
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FIG. 17. Born-Oppenheimer theories fail to predict the low-
energy spectrum for strong coupling and at maximum bias. We
consider a single coupler circuit interacting with two identical flux
qubits for varying qubit nonlinearity βj . Circuit parameters are
identical to the reference regime (Fig. 5), except the coupling strength
αj = Mj/L is increased from 0.05 to 0.1. Solid curves represent exact
numerical diagonalization of the full Hamiltonian [Eq. (4)]. The black
dashed, dark blue crossed, and light green dotted curves correspond to
the nonlinear analytic (NA), linear analytic (LA), and linear numerical
(LN) theories of the Born-Oppenheimer approximation, respectively.
Figure 18 considers the same parameter regime, but for varying
coupler bias ϕcx . (See Appendix, Sec. A 1 for a detailed description
of each calculation.)

Qubit dynamics. In Figs. 6, 7, 9, 11, 13, and 14 we compute
the coupler’s contribution to the flux qubits’ Hamiltonian. This
is done by projecting Ĥint into the “qubit subspace” spanned
by the two lowest-energy states of each independent flux qubit.
Our calculations are carried out in the parity basis, which (for
unbiased flux qubits, ϕjx = 0) corresponds to the (symmetric
and antisymmetric) ground and first excited states of each
local qubit Hamiltonian Ĥj . As is done for the other spectrum
calculations, the eigenstates are computed by representing
each flux qubit’s Hamiltonian in the harmonic oscillator basis
(truncated at 50 basis states). The NA calculations were based
on Eq. (42), with the sums truncated at |ν| � 60 (unless
otherwise noted) and the inner sum defining coefficients Bν

truncated at |μ| � 40 [Eq. (30)]. The (linear) LA and LN
calculations were based on Eq. (55), using approximate ana-
lytic and exact numerical derivatives (49) and (50), (58), and
(59), respectively. The details of the projections themselves
are discussed in detail in Secs. III (for the NA theory) and
IV B (for the LA and LN theories).

2. Inversion of Josephson junction relation

In this section we solve for the function f (x) = eiμx (for
any integer μ) as a Fourier series in ϕ under the constraint

x − ϕ − β sin(x) = 0, (A3)
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FIG. 18. Away from maximum bias ϕcx = 0, the NA theory
accurately predicts the low-energy spectrum even for strong coupling,
while the linear theories fail. (Although not shown, for sufficiently
large bias, the LA and LN theories do converge to the exact spectrum.)
We consider a single coupler circuit interacting with two identical flux
qubits for varying coupler bias ϕcx . Circuit parameters are identical
to the reference regime (Fig. 5), except the coupling strength αj =
Mj/L is increased from 0.05 to 0.1 and the qubit nonlinearity is fixed
at βj = 1.05. Solid curves represent exact numerical diagonalization
of the full Hamiltonian [Eq. (4)]. The black dashed, dark blue crossed,
and light green dotted curves correspond to the nonlinear analytic
(NA), linear analytic (LA), and linear numerical (LN) theories of the
Born-Oppenheimer approximation, respectively. Figure 17 considers
the same parameter regime, but fixed at maximum coupling ϕcx = 0
and for varying qubit nonlinearity βj . (See Appendix, Sec. A 1 for a
detailed description of each calculation.)

where β is a scalar satisfying |β| < 1. The resulting Fourier
series corresponds to Eq. (14) in the main text,

eiμx =
∑

ν

eiνϕA(μ)
ν , (A4)

where

A(μ)
ν =

{
δμ,0 − βc

2 (δμ,1 + δμ,−1), ν = 0
μJν−μ(βcν)

ν
, ν �= 0.

(A5)

The function eiμx is used to derive the Fourier series for the
coupler ground-state energy [Eq. (29)].

To prove this result, observe that if x is a unique solution29

to (A3), then the Dirac delta function at this point satisfies

δ(z − x) = δ[z − ϕ − β sin(z)]�(z),

29The solution is unique if and only if the potential (x−ϕ)2

2 + β cos(x)
has a unique extremum (for all ϕ). This holds if and only if it is
a convex function of x. Taking the second derivative, we see that
this holds exactly when �(x) = 1 − β cos(x) � 0 for all x, which is
equivalent to |β| � 1.

052333-19



DVIR KAFRI et al. PHYSICAL REVIEW A 95, 052333 (2017)

0.8 0.9 1 1.1 1.2 1.3
βj

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
βc = 0.75, ϕcx = 0 × 2π, ζc = 0.02, EL̃c

/ELj
= 3, ζj = 0.05, αj = 0.05

Ej0/EL (Exact)
Ej0/EL (NA)
Ej0/EL (LA)
Ej0/EL (LN)

FIG. 19. Born-Oppenheimer theories break down in the limit of
small coupler impedance. We consider a single coupler circuit inter-
acting with two identical flux qubits for varying qubit nonlinearity
βj . Circuit parameters are identical to the reference regime (Fig. 5),

except the coupler impedance ζc = 2πe

�0

√
L̃c/C is decreased from

0.05 to 0.02. Solid curves represent exact numerical diagonalization
of the full Hamiltonian [Eq. (4)]. The black dashed, dark blue crossed,
and light green dotted curves correspond to the nonlinear analytic
(NA), linear analytic (LA), and linear numerical (LN) theories of
the Born-Oppenheimer approximation, respectively. (See Appendix,
Sec. A 1 for a detailed description of each calculation.)
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FIG. 20. Born-Oppenheimer theories break down in the limit of
large coupler nonlinearity and at maximum bias ϕcx = 0. A single
coupler circuit interacting with two identical flux qubits for varying
qubit nonlinearity βj . Circuit parameters are identical to the reference
regime (Fig. 5), except the coupler nonlinearity βc is increased from
0.75 to 0.95. Solid curves represent exact numerical diagonalization
of the full Hamiltonian [Eq. (4)]. The black dashed, dark blue crossed,
and light green dotted curves correspond to the nonlinear analytic
(NA), linear analytic (LA), and linear numerical (LN) theories of
the Born-Oppenheimer approximation, respectively. (See Appendix,
Sec. A 1 for a detailed description of each calculation.)

where

�(z) = |∂z[z − ϕ − β sin(z)]| = 1 − β cos(z).

The start of the calculation is similar to the derivation of the
Lagrange reversion theorem [37]. We leave it as an exercise to
the reader to justify the rearrangements of sums and integrals:

f (x) =
∫

dz f (z)δ(z − x)

=
∫

dz f (z)δ[z − ϕ − β sin(z)]�(z)

=
∫

dz f (z)�(z)
∫

dk
1

2π
eik[z−ϕ−β sin(z)]

=
∫

dz f (z)�(z)
∫

dk
1

2π

∑
n

[−ikβ sin(z)]n

n!
eik(z−ϕ)

=
∫

dz f (z)�(z)
∫

dk
1

2π

∑
n

[∂ϕβ sin(z)]n

n!
eik(z−ϕ)

=
∑

n

∫
dz f (z)�(z)

[∂ϕβ sin(z)]n

n!

∫
dk

1

2π
eik(z−ϕ)

=
∑

n

(∂ϕ)n
∫

dz f (z)�(z)
[β sin(z)]n

n!

∫
dk

1

2π
eik(z−ϕ)

=
∑

n

(∂ϕ)n
∫

dz f (z)�(z)
[β sin(z)]n

n!
δ(z − ϕ)

=
∑

n

(∂ϕ)nf (ϕ)�(ϕ)
[β sin(ϕ)]n

n!

=
∑

n

(∂ϕ)n
∑

ν

eiνϕ

∫ π

−π

dτ
e−iντ

2π
f (τ )�(τ )

[β sin(τ )]n

n!

=
∑

n

∑
ν

(iν)neiνϕ

∫ π

−π

dτ
e−iντ

2π
f (τ )�(τ )

[β sin(τ )]n

n!

=
∑

ν

eiνϕ

∫ π

−π

dτ
e−iντ

2π
f (τ )�(τ )

∑
n

[iνβ sin(τ )]n

n!

=
∑

ν

eiνϕ

∫ π

−π

dτ
e−iντ

2π
f (τ )�(τ )eiνβ sin(τ )

=
∑

ν

eiνϕ[eiνβ sin(τ )�(τ )f (τ )]ν. (A6)

In the last line, we have introduced the notation [h(τ )]ν =∫ π

−π
dτ e−iντ

2π
h(τ ) to represent the Fourier coefficient of h(τ )

corresponding to eiντ . We note that the definition above is
actually agnostic to the definition of the function f (x) (except
the assumption that it is periodic and smooth).

To complete the derivation, we make the substitutions
�(τ ) = 1 − β cos(τ ) and f (τ ) = eiμτ ,

eiμx =
∑

ν

eiνϕ{eiνβ sin(τ )[1 − β cos(τ )]eiμτ }ν .

The product [1 − β cos(τ )]eiμτ has Fourier coefficients

{[1 − β cos(τ )]eiμτ }γ = δγ,μ − β

2
(δγ,μ+1 + δγ,μ−1). (A7)
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Likewise, the Jacobi-Anger identity [[20], Eq. (9.4.41)] gives
us the Fourier coefficients of eiνβ sin(τ ):

[eiνβ sin(τ )]σ = Jσ (βν), (A8)

where Jσ (x) is the Bessel function of the first kind. Combining
these statements, we compute

eiμx =
∑

ν

eiνϕ
∑

σ

[eiνβ sin(τ )]σ {[1 − β cos(τ )]eiμτ }ν−σ

=
∑

ν

eiνϕ

{
Jν−μ(βν) − β

2
[Jν−μ−1(βν) + Jν−μ+1(βν)]

}

= δμ,0 − β

2
(δμ,1 + δμ,−1)

+
∑
ν �=0

eiνϕ

{
Jν−μ(βν) − β

2

[
2(ν − μ)

βν
Jν−μ(βν)

]}

= δμ,0 − β

2
(δμ,1 + δμ,−1) +

∑
ν �=0

eiνϕ μJν−μ(βν)

ν
,

(A9)

where in the first line we expressed {eiνβ sin(τ )[1
− β cos(τ )]eiμτ }ν as a convolution. In the second line we used
Eq. (A7), and in the third we separated the sum between ν = 0
and ν �= 0 and used the identities

Jσ (0) = δσ,0,

Jσ−1(x) + Jσ+1(x) = 2σ

x
Jσ (x) (x �= 0).

This completes the derivation of Eq. (A5) [Eq. (14) in the main
text]. In Appendix, Sec. A 9 we discuss the generalization of
these results to circuits with more than one degree of freedom.

3. Derivation of the cosβ function

In this section, we prove the equality of each line in Eq. (22).
Rewritten here, these equations define the cosβ(ϕx) function

cosβ(ϕx) ≡ 1 −
∫ ϕx

0
sinβ(θ )d θ

= β

2
[sinβ(ϕx)]2 + cos[ϕ + β sinβ(ϕx)]

= 1 +
∑
ν>0

2Jν(βν)

βν2
[cos(νϕx) − 1]

= −β

4
+

∑
ν �=0

Jν(βν)

βν2
eiνϕx . (A10)

The equality of the first and second lines follows from the fact
that both have value 1 at ϕx = 0 [since sinβ(0) = 0] and both
have the same derivative [cf. Eq. (20)]. The equality of the first
and third lines follows from direct integration of sinβ(θ ) [cf.
Eq. (15)].

Finally, we show that cosβ(ϕx) equals the last line of
Eq. (A10). Noting that J−ν(−βν) = Jν(βν), we see that the
third and fourth lines of (A10) correspond to the same Fourier
cosine series for all coefficients with ν �= 0. It remains to show
that the constant (ν = 0) coefficients also agree. We directly
compute this coefficient for the first three lines by considering

the integral

1

2π

∫ 2π

0
cosβ(ϕ)dϕ

= 1

2π

∫ 2π

0
∂ϕ[ϕ cosβ(ϕ)] + ϕ sinβ(ϕ) dϕ

= 1

2π

{
[ϕ cosβ(ϕ)]ϕ=2π

ϕ=0 +
∫ 2π

0
ϕ sinβ(ϕ)dϕ

}

= 1 + 1

2π

∫ 2π

0
[u − β sin(u)] sin(u)[1 − β cos(u)]du

= −β

4
. (A11)

In the first line we integrated by parts and used ∂ϕ cosβ(ϕ) =
− sinβ(ϕ) [first line of (A10)], while in the third line we used
cosβ(2π ) = 1 [second line of (A10) and note sinβ(2π ) = 0
using (15)] and the change of variables

ϕ = u − β sin(u), sinβ(ϕ) = sin(u),

dϕ = [1 − β cos(u)]du.

Thus, the ν = 0 Fourier coefficient of the first three lines of
(A10) agrees with the final line, which was all that was left to
show.

4. Derivation of zero-point energy Fourier series

In this section we derive the series of identities defining the
approximate coupler zero-point energy [Eq. (28)]

UZPE = ζc

√
1 − βc cos(ϕ(∗)

c )

= ζc

{
G0(βc) − βcG1(βc)

+
∑
ν �=0

eiνϕx

[
1

ν

∑
μ

μGμ(βc)Jν−μ(βcν)

]}
, (A12)

where

Gμ(β) =
∑
l�0

(
1/2

μ + 2l

)(
μ + 2l

l

)(
−β

2

)μ+2l

(A13)

and ϕx = ϕcx − ∑
j αjϕj is a qubit-dependent flux parameter.

We begin by deriving the Fourier series of the function√
1 − βc cos(θ ). This follows directly from the generalized

binomial theorem [[20], Eq. (3.6.9)]√
1 − βc

2
(z + z−1)

=
∑
k�0

(
1/2

k

)[
−βc

2
(z + z−1)

]k

=
∑
k�0

(
1/2

k

)(
−βc

2

)k ∑
l�0

(
k

l

)
zk−2l

=
∑

μ

zμ
∑
l�0

(
1/2

μ + 2l

)(
μ + 2l

l

)(
−βc

2

)μ+2l

≡
∑

μ

zμGμ(βc). (A14)
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In the second line, we used the binomial theorem again, while
in the third line we changed to index μ = k − 2l (which
goes over both positive and negative integers). In the final
line, we have equated the sum over l with the coefficient
Gμ(βc). Algebraic manipulations of this sum allow it to be
rewritten in terms of the confluent hypergeometric function
[[20], Chap. 15]

Gμ(βc) =
(

−βc

2

)μ(1/2

μ

)
2F1

(
μ

2
− 1

4
,
μ

2
+ 1

4
; 1 + μ; β2

c

)
.

(A15)

[This assumes μ � 0, though we note that Gμ(βc) = G−μ(βc);
cf. the left-hand side of Eq. (A14).] The coefficients Gμ(βc)
can also be expressed in terms of the Legendre functions [[20],
Chap. 8]

Gμ(βc) = [i sgn(β)]μ
�(3/2)

�(3/2 − μ)

× (
1 − β2

c

)1/4
P

−μ

1/2

(
1√

1 − β2
c

)
. (A16)

(This expression is valid for any integer μ.)
To complete the derivation of Eq. (A12), we substitute z =

eiϕ
(∗)
c into (A14) and use cos(ϕ(∗)

c ) = 1
2 (eiϕ

(∗)
c + e−iϕ

(∗)
c ), giving√

1 − βc cos(ϕ(∗)
c ) =

∑
μ

Gμ(βc)eiμϕ
(∗)
c

=
∑

μ

Gμ(βc)
∑

ν

eiνϕx A(μ)
ν

=
∑

ν

eiνϕx

∑
μ

Gμ(βc)A(μ)
ν , (A17)

where in the second line we invoked identity (13) (de-
rived in Appendix, Sec. A 2) and in the third line we
rearranged the order of summation. Identity (13) expresses
eiμϕ

(∗)
c as a Fourier series in ϕx given the implicit relationship

ϕ(∗)
c = ϕx + βc sin(ϕ(∗)

c ). Equation (A12) follows from Eq. (14)
for the Fourier coefficients A(μ)

ν and the fact that Gμ(βc) =
G−μ(βc).

5. Classical analysis of coupler circuit

In this section we carry out a classical analysis of the
qubit-coupler dynamics. We show that, in the classical limit of
large coupler plasma frequency, the reduced qubit interaction
Hamiltonian corresponds exactly to the minimum of the
coupler potential EL̃c

Umin(ϕx) = EL̃c
βc cosβc

(ϕx). To begin,
we rewrite the first of the classical current equations (3) and
(4) in terms of the dimensionless parameters in Eq. (7):

L̃cC ϕ̈c − βc sin(ϕc) + ϕc − ϕx = 0, (A18)

where

ϕx = ϕcx −
∑

j

αjϕj . (A19)

Analogously to the Born-Oppenheimer approximation in the
quantum treatment, we assume that the qubit-dependent flux
variables are slow compared to the coupler plasma frequency

1/
√

L̃cC. This allows us to approximately solve Eq. (A18)
by dropping the term proportional to L̃cC. The coupler flux
variable ϕc is then no longer an independent variable since it
can be written as an explicit function of ϕx :

ϕc = ϕx + βc sin(ϕc) = ϕx + βc sinβc
(ϕx). (A20)

This is the same inversion we carried out when solving for the
minimum of the coupler potential U ′(ϕ(∗)

c ) = 0. Noting that

�c − �cx +
∑

j

αj�j = �0

2π
(ϕc − ϕx) = �0

2π
βc sinβc

(ϕx),

we substitute directly into the current equation (4), giving

�j

Lj

+ αjβc

1

L̃c

�0

2π
sinβc

(ϕx) − I ∗
j = 0. (A21)

These reduced systems of equations are independent of the
coupler flux variable ϕc. Since they are the Euler-Lagrange
equations for the qubit flux variables, the nonlinear term
corresponds exactly to an interaction potential

∂Uint

∂�j

= αjβc

1

L̃c

�0

2π
sinβc

(ϕx). (A22)

Using Eq. (A19), �j = �0
2π

ϕj , and the relationship
∂ϕx

cosβc
(ϕx) = − sinβc

(ϕx), we can immediately solve for Uint

as

Uint = (�0/2π )2

L̃c

βc cosβc
(ϕx) = EL̃c

βc cosβc
(ϕx). (A23)

Hence, the classical interaction potential mediated by the
coupler circuit corresponds exactly to the minimum value of
the coupler’s potential energy Umin(ϕx).

6. Truncation error in Eq. (42)

In this section we bound the error of truncating the sum in
Eq. (42):

gη̄/EL̃c
=

∑
ν

Bνe
iνϕcx

k∏
j=1

c(j )
ηj

(ναj ). (A24)

Noting that cosβc
(0) = 1 and UZPE(ϕx = 0) = ζc

√
1 − βc, we

compare the two expressions in (29) at ϕx = 0,

βc + ζc

√
1 − βc = B0 + 2

∑
ν>0

Bν, (A25)

where we have used the fact that Bν = B−ν . Collecting terms
dependent and independent of ζc, we obtain the identities

2
∑
ν>0

B(0)
ν = βc + 1

4
β2

c ,

(A26)
2
∑
ν>0

B(1)
ν =

√
1 − βc − G0(βc) + βcG1(βc),

where [using Eq. (30) for ν �= 0]

Bν = B(0)
ν + ζcB

(1)
ν , B(0)

ν = Jν(βcν)

ν2
,

B(1)
ν = 1

ν

∑
μ

μGμ(βc)Jν−μ(βcν). (A27)
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Using the fact that B(1)
ν � 0 � B(0)

ν for all ν �= 0, this allows
us to define the truncation error bound

Rνmax �
∣∣gη̄ − g

(νmax)
η̄

∣∣/EL̃c
, (A28)

where g
(νmax)
η̄ is obtained by summing the series (A24) only up

to |ν| � νmax. The bound can be computed numerically as30

Rνmax = R(0)
νmax

+ ζcR
(1)
νmax

, (A29)

where [using the fact that the product |eiνϕcx
∏k

j=1 c
(j )
ηj

(ναj )| <

1]

R(0)
νmax

=
∣∣∣∣∣βc + 1

4
β2

c − 2
νmax∑
ν=1

B(0)
ν

∣∣∣∣∣,
R(1)

νmax
=

∣∣∣∣∣
√

1 − βc − G0(βc) + βcG1(βc) − 2
νmax∑
ν=1

B(1)
ν

∣∣∣∣∣.
(A30)

We remark that the error bound grows quickly as βc → 1. For
example, to achieve an error in gη̄ of at most 10−3 × EL̃c

for
βc = 3

4 and ζc = 1
4 , we are required to truncate at νmax � 18,

while the same bound for βc = 0.95 requires νmax � 187.

7. Validity of Born-Oppenheimer approximation:
Diagonal correction

In this section we discuss the approximations leading to
the general coupler-mediated interaction Hamiltonian (31).
We begin by discussing the Born-Oppenheimer approximation
used to eliminate the coupler degree of freedom. As in the study
of molecular collisions, we assume that the (fast) coupler is
always in its ground state. That is, we make the following
ansatz for the full wave function in the flux operator basis
[22,38]:


(ϕc,ϕ̄q,t) = ψg(ϕc; ϕ̄q) χ (ϕ̄q ,t). (A31)

Here, ϕ̄q = (ϕ1,ϕ2, . . . ,ϕk) denotes the k-qubit flux variables,
while ψg(ϕc; ϕ̄q) is the ground state of the coupler Hamiltonian
Ĥc [Eq. (5)]. Since Ĥc is parametrized by the qubit-dependent
flux variable ϕx , we likewise treat ψg as a parametrized
function of ϕ̄q . The effective qubit Hamiltonian is obtained
by considering the Schrödinger equation for the ansatz wave
function

ih̄ ψg(ϕc; ϕ̄q) ∂tχ (ϕ̄q ,t)

=
⎛
⎝∑

j

Hj + Hc

⎞
⎠ψg(ϕc; ϕ̄q) χ (ϕ̄q ,t)

=
⎡
⎣∑

j

ELj

( − 2ζ 2
j ∂2

ϕj
+ Uj

) + Eg

⎤
⎦ψg(ϕc; ϕ̄q) χ (ϕ̄q ,t)

30We assume that the convolution defining B (1)
ν is carried out

to arbitrary precision. This is a good approximation as μGμ(βc)
decays exponentially in μ. For example, at βc = 0.95 we have that
μ|Gμ(βc)| < 10−16 for all |μ| � 101.

= −
∑

j

ELj
2ζ 2

j

{[
∂2
ϕj

ψg(ϕc; ϕ̄q)
]
χ (ϕ̄q ,t)

+ 2[∂ϕj
ψg(ϕc; ϕ̄q)][∂ϕj

χ (ϕ̄q)]

+ ψg(ϕc; ϕ̄q) ∂2
ϕj

χ (ϕ̄q ,t)
}

+
⎛
⎝∑

j

ELj
Uj + Eg

⎞
⎠ψg(ϕc; ϕ̄q) χ (ϕ̄q ,t). (A32)

Here, we have assumed that the individual qubit Hamiltonians

are of the generic form ELj
[4ζ 2

j

q̂2
j

2 + Uj (ϕ̂j )] (charge plus flux

potential term), with a linear impedance ζj = 2πe
�0

√
Lj

Cj
, and we

have used Hcψg(ϕc; ϕ̄q) = Egψg(ϕc; ϕ̄q).
The Born-Oppenheimer ansatz (A31) allows us to consider

the reduced dynamics of the qubit systems alone. To do so, we
multiply both sides of Eq. (A32) by ψg(ϕc; ϕ̄q)∗ and integrate
over the variable ϕc. Carrying out this integration leaves a
reduced Schrödinger equation involving only the qubit wave
function χ (ϕ̄q):

ih̄∂tχ (ϕ̄q ,t) =
⎧⎨
⎩
∑

j

ELj

[−2ζ 2
j ∂2

ϕj
+ Uj (ϕj )

]

+Eg(ϕ̄q) + K(ϕ̄q)

⎫⎬
⎭χ (ϕ̄q ,t), (A33)

where we treat the coupler ground-state energy Eg as an
explicit function of the qubit variables ϕ̄q and introduce the
Born-Oppenheimer diagonal correction [22,23]

K(ϕ̄q) =
∫

dϕc ψg(ϕc; ϕ̄q)∗

⎡
⎣−

∑
j

ELj
2ζ 2

j ∂2
ϕj

ψg(ϕc; ϕ̄q)

⎤
⎦

= −
⎛
⎝2

∑
j

ELj
ζ 2
j α2

j

⎞
⎠∫

dϕc ψg(ϕc; ϕ̄q)∗∂2
ϕx

ψg(ϕc; ϕ̄q)

=
⎛
⎝2

∑
j

ELj
ζ 2
j α2

j

⎞
⎠〈

∂ϕx
ψg

∣∣∂ϕx
ψg

〉
. (A34)

[This originates from the first term on the third line of (A32).]
In the derivation of Eqs. (A33) and (A34) we use the fact
that ψg(ϕc; ϕ̄q) is real valued.31 This fact allows us to drop
in Eq. (A33) the integrals of ψg(ϕc; ϕ̄q)∂ϕj

ψg(ϕc; ϕ̄q) [which
vanishes since ψg(ϕc; ϕ̄q) has unit norm], and similarly allows
us to equate 〈ψg|∂2

ϕx
ψg〉 = −〈∂ϕx

ψg|∂ϕx
ψg〉.

In the main text, we neglect the diagonal correction K(ϕ̄q)
since it is typically negligible. In order to bound its size,
we approximate the integral factor

∫
dϕc |∂ϕx

ψg(ϕc; ϕ̄q)|2 =
〈∂ϕx

ψg|∂ϕx
ψg〉 by linearizing the coupler Hamiltonian Ĥc.

Noting that (Eg − Ĥc)|ψg〉 = 0 for all ϕx , we take the

31The Hamiltonian Hc is real valued in the flux operator basis,
hence, its eigenstates can be expressed as real functions of ϕc up to a
global phase.
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derivative to show that∣∣∂ϕx
ψg

〉 = −(Eg − Ĥc)−1∂ϕx
[(Eg − Ĥc)]|ψg〉

= − EL̃c

Eg − Ĥc

ϕ̂c|ψg〉. (A35)

[Note that (Eg − Ĥc)−1 represents the Moore-Penrose pseu-
doinverse, which vanishes on the state |ψg〉.] As we did for
the analysis of the zero-point energy, we now approximate
Ĥc as an harmonic oscillator with characteristic frequency

EL̃c

√
4ζ 2

c U ′′(ϕ(∗)
c ) = 2EL̃c

ζc

√
1 − βc cos(ϕ∗

c ) [see Eq. (23)].

Using ϕ̂c =
√

ζc√
1−βc cos(ϕ∗

c )
(â + â†), we obtain

∣∣∂ϕx
ψg

〉 � 1

2
√

ζc[1 − βc cos(ϕ∗
c )]3/4

|1〉, (A36)

where |1〉 is the first harmonic oscillator excited state. In
fact, this approximation diverges as βc cos(ϕ∗

c ) → 1, which
suggests that we can only use it as an approximate upper
bound for the norm of ∂ϕx

|ψg〉. Substituting Eq. (A36) into
(A34), we obtain

K(ϕ̄c)/EL̃c
� 2

∑
j

ELj
ζ 2
j α2

j

EL̃c

1

4ζc[1 − βc cos(ϕ∗
c )]3/2

.

(A37)

Comparing K/EL̃c
to the coupler’s zero-point energy [UZPE,

Eq. (9)] at their perspective maxima and minima (ϕx = 0), we
see that it is valid to neglect the diagonal correction in the limit

2
∑

j

ELj
ζ 2
j α2

j

EL̃c

� UZPE(0)〈
∂ϕx

ψg

∣∣∂ϕx
ψg

〉 � 4ζ 2
c (1 − βc)2. (A38)

We stress that the value ζ 2
c (1 − βc)2 on the right-hand side of

Eq. (A38) is only a good approximation when βc cos(ϕ∗
c ) is

not too close to 1 (see Fig. 21). If we assume that the qubit and
coupler impedances are comparable, identical qubits, and that
k and βc are not too large, then Eq. (A38) simplifies to

ELj
α2

j � EL̃c
(1 − βc)2. (A39)

This bound is achievable even for relatively large nonlinearity
βc and coupling αj as long as we are in the fast coupler limit
EL̃c

� ELj
.

8. Nonadiabatic corrections to Born-Oppenheimer

We now discuss the leading nonadiabatic corrections to
the Born-Oppenheimer approximation. These corrections stem
from an exact representation qubit-coupler wave function
[39,40]


̃(ϕc,ϕ̄q,t) =
∑
m

ψm(ϕc; ϕ̄q) χm(ϕ̄q ,t). (A40)

Here, the wave functions ψm denote the (normalized) eigen-
states of Ĥc parametrized by the qubit flux variables ϕ̄q through
the coupler bias ϕx . (Our original ansatz truncated this sum at
the ground state.) Repeating the same analysis as in Eq. (A32),
then multiplying by ψm(ϕc; ϕ̄q) and integrating, we obtain a
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FIG. 21. Ratio of the zero-point energy UZPE to the integral in the
Born-Oppenheimer diagonal correction compared to the linearized
Hamiltonian approximation 4ζ 2

c (1 − βc)2. These calculations we
carried out at flux bias ϕcx = 0 (which minimizes the ratio). Solid
curves (starting from the top) correspond to the numerically exact
ratio at coupler impedances ζc = 0.1 (dark blue), 0.05 (magenta),
and 0.01 (light orange), respectively. The Hamiltonian Ĥc [Eq. (6)]
was diagonalized in the harmonic oscillator basis truncated at 70 basis
states, and the vector ∂ϕx

|ψg〉 was then computed using Eq. (A35).
The value of UZPE was computed by subtracting the classical energy
contribution βc cosβc

(0) = βc from the ground-state energy Eg/EL̃c
.

Overlayed dashed curves correspond to the linear approximation
4ζ 2

c (1 − βc)2 [Eq. (A38)].

set of coupled equations for the functions χm:

ih̄∂tχm =
⎛
⎝∑

j

Hj + Em + Km,m

⎞
⎠χm

+
∑
m′ �=m

(Tm,m′ + Km,m′ )χm′ . (A41)

Here, Em is the energy of ψm (as an eigenstate of Ĥc,
parametrized by ϕx) while the coupling terms Tm,m′ + Km,m′

are defined by

Km,m′ =
⎛
⎝2

∑
j

ELj
ζ 2
j α2

j

⎞
⎠〈

∂ϕx
ψm

∣∣∂ϕx
ψm′

〉
(A42)

and

Tm,m′ = i
∑

j

2ELj
ζ 2
j αj

[〈
ψm

∣∣∂ϕx
ψm′

〉
,qj

]
+. (A43)

These terms originate in the integrals of the third and
fourth lines of (A32) [generalized to wave function (A40)].
Notice that Kg,g corresponds to the diagonal correction
discussed previously, while Tm,m = 0 for all m since
〈ψm|∂ϕx

ψm〉 = ∂ϕx
(〈ψm|ψm〉/2) = 0. Also, we have expressed

Tm,m′ as an anticommutator involving the charge operators
qj = −i∂ϕj

= −iαj ∂ϕx
.

From the Schrödinger equation (A41) we can interpret
the qubit wave functions χm(ϕ̄q) as residing in different
subspaces associated with each eigenstate of Ĥc. The original
Born-Oppenheimer approximation is equivalent to neglecting
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FIG. 22. A more complicated coupler implementation involving two distinct junctions.

the coupling terms Tm,m′ + Km,m′ (which cause transitions
between these subspaces) and assuming that the qubits
start in the ground-state subspace m = g. Thus, in order
for the Born-Oppenheimer approximation to be valid the
effect of these couplings must be small. To see when
this is the case, we first observe that |〈∂ϕx

ψm|∂ϕx
ψm′ 〉|2 �

〈∂ϕx
ψm|∂ϕx

ψm〉〈∂ϕx
ψm′ |∂ϕx

ψm′ 〉 by the Cauchy-Schwarz in-
equality. Hence, for m = g we expect the coupling corrections
Kg,m′ to be comparable to the diagonal correction K . Thus,
assuming a non-negligible gap E1 − Eg on the order of the
coupler’s zero-point energy, we may ignore Kg,m whenever it
is valid to ignore K [condition (A38)]. The other nonadiabatic
coupling terms (Tm,m′) may have a non-negligible effect on the
qubit dynamics, although a detailed study of these corrections
is beyond the scope of this work.

9. Generalization to more complicated circuits

The techniques used in this paper can also be used to
study more complicated circuit configurations. Specifically,
the derivation of Eq. (A6) can be immediately generalized to
multivariate functions under the more general constraint

x̄ − ϕ̄ − F̄ (x̄) = 0. (A44)

In this case, we assume that F̄ (x̄) is a smooth, periodic
function of all variables xi , and that its Jacobian matrix
(DF̄ )ij = ∂xj

Fi(x̄) has bounded norm ||DF || < 1 for all x̄.32

The generalized version of Eq. (A6) is then

f (x̄) =
∑

ν̄

eiν̄·ϕ̄[eiν̄·F̄ (τ̄ )�(τ̄ )f (τ̄ )]ν̄ , (A45)

with �(τ̄ ) = det[I − DF (τ̄ )]. In this case,

[h(τ̄ )]ν̄ =
∫ π

−π

dnτ
e−iν̄·τ̄

(2π )n
h(τ̄ )

denotes the Fourier coefficient of the multivariate function
h(τ̄ ) corresponding to the index vector ν̄.33

As an example, we may apply our general result (A45) to
the two-junction coupler circuit seen in Fig. 22, which has two
independent, interacting degrees of freedom ϕ̄c = (ϕl,ϕr ). As
we did in the main text, to study this circuit we would compute
the flux configuration ϕ̄(∗)

c = (ϕ(∗)
l ,ϕ(∗)

r ) corresponding to the
minimum of its potential. Although we do not work it out here,
one can show that the gradient equations ∇ϕ̄c

U (ϕ̄c; ϕ̄x) = 0
corresponding to this minimum are of the form

x̄ − ϕ̄x − B sin(x̄) = 0. (A46)

In this case [sin(x̄)]j = sin(xj ) and the vector ϕ̄x corresponds
to the external flux biases associated with each coupler loop.
Similarly, B (analogous to β) is a matrix relating the coupler’s
critical currents and linear inductances. Generalizing our
analysis for finding the coupler potential minimum (i.e., the
classical part of the ground-state energy) corresponds to setting
F (x̄) = B sin(x̄) and f (x̄) = U (x̄; ϕ̄x) in Eq. (A45). The
coupler zero-point energies may be approximated similarly to
what is done in Sec. II D, although this is more challenging as
now there is more than one effective normal mode frequency.

32This ensures that for every value of ϕ̄, the solution x̄ to (A44) is
unique.

33A further generalization can be made in the case where F̄ (x̄) is
not periodic. This corresponds to replacing the Fourier series (A45)
with a Fourier transform.
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