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Quantum computing becomes viable when a quantum
state can be preserved from environmentally-induced er-
ror. If quantum bits (qubits) are sufficiently reliable, er-
rors are sparse and quantum error correction (QEC)1–6 is
capable of identifying and correcting them. Adding more
qubits improves the preservation by guaranteeing increas-
ingly larger clusters of errors will not cause logical failure
– a key requirement for large-scale systems. Using QEC
to extend the qubit lifetime remains one of the outstanding
experimental challenges in quantum computing. Here, we
report the protection of classical states from environmen-
tal bit-flip errors and demonstrate the suppression of these
errors with increasing system size. We use a linear array
of nine qubits, which is a natural precursor of the two-
dimensional surface code QEC scheme7, and track errors
as they occur by repeatedly performing projective quan-
tum non-demolition (QND) parity measurements. Rela-
tive to a single physical qubit, we reduce the failure rate in
retrieving an input state by a factor of 2.7 for five qubits
and a factor of 8.5 for nine qubits after eight cycles. Ad-
ditionally, we tomographically verify preservation of the
non-classical Greenberger-Horne-Zeilinger (GHZ) state.
The successful suppression of environmentally-induced er-
rors strongly motivates further research into the many ex-
citing challenges associated with building a large-scale su-
perconducting quantum computer.

The ability to withstand multiple errors during computation
is a critical aspect of error correction. We define n-th order
fault-tolerance to mean that any combination of n errors is
tolerable. Previous experiments based on nuclear magnetic
resonance8,9, ion traps10, and superconducting circuits11–13

have demonstrated multi-qubit states that are first-order toler-
ant to one type of error. Recently, experiments with ion traps
and superconducting circuits have shown the simultaneous de-
tection of multiple types of errors14,15. The above hallmark
experiments demonstrate error correction in a single round;
however, quantum information must be preserved throughout
computation using multiple error correction cycles. The ba-
sics of repeating cycles have been shown in ion traps16 and
superconducting circuits17. Until now, it has been an open
challenge to combine these elements to make the information
stored in a quantum system robust against errors which intrin-
sically arise from the environment.

The key to detecting errors in quantum information is to
perform QND parity measurements. In the surface code, this
is done by arranging qubits in a chequerboard pattern – with

data qubits corresponding to the white, and measure qubits
to the black squares (see Fig. 1) – and using these ancilla
measure qubits to repetitively perform parity measurements
to detect bit-flip (X̂) and phase-flip (Ẑ) errors7. A square che-
querboard with (4n + 1)2 qubits is n-th order fault tolerant,
meaning at least n+1 errors must occur to cause failure in pre-
serving a state if fidelities are above a threshold. With error
suppression factor Λ > 1 and more qubits, failure becomes
increasingly unlikely with probability ε ∼ 1/Λn+1 (assum-
ing independent errors). The surface code is highly appealing
for superconducting quantum circuits as it requires only near-
est neighbour interactions, single and two-qubit gates, and
fast repetitive measurements with fidelities above a lenient
threshold of approximately 99%. All of this has recently been
demonstrated in separate experiments18,19.

The simplest system demonstrating the basic elements of
the surface code is a one-dimensional chain of qubits, as seen
in Fig. 1a. It can run the repetition code, a primitive of the
surface code, which corrects bit-flip errors on both data and
measure qubits. The device shown in Fig. 1b is a chain of nine
qubits, which allows us to experimentally test both first- and
second-order fault-tolerance. It consists of a superconducting
aluminium film on a sapphire substrate, patterned into Xmon
transmon qubits20 with individual control and readout. The
qubits are the cross-shaped devices; they are capacitively cou-
pled to their nearest neighbours, controlled with microwave
drive and frequency detuning pulses, and measured with a
dispersive readout scheme. The device consists of five data
qubits and four measure qubits in an alternating pattern, see
Supplementary Information for details.

To detect bit-flips, we determine the parity of adjacent data
qubits by measuring the operator ẐẐ. We do this using an
ancilla measure qubit, and performing single- and two-qubit
quantum gates (Fig. 1c). The operator measurement has the
value -1 and leaves the ancilla qubit state unperturbed for
states |00〉 and |11〉, and value +1 which flips the ancilla qubit
state for |01〉 and |10〉. Therefore, errors can be detected as
they occur by repeating this operator and noting changes in
the outcome. Importantly, this measurement does not destroy
the quantum nature: given input α|00〉 + β|11〉 the result is
-1 and the quantum state remains, with similar behavior for
other Bell-like superposition states. In the repetition code, si-
multaneous measurements of these operators enable multiple
bit-flip errors to be detected.

We now discuss how bit-flip errors, which can occur on any
qubit and at any time, are identified. The quantum circuit of
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FIG. 1: Repetition code: device and algorithm. (a) The repetition
code is a one-dimensional variant of the surface code, and is able to
protect against X̂ (bit-flip) errors. The code is implemented using
an alternating pattern of data and measure qubits. (b) Optical mi-
crograph of the superconducting quantum device, consisting of nine
Xmon20 transmon qubits with individual control and readout, with
a nearest-neighbour coupling scheme. (c) The repetition code algo-
rithm uses repeated entangling and measurement operations which
detect bit-flips, using the parity scheme on the right. Using the out-
put from the measure qubits during the repetition code, the initial
state can be protected by detecting physical errors. Measure qubits
are initialized into the |0〉 state and need no reinitialization as mea-
surement is QND.

the repetition code is shown in Fig. 2a, for three cycles (in
time) and nine qubits. This is the natural extension of the
schematic in Fig. 1c, optimized for our hardware (Supplemen-
tary Information). The figure illustrates four distinct types of
bit-flip errors (stars): measurement error (gold), single-cycle
data error (purple), two-cycle data error (red), and a data er-
ror after the final cycle (blue). Controlled-NOT (CNOT) gates
propagate bit-flip errors on the data qubit to the measure qubit.
Each of these errors is typically detected at two locations if in
the interior and one location if at the boundary; we call these
“detection events”. The error connectivity graph21 is shown in
Fig. 2b, where the grey lines indicate every possible pattern of
detection events that can arise from a single error. The last col-
umn of values for the ẐẐ operators in Fig. 2b are constructed
from the data qubit measurements, so that errors between the
last cycle and data qubit measurement can be detected (Sup-
plementary Information).

In the absence of errors, there are two possible patterns of
sequential measurement results. If a measure qubit’s neigh-

bouring data qubits are in the |00〉 or |11〉 state, the measure
qubit will report a string of identical values. If the data qubits
are in the |01〉 or |10〉 state, the measure qubit will report al-
ternating values, as measurement is QND. Single data bit-flip
errors make the measurement outcomes switch between these
two patterns. For example, if the measurement outcomes for
three cycles are 0, 0, and 1, this indicates a change from the
identical to the alternating pattern in the last measurement,
and hence a detection event. Explicitly, with mt the measure
qubit outcome at cycle t and⊕ the exclusive OR (XOR) oper-
ator, for each of the two patterns we have bt = mt−1 ⊕mt =
0 or 1. A detection event at cycle t is then identified when
Dt = bt−1 ⊕ bt = 1.

We use minimum-weight perfect matching22–24 to decode
to physical errors, based on the pattern of detection events
and an error model for the system. Intuitively, it connects
detection events in pairs or to the boundary using the short-
est weighted path length. It is important to note that errors
can lead to detection event pairs that span multiple cycles, ne-
cessitating the need for multi-round analysis as opposed to
round-by-round. See Supplementary Information for details.

To study the ability of our device to preserve quantum
states, we initialised the data qubits into a GHZ state [(|000〉+
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FIG. 2: Error propagation and identification. (a) The quantum
circuit for three cycles of the repetition code, and examples of er-
rors. Errors propagate horizontally in time, and vertically through
entangling gates. Different errors lead to different detection patterns:
An error on a measure qubit (gold) is detected in two subsequent
rounds. Data qubit errors (purple, red, blue) are detected on neigh-
bouring measurement qubits in the same or next cycle. Data errors
after the last round (blue) are detected by constructing the final set of
ẐẐ eigenvalues from the data qubit measurements. (b) The connec-
tivity graph for the quantum circuit above, showing measurements
and possible patterns of detection events (grey), see text. The exam-
ple detection events and their connections are highlighted, the corre-
sponding detected errors are shown on the right, which when applied,
will recover the input data qubit state.
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2] and applied two rounds of the repetition code, see
Fig. 3. The algorithm is shown in Fig. 3a. Using quantum
state tomography we measured the input GHZ state to have a
fidelity Tr (ρidealρ) of 82%, above the threshold of 50% for
genuine entanglement25. After two repetition code cycles, we
use tomography to construct the density matrices for each pat-
tern of detection events. We find a state fidelity of 78% in the
case of no detection events, indicating a retention of genuine
quantum entanglement. In the case of two detection events,
which indicate a likely data qubit error in the first cycle, we
find elements away from the ideal positions. By applying the
recovery operation in postprocessing (a single bit-flip on the
blue data qubit) we can restore the state. We find that the
off-diagonal elements have not vanished – and genuine en-
tanglement is preserved with a fidelity of 59% – even though
the repetition code does not provide phase protection. Re-
duced but non-zero off-diagonal terms indicate bit errors arise
from incoherent processes, like qubit energy relaxation which
scrambles the phase, as well as coherent processes. Condi-
tional tomography for every configuration can be found in the
Supplementary Information.

The data in Fig. 3 clearly show that the one-dimensional
repetition code algorithm does not necessarily destroy the
quantum nature of the state. It allows for preserving the quan-
tum state in the case of no errors, and correcting bit-flip errors
otherwise. This preservation is achieved purely through er-
ror detection and classical post-processing, like for the full
surface code, avoiding the need for dynamic feedback with
quantum gates.

We now address the critical question of how well our im-
plementation of the repetition code protects logical states over
many cycles. The process flow is illustrated in Fig. 4a. We
start by initialising the data qubits in either of the logical basis
states: |0L〉 = |0..0〉 or |1L〉 = |1..1〉. We then run the repeti-
tion code algorithm for k cycles, and finish by measuring the
state of all data qubits. We repeat this 90,000 times to gather
statistics. The classical measurement results are converted
into detection events, which are processed using minimum-
weight perfect matching to generate corrections, see Supple-
mentary Information. These corrections are then applied to
the measured data qubit output to see if the input is recovered.
Due to the topological nature of errors, we either recover the
logical state, or the bit-wise inverse (see Supplementary In-
formation). The fidelity of the repetition code algorithm is
defined by the success rate of this recovery. In our system,
qubits naturally relax to |0〉, intrinsically making |0L〉 more
robust than |1L〉. To balance these errors and to increase the
worst-case lifetime of the system, we apply physical bit-flips
to each data qubit at the end of each cycle. This logical flip
is compensated for in software. In order to quantify the re-
duction of logical errors with system size n, we have imple-
mented the repetition code with five and nine qubits in total,
corresponding to first- and second-order fault-tolerance.

In Fig. 4b we show the fidelity of the repetition code as a
function of the number of cycles for five (blue) and nine (red)
qubits. We also plot the probability of a |1〉 state idling for
the same duration, averaged over the five data qubits (black).
This allows for a direct comparison of single physical qubit

error with the multi-qubit logical error. We find a reduced er-
ror of logical states after eight cycles as compared to a phys-
ical qubit; by a factor of 2.7 for five qubits and 8.5 for nine
qubits. We also see a non-exponential fidelity decay for log-
ical states, due to an increasing error rate with cycle number,
see Figure 4c. We attribute this to energy relaxation of mea-
sure qubits. Initial logical states of all 0’s or 1’s have even par-
ity for all ẐẐ operators, maintaining the initial measure qubit
|0〉 state. A bit-flip error on a data qubit, statistically more
likely with increasing cycle number, will cause the nearby ẐẐ
operators to have odd parity. This will flip measure qubits be-
tween the |0〉 and |1〉 state at each cycle, making them sus-
ceptible to energy relaxation and hence increasing the rate of
detection events, see Supplementary Information.

Figure 4 demonstrates state preservation through error cor-
rection. We emphasize that we correct errors that intrinsically
arise from the environment. Additionally, we see larger rep-
etition codes leading to greater error suppression. This is
evidence for the system operating with fidelities above the
repetition code threshold. As the error rates grow with cy-
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FIG. 3: Protecting the GHZ state from bit-flip errors. (a) Quan-
tum circuit for generating the GHZ state and two cycles of the repeti-
tion code. CNOT gates are physically implemented with controlled-
phase (CZ) and single qubit gates. (b) Quantum state tomography on
the input, and after the repetition code conditional on the detection
events: We input a GHZ state with a fidelity of 82%, and find, for the
case of no detection events, a 78% fidelity GHZ state. For the detec-
tion event connecting both measure qubits, indicating a likely bit-flip
error on the central data qubit, we find that through correcting in
postprocessing by exchanging matrix elements we recover the ma-
jor elements of the diagonal. We also recover nonzero off-diagonal
elements, indicating some bit-flip errors are coherent.
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cle number, the many-cycle behaviour of the repetition code
must be explored to ensure that the the system remains above
threshold. The ratio of the errors for the n = 1 and n = 2
case after eight cycles suggests Λ = 3.2, but larger system
sizes are needed to infer this accurately for large n and ver-
ify that the logical error rate is suppressed exponentially as
εlogical ∼ 1/Λn+1, as desired.

Our demonstration that information can be stored with
lower error in logical states than in single physical qubits
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FIG. 4: Logical state preservation with the repetition code. (a)
Information flowchart of the repetition code. The data qubits are ini-
tialised into |0L〉 or |1L〉, and the repetition code is repeated k times.
In post-processing, the measurement qubit outcomes are converted
into detection events and matched to find likely errors, see Fig. 2. A
successful recovery converts the measured data qubit state into the
input state. (b) Memory fidelity vs. time and cycles for a single
physical qubit (black) and the five- (blue) and nine- (red) qubit rep-
etition code. Note that energy relaxation decays from a fidelity of 1
to 0, whereas the repetition code decays from a fidelity of 1 to 0.5.
Five qubit data sampled from nine qubit data, see Supplementary In-
formation. The average physical qubit lifetime is T1 = 29 µs, and
after eight cycles we see an improvement in error rate by a factor of
2.7 for five qubits, and 8.5 for nine qubits when using the repetition
code. This indicates a Λ parameter of 3.2 for our system after eight
cycles. (c) Average number of detection events per measure qubit,
vs. cycle number, for experiments consisting of eight cycles. We see
an increasing rate of detection events with increasing cycle number.
This can be attributed to the statistically increasing number of odd
parity ẐẐ measurements, see text.

shows that the basic physical processes required to implement
surface code error correction are technologically feasible. We
hope our work helps accelerate research into the many out-
standing challenges that remain, such as development of two-
dimensional qubit arrays, improving gate and measurement
fidelities26, and investigating the many-cycle behavior of er-
ror correction schemes.

Methods Summary The system is brought up in a three step
process: characterization, coarse calibration, and fine calibra-
tion. 1) Qubit spectra are characterized by analysing raw co-
herence times at various operating frequencies (Supplemen-
tary Information). Using this information, optimal idle, gate,
and readout frequencies are chosen. 2) Gates are performed
identically to Ref.18 and optimized as in Ref.27. Readout is op-
timized for maximal separation error while minimizing state
transitions. Multi-qubit readout is optimized separately for
parametric amplifier saturation28. 3) Fine calibration is per-
formed by using the repetition code, where parameters are
optimized to reduce detection events.
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I. THE CLASSICAL REPETITION CODE

Suppose we wish to reliably store a single classical bit of
information, 0 or 1, for a very long period of time. There
are many ways we could attempt to do this. We could write
the number on a piece of paper, or carve the number into a
boulder, or even scratch the number into a diamond; however,
all of these methods are error-prone. Paper burns, ink fades,
rocks weather, and diamonds can be stolen. There is no known
physical method of truly permanently storing information for
later retrieval. Any storage scheme will have some probability
of failure per unit time, with the most likely failure mechanism
in many schemes being negligent or malicious human activity.
We shall quantify all of these failure mechanisms by a single
number p, the probability of failure per unit time. Without
loss of generality, we shall take failure to mean a bit-flip. We
can always convert arbitrary errors into bit-flip errors, as lost
or unrecognizable data can simply be replaced with a random
0 or 1.

The simplest method of increasing the reliability of infor-
mation storage is to make multiple copies, and ensure these n
copies are subject to errors that are as independent as possi-
ble. When using this generic method, we are using a classical
repetition code. Multiple paper copies, for example, could be
stored in multiple geographic locations. This won’t prevent a
planet-killing asteroid simultaneously destroying all data, or
an organized multi-site human attack, however we shall as-
sume these n-bit correlated errors are sufficiently rare to ne-
glect. We shall also assume all m-bit, 1 < m < n correlated
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errors are sufficiently rare to neglect and focus on the proba-
bility p of each individual bit suffering a flip.

A. Trusted supervisor

Suppose we have a hypothetical perfectly reliable and trust-
worthy supervisor at our disposal. Once per unit time, this
supervisor could check each bit of data. Each bit has indepen-
dent probability p of having suffered a bit-flip. If p is small
and n is large, most of the data is very likely to still be cor-
rect, and the supervisor can take a majority vote, and set the
minority bits to the majority value. Note that it is possible
that a majority of sites will have suffered an error, and that af-
ter “correction” every site will contain the wrong value. The
probability of a majority of sites suffering an error is

pfail =

n∑
i=dn/2e

(
n
i

)
pi(1− p)n−i. (S1)

Given the average number of errors is pn, and the standard
deviation σ =

√
np(1− p), we need p < 1/2 to ensure that

the average number of errors is less than n/2. As n is in-
creased, pn will then be an O(

√
n) increasing number of σ

below n/2, implying exponential suppression of pfail. This
example shows how the classical repetition code, given inde-
pendent errors and a trusted supervisor, can arbitrarily reliably
store a single bit of information using only a simple majority
vote per unit time. Note that to first order in p, pfail ∼ pdn/2e.

B. Secret data

Suppose now that we wish to keep the data secret. Instead
of granting our supervisor permission to look at the data di-
rectly, we allow them only to ask if two given bits are the
same or not. That is, we allow them to access the result of the
exclusive-OR (XOR) operator⊕, where 0⊕0 = 0, 0⊕1 = 1,
1⊕ 0 = 1, and 1⊕ 1 = 0. We shall conceptually arrange our
n bits in a line, and focus on the XOR of neighboring bits.

When a single error occurs, away from the ends of the line
of bits, the parities of two pairs of bits around the error become
1. Figure S1 gives a detailed worked example showing how
this simple case is handled. We represent the parity changes
in the graph of Fig. S1d as red colored vertices. The lines
between the vertices represent how a single bit error event af-
fects only its two neighboring vertices, except at the ends were
the line connects only to an edge vertex. In Fig. S1e we show
the obvious decoding of these pair of red vertices into an error
chain of a single blue line, which represents the bit-flip. How-
ever, the error can also be decoded into the 4 blue lines (error
chains) in Fig. S1f, which represents the inverse of the solu-
tion in Fig. S1e. As an error chain with n lines has probability
O(pn), assuming independent errors, the solution in Fig. S1e
with O(p) is much more likely to occur than for Fig. S1f with
O(p4), and should thus be the choice for the decoding.

Figure S2 gives a more complex example when there are
multiple error events. To decode this example, we first show

a

b
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1 1 00
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e
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FIG. S1. Processing perfect parity measurements. (a) Five iden-
tical copies of an unknown bit represented by a question mark. (b)
A bit-flip error on the middle bit, indicated by E. (c) Perfect mea-
surement of the parity of neighboring bits would give all 0’s in the
absence of errors, but in this case two 1’s are reported. (d) The string
of parity measurements can be converted into a graph problem. Each
vertex represents one parity measurement, and a red vertex is asso-
ciated with each error. These 1’s are located at the ends of chains of
errors. Since errors are independent, error patterns containing fewer
errors are more likely. (e) The simplest solution is a single error
occurring between the red vertices, indicated by a blue line. (f) A
second but less likely solution is the inverse of the above solution,
consisting of two error chains and 4 errors.

in Fig. S2b the graph of the errors. To decode the multiple red
vertices into error events (blue lines), we need to form error
chains. A simple algorithm to do this is: (I) From left to right,
find the first red vertex and match it with another red vertex to
its right. After matching a pair of vertices, continue matching
pairs until reaching the right edge. (II) A second solution is
the inverse of the above solution. These two solutions are
shown in Fig. S2c and d. As d has a shorter total length of the
error chains, it is the most likely solution.

The errors are decoded properly if less than dn/2e errors
occur in a single time interval. This means that only having
access to parity information is just as powerful in decoding
as being able to directly view the data, and we retain pfail ∼
pdn/2e. Indeed, the corrections suggested by matching perfect
parity information are identical to the corrections suggested
by taking a majority vote given actual data values.

C. Imperfect parity measurements

When parity measurements are imperfect, we can no longer
process each round of parity information independently. For
example, if the only error is in a parity measurement and we
use the single-round algorithm of the previous section, any
graph solution we choose will lead to disastrous corruption of
the data, as shown in Fig. S3.

We can fix our decoding algorithm by considering the ef-
fect of errors both in space and time. To do so we need to
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FIG. S2. Processing perfect parity measurements, large example. (a) 15 initially identical copies of an unknown bit suffer errors at unknown
locations leading to a specific pattern of pairwise parity measurements. (b) Graph problem corresponding to the parity measurements. Our
goal is to connect the colored vertices in pairs or to a graph boundary using the minimum total number of edges. (c) Non-optimal weight 8
graph solution. (d) Optimal weight 7 graph solution, i.e. contains the fewest errors. Note that after applying corrections corresponding to
the blue edges, we will restore the data to its original state using the optimal graph solution, and the bit-inverse of the original state using the
non-optimal graph solution. This is a generic property — after correction one will always obtain the original data or its perfect bit-inverse.
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FIG. S3. Incorrectly processing imperfect parity measurements. (a) 15 initially identical copies of an unknown bit remain free of error,
however a single parity measurement reports the wrong result. (b) The incorrect parity measurement leads to a single colored vertex. (c)
Non-optimal weight 12 graph solution corrupting 12 of the data bits. (d) Optimal weight 3 graph solution corrupting 3 of the data bits. Note
that after applying corrections corresponding to the blue edges, the data will be neither its original state nor its bit-inverse. This implies the
described “correction” method is flawed.

introduce the notion of a detection event, which corresponds
to a change of a measurement parity in time. Given arbitrary
values on the data bits and assuming no errors, each round of
parity measurements will be the same as the previous round.
When the parity changes, we know an error must have oc-
curred nearby. For data errors, we see changes as described
in the previous section. For parity measurement errors, there
is first a change in the parity output, and then in the next cy-
cle a change back to the original (correct) value. Thus a data
error produces a pair of detection events in space (with single
events at the boundaries), while a parity-measurement error
produces a pair of detection events in time. All these errors
can be uniquely identified when sufficiently sparse.

We show an example of this behavior in Fig. S4. A data
error introduced at t = 2 gives a pair of detection events in
space, while a measurement error at t = 4 gives a pair of de-
tection events at times t = 4, 5. This figure also illustrates the
basic idea of decoding the detection events into errors using
the minimum-weight perfect matching algorithm. Here, a de-
tection event is chosen and a region around it explored until
another detection event or edge is found, whereby the two de-
tection events are matched. The idea of the algorithm is that
one should connect the red vertices to each other in pairs or

to a graph boundary using the minimum total number of lines,
where each line corresponds to the location of an error. Im-
portantly, if errors are independent, patterns with fewer lines
(errors) are more likely. The number of errors in a pattern is
called its weight; an efficient algorithm solving this problem
has existed since the mid-60’s called minimum-weight per-
fect matching1–3. More details on the algorithm can be found
in Ref.4.

D. Time boundaries

When the last time boundary is encountered, the algorithm
must have additional parity information to correctly match the
detection events. As we must directly measure the bits any-
way to check whether our decoding efforts were successful,
we can use this data itself to compute the final round of parity
measurements. As shown in Fig. S5, this allows one to com-
plete the graph, eliminating the future time boundary and en-
abling all detection events to be processed. Note that although
the final data measurements are imperfect, we may model any
such errors as coming from a data error in the previous round
and treat the final measurements as error free.
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FIG. S4. Processing imperfect parity measurements. (a) Six
rounds of imperfect parity measurements. Every time a parity dif-
fers from the previous round, a detection event is generated. (b)
Corresponding graph problem. Red dots indicate detection events.
Note that the graph now includes vertical lines to account for the
possibility of parity measurement errors; a single parity measure-
ment error manifests as a pair of sequential detection events. The
matching algorithm works by selecting a detection event and explor-
ing uniformly in all directions (orange diamonds) until a feature of
interest is encountered. If the feature is another detection event, the
two detection events are paired (blue lines). If the feature of interest
is the future time boundary, we do not have sufficient information
to correctly match the detection event, and need to wait for more
data. Corrective data bit-flips are associated with horizontal matched
edges. Vertical matched edges indicate parity measurement errors,
and require no modification of the data.
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FIG. S5. Complete processing of imperfect parity measurements.
At t = 0, the bits are initialized to 01100 and used to generate the
parity measurements. No change at t = 1 indicates no initialization
errors. At t = 6, to check whether storage has been successful, the
bits are measured directly (but imperfectly). Any errors during mea-
surement can be treated as errors occurring before a perfect round of
measurements, implying no errors remain undetected even when us-
ing imperfect physical measurements. This data is used to generate
the final parities. In this case, the error pair in the lower right corner
is not matched to an edge (a data error), but is correctly identified as
a measurement error.

A similar situation occurs for the beginning round, since
there is nothing to compare to when computing the parity
change at time step t = 1. We take the data as perfectly ini-
tialized to the desired value, so that errors in initialization are
placed as data errors in the first round. The initial parities at
t = 0 are then computed from this perfect initial state.

E. Two possible corrected outputs

By moving initialization and measurement errors to detec-
tion events, the initial and final states may be considered per-
fectly known. Logical errors arise only from decoding the
detection events. As discussed in the case of only data er-
rors, decoding gives the proper state or its logical error, the
bit-inverse. This is also true for the general case of data and
measurement errors, as illustrated graphically in Fig. S6. It
is interesting to note that the decoding process does not have
to match exactly all error events, but only needs to correctly
identify the totality of bit errors. As illustrated with the bot-
tom line of Fig. S6d, a logical error only occurs when a net
error chain crosses the boundaries, which always produces a
bit-inverse of the proper final state.

An advantage of this procedure is that the algorithm re-
moves state preparation and measurement errors (SPAM) to
the same order as the error correction itself. This is a hallmark
of fault-tolerance in that errors in every part of the quantum
circuit are treated equally.

The idea that decoding gives the state or its bit-inverse is
perhaps surprising, and although it is a mathematical state-
ment, we have checked our decoding algorithm for consis-
tency. For those who are concerned about using the final mea-
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FIG. S6. Topology of corrections. (a) A large repetition code running for many cycles with error chains marked in red. (b) Corresponding
detection events. (c) A minimum-weight matching of the detection events. (d) Errors and corrections plotted together. Successful corrections
together with their associated errors form rings, or U-shapes starting and ending on a single boundary. Unsuccessful corrections together with
their associated errors form chains connecting different boundaries. Given every horizontal edge corresponds to either an error or a correction,
rings and U-shapes contribute a net identity operation. Chains connecting different boundaries contribute a net single bit-flip on every bit.
Note that this is true even if the chain doubles back on itself, as then some bits will get an odd number of flips that will cancel down to a net
single bit-flip. This is why, even in a physical system with realistic errors, after correction the output will either match the input or be its exact
bit-inverse. (e–i) A more complex example focussing on extreme measurement error. In this case, errors and corrections cancel leading to
successful storage.

surement data to help compute the errors in the final round,
we note it is possible to compute errors without this data.
In this case one would have greater errors because of im-
perfect matching of the final detection events, giving errors
in both matching and the final measurement. As these addi-
tional errors come from the measurement, they are constant
with changing the number of rounds, and thus the decay of
the fidelity will be the same as for matching with the full mea-
surement data.

II. QUANTUM REPETITION CODE: THEORY

Given qubits instead of bits, we need to be able to pro-
tect quantum superpositions from error. Qubits encode infor-
mation in amplitude and phase, which can be expressed in
terms of X̂ and Ẑ operators. Thus, errors can be expressed
in terms of bit-flip (X̂) and phase-flip (Ẑ) errors. However,
detecting both types of errors simultaneously is nontrivial, as
[X̂, Ẑ] 6= 0. This can be overcome by constructing operators
that measure the parity of two qubits. Take for example, the
X̂1X̂2 and Ẑ1Ẑ2 operators:

[X̂1X̂2, Ẑ1Ẑ2] = (X̂1X̂2)(Ẑ1Ẑ2)− (Ẑ1Ẑ2)(X̂1X̂2)

= X̂1Ẑ1X̂2Ẑ2 − Ẑ1X̂1Ẑ2X̂2

= (−Ẑ1X̂1)(−Ẑ2X̂2)− Ẑ1X̂1Ẑ2X̂2

= 0

(S2)

Thus, these multi-qubit operators can be used to detect the
bit and phase parity of two qubits without knowing and col-

lapsing the individual state of each qubit – analogous to the
classical secret information example.

Consider the operator ẐẐ. This operator has the property
that ẐẐ|00〉 = +|00〉, ẐẐ|01〉 = −|01〉, ẐẐ|10〉 = −|10〉,
and ẐẐ|11〉 = +|11〉. This operator can detect changes in
parity of the qubits; however, it cannot determine which qubit
has flipped. To overcome this, we use a one-dimensional ar-
ray of qubits and nearest neighbour parity operators, similar
to the array of bits and XORs in the classical example. As
we must protect qubits from both X̂ and Ẑ errors simultane-
ously, a fully protected state requires a two-dimensional array
of qubits. Here, we design our experiment to focus on a chain
of qubits and X̂ errors only, as this is experimentally viable
today.

We can construct the ẐẐ operator through the use of quan-
tum logic gates and measurement, as seen in Fig. S7. Each
controlled-NOT (CNOT) gate will flip the top ancilla qubit de-
pendent on the state of the control qubit, just like the classical
XOR operation. Thus, the state |00〉 will map the ancilla qubit
to |0〉, the |01〉 or |10〉 states will map the ancilla to |1〉, and
the |11〉 will have two flips that cancel, mapping the ancilla
to |0〉. After the circuit is executed, the measured state of the
ancilla qubit will encode the eigenvalue of the ẐẐ operator.

III. QUANTUM REPETITION CODE: EXPERIMENT

Our experimental implementation of the quantum repeti-
tion code consists of nine qubits total, five data qubits and
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FIG. S7. Parity measurement circuit. (a) CNOT gates flip the state
of the top ancilla qubit conditional on the state of the control qubits.
The two CNOT gates and measurement will encode the eigenvalue
of the Ẑ1Ẑ2 operator onto the state of the ancilla qubit, see text. (b)
The CNOT gate can be decomposed into a controlled-phase (CZ)
gate plus single-qubit gates. Decomposition can either consist of a
Hadamard on the target qubit before and after the CZ, or a Y−π/2
before and Yπ/2 after on the target qubit.

four measure qubits. Limited memory in our control elec-
tronics restricts us to a maximum of eight parity measurement
cycles. One complete run of our experiment consists of qubit
initialization, between one and eight cycles of the physical
gate sequence in Fig. S26, data qubit measurement, then post-
processing to determine whether a logical error has occurred.
This section focuses on the postprocessing, with emphasis on
doing this with care to achieve the lowest possible logical er-
ror rate.

Any information pertaining to the physical performance of
the device can be incorporated into the postprocessing to en-
sure that the very best possible corrections are suggested at
the end of a run. We shall discuss five increasing levels of de-
tail, with the final level of detail corresponding to the results
reported in the main text. We do not claim to have exhausted
available techniques.

A. Basic processing

There are a number of steps required to identify physical er-
rors given the raw experimental output. Example data moved
through each of these steps is shown in Fig. S8. In the follow-
ing sections, we will explain in detail how each of these steps
is performed.

(a) Raw Data. Before we can begin discussing more ad-
vanced processing, we must give a little more detail on
how the experimental output is converted into detection
events. Our experiment makes use of QND measure-
ment and does not reinitialize measure qubits to |0〉 as
was done in Fig. S7a. This makes detection event iden-
tification more complex.

An example of experimental data gathered during an
eight cycle run is shown in Fig. S8a. Some postpro-
cessing has already occurred, namely the conversion
of the measurement microwave waveform into a best
guess of the corresponding state. This postprocessing
is described elsewhere (Section XI). The first line “in”
shows which state the nine qubits were intended to be

initialized to. The five data qubits have been initial-
ized to |0L〉. The eight numbered lines show the output
of each measurement qubit for each cycle, and the fi-
nal line contains the experiment terminating data qubit
measurements.

(b) Additional simulated rounds. In order for the first cy-
cle of measurements to look for a change in parity, we
generate two artificial rounds from a parity computa-
tion of the desired initial state. See Fig. S8b. As the
data qubits are initialized to either all 0’s (|0L〉) or all
1’s (|1L〉), the computed parity is all 0’s. Likewise, an
additional parity round is computed from the measure-
ment of the final data.

(c) Calculating detection events. Consider the action of
the parity measurement circuit in Fig. S7a. If just one
of the data qubits is in state |1〉, the value of the mea-
sure qubit will be flipped. If the data qubits have the
same value, the measure qubit will be unchanged. In
the absence of errors, QND measurement and no reini-
tialization therefore leads to two possible behaviors —
alternating and constant, see main text. The presence
of an error is indicated by a change between alternating
and constant behavior. For example, the sequence of
measurement results 011 shows a change from alternat-
ing to constant behavior, and hence is associated with a
detection event.

We desire a simple formula to identify detection events.
Given a sequential pair of measurement results, mt−1,
mt, we can use XOR to detect alternatingmt−1⊕mt =
1 and constant mt−1 ⊕mt = 0 behavior. Given three
sequential measurements, mt−2, mt−1, mt, we can de-
tect a change between alternating and constant behavior
using (mt−2 ⊕mt−1) ⊕ (mt−1 ⊕mt) = mt−2 ⊕mt.
In our experiment, a detection event is generated when
a given parity measurement differs from the value re-
ported two rounds ago.

The data converted into detection events is shown in
Fig. S8c. Our goal is to use the detection events to cal-
culate bit-flips to apply to the final measurement results,
with a success being recorded when the corrected out-
put matches the input.

(d) Detection events on error connectivity graph. If we
take no details of the underlying quantum circuit into
account, and assume here for simplicity that we can
only have parity measurement errors or data qubit errors
between cycles of the repetition code, we can perform
the classical postprocessing exactly as described in Sub-
section I C for the classical repetition code with imper-
fect parity measurements. This means using a graph
with a square structure, with vertices at every potential
detection event location. Vertices associated with actual
detection events get colored red (Fig. S8d). A potential
data qubit error between a particular pair of repetition
code cycles can be visualized as a horizontal edge, a
potential measurement error as a vertical edge.
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FIG. S8. Flow of experimental data. (a) Raw experimental data. (b) Raw experimental data appended by computed data to allow the
first round of measurements to detect errors, and a final round of measure qubit outcomes inferred from the data qubit outcomes. (c) Data
converted to detection events, indicated by D. (d) Detection events (red circles) placed onto graph which contains information about how
errors propagate. (e) Detection events matched together (blue lines) to identify physical errors. The final two detection events on the third
measure qubit, connected over three rounds, are an error chain. Final correction to recover data qubit input is shown at the bottom of the graph:
Î ⊗ Î ⊗ X̂ ⊗ Î ⊗ Î .

(e) Identifying errors. As before, we use minimum-
weight perfect matching to find a minimal set of errors
reproducing the observed detection events. Blue edges
show that, in this case, a unique minimum set of edges
solves this problem. In general, the problem can have
multiple solutions. Our processing deterministically but
arbitrarily chooses one of these multiple solutions. In
this instance, the correction suggested by the solution
restores the observed output to the input, and the run
has been successful. For the data set used for this paper,
3.35% of 9-qubit 8-cycle runs failed using this method
of postprocessing.

For the remainder of this document, experimental data is
organized as in Fig. S8.

B. Data errors during the repetition code cycle

In the previous subsection, our processing assumed that
data qubit errors could only occur between repetition code
cycles. Despite the fact that this assumption is not, in fact,
true, we gave a nontrivial example where the postprocessing
succeeded. In reality, data qubit errors can occur at any time.
Referring to Fig. 2 of the main text, an error on data qubit 2
during the third 20 ns window will be detected on measure
qubit 3 immediately, but not on measure qubit 1 until the next
cycle. Similarly, an error on data qubit 4 during the second 20
ns window will be detected on measure qubit 5 immediately,
but not on measure qubit 3 until the next cycle. Finally, an er-
ror on data qubit 6 during the second or third 20 ns windows
will be detected in the same cycle on measure qubit 5, but not

on measure qubit 7 until the next cycle. Taking into account
these three new classes of error means including three new
classes of edges in our graph problem.

Consider the following run.

i n 101010101
0 0 0 0
0 0 0 0

1 0 0 0 0 . . . .
2 0 0 0 0 . . . .
3 0 0 0 0 . . . .
4 0 0 0 0 . . . .
5 0 0 0 0 . . . .
6 1 0 1 0 D . D .
7 0 1 0 1 . D . D
8 1 1 1 0 . D . .

f i n 0 0 1 0 1 D D . .

Example 1. An example run (real data) illustrating the benefit of
considering data qubit errors during the repetition code cycle.

Using the basic postprocessing of Subsection III A, the graph,
solution, and suggested corrections are shown in Fig. S9b,
leading to failure. By including additional edges correspond-
ing to data qubit errors during the repetition code cycle, a
unique and better solution becomes available, resulting in a
successful run. The 9-qubit 8-cycle logical error rate drops
from 3.35% to 3.29% after including the additional edges.
The improvement is small, as expected, as it is rare that errors
occur in the precise windows required to generate behavior
handled by these extra edges.
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FIG. S9. Graph problems corresponding to Ex. 1. Parts (a) and (b) show two possible solutions when assuming only basic errors as was done
in Subsection III A. Our code deterministically but arbitrarily chooses solution (b), which for this experimental run was the wrong thing to do,
resulting in failure. Without any additional information, solutions (a) and (b) both use 5 edges and are equally good. In part (c), additional
edges have been added to account for the possibility of data qubit errors during the repetition code cycle. When this is done, a unique 4 edge
solution is found by postprocessing, successfully restoring the output to the input. Fewer edges means fewer errors and hence a more likely
error pattern that matching should favor.

TABLE S1. Input error model.

Gate Error
CZ 1%
X 0.1%
Idle (20 ns) 0.05%
Initialization 2.5%
Readout (measure qubit) 1.5%
Readout (data qubit) 3%.

C. Weighted edges

In the previous Subsection, it was noted that there are few
errors that can lead to a diagonally offset pair of detection
events. It would seem reasonable, therefore, to make it less
likely for postprocessing to choose diagonal edges when mul-
tiple options are available. Calculating the probability of each
edge first requires an error model for every gate in the rep-
etition code cycle. As a first pass, we choose to believe that
every gate suffers errors well modeled by a depolarizing chan-
nel, and that gates of the same type suffer errors at the same
rate.

We input the error rate associated with each operation in
table S1, determined from previous techniques5,6. These op-
erations are all that are required during our experiment. By
studying exactly where and when every possible error is de-
tected, we can determine the probability of every edge in our
graph. We convert each edge probability pi into a weight
wi = − ln pi so that the weight of two consecutive edges is
wi + wj = − ln pi − ln pj = − ln pipj . This ensures that
minimum weight perfect matching1–3 will consider two hypo-
thetical detection events that can be matched either through in-
dependent single edges to a nearby boundary or to each other
through two links to have two equally good matchings, as we

wish, if the edge probabilities are equal.

Consider the following run.

i n 101010101
0 0 0 0
0 0 0 0

1 0 0 1 0 . . D .
2 0 0 1 0 . . D .
3 0 0 0 0 . . D .
4 0 0 0 0 . . D .
5 0 1 0 0 . D . .
6 0 0 0 0 . . . .
7 0 1 0 0 . . . .
8 1 1 0 0 D D . .

f i n 0 1 0 1 1 . D D .

Example 2. An example run (real data) illustrating the benefit of
carefully weighting each edge in the graph to reflect the actual prob-
ability of detection events being observed at the edge’s vertices. Di-
agonal edges, in particular, are much less likely than horizontal and
vertical edges.

Without taking the error rate of each gate into account, the
corresponding graph problem has equally weighted edges and
hence two equally acceptable solutions (Fig. S10), only one of
which leads to successful correction. With weights set accord-
ing to their probability (w = − ln p), low probability diagonal
edges acquire high weights and the solution in Fig. S10b, in
this case the correct solution, becomes favored resulting in a
successful run. The 9-qubit 8-cycle logical error rate drops
from 3.29% to 2.897% through the use of weighted edges, a
significant improvement. This is expected as a great deal of
physical information has now been added to the graph, help-
ing the postprocessor accurately distinguish between many
previously degenerate solutions.
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FIG. S10. Graph problem corresponding to Ex. 2. With equally
weighted edges, there are two equally good solutions with six edges.
Our software deterministically chooses solution (a), which in this
case does not restore the output to the input, resulting in a failed run.
By weighting edges according to their probability, diagonal edges
get a much higher weight as they are low probability (w = − ln p),
penalizing their use. This breaks the degeneracy between these two
solutions, favoring solution (b) and leading to a successful run.

D. Leakage

Superconducting qubits are not two-state systems, and leak-
age to other non-computational states can and does occur.
When a measure qubit outputs 2, which will be the input to
the next repetition code cycle, the next measurement result
will be unreliable. We can only accurately predict what the
next measurement result should be, even in the absence of er-
rors, if the cycle begins with 0 or 1 on the measure qubit. This
physical understanding can be fed into the postprocessing by
setting the probability of a vertical edge to be 0.5 conditional
on observing 2 at the end of the first cycle it is connected to.

Furthermore, a |2〉 on a measure qubit at the beginning of
the repetition code cycle can induce errors on the neighbor-
ing data qubits. We observed that a neighboring data qubit
in a |1〉 state is essentially randomized, whereas a neighbor-
ing data qubit |0〉 is mostly undisturbed. We can model this
by setting the probability of the two horizontal edges associ-
ated with the next repetition code cycle to 0.25. These two
reweighting rules are depicted in Fig. S11

Consider the following run.

i n 101010101
0 0 0 0
0 0 0 0

1 0 0 0 0 . . . .
2 0 0 0 0 . . . .
3 0 2 1 0 . D D .
4 1 1 1 0 D D D .
5 0 1 2 0 . . . .
6 1 0 2 0 . D . .
7 0 2 2 2 . . . D
8 1 1 2 2 . D . D

2

3 2

4

5 2

FIG. S11. When a measure qubit reports 2, the next measurement
will be unreliable, and this knowledge can be accounted for by setting
the probability of error for the next vertical edge to be 0.5, resulting
in a very low weight link (narrow vertical line). Note that thinner
lines are less weight, and therefore more likely. Neighboring data
qubits, if they are in the |1〉, were observed to be strongly corrupted,
which can be accounted for by setting the horizontal edges of the
next cycle to have probability of error of 0.25 (slightly less narrow
horizontal lines). These three high probability (low weight) edges
will be strongly preferred by the matching algorithm, more reliably
pairing up cascades of detection events resulting from leakage.

f i n 0 0 0 0 1 D . . D
Example 3. An example run (real data) illustrating the benefit of
lowering the weights of future edges after a measure qubit reports 2.
Note that a 2 is treated as a 1, plus reweighting.

A large region of the data has been corrupted by leak-
age. Without accounting for leakage, the matching shown in
Fig. S12a is found, and the corresponding corrections are un-
successful. With edge reweighting, detection events arising
from leakage are preferentially matched to each other, in this
instance leading to successful correction. Leakage plays a sig-
nificant role in superconducting circuits. Including |2〉 state
intelligence in the measurement and postprocessing reduces
the 9-qubit 8-cycle logical error rate from 2.897% to 2.414%,
a significant improvement.

E. Fine-tuning the error model

In Subsection III C, we chose simple depolarizing error
rates for each type of gate and assumed that every gate of the
same type had the same error rate. We shall now relax that
assumption, assuming only that every gate of the same type
applied to the same qubits will have the same error rate.

To begin, we associate a variable with each geometrically-
or weight-distinct edge. The set of variables is represented
graphically in Fig. S13. Geometrically-distinct means con-
necting different sets of qubits, or being horizontal versus di-
agonal. Weight-distinct means that while the edges may be
geometrically-identical, they have different weight. The final
row of horizontal edges has a different weight to every other
row as the final 3% error data qubit measurements contribute
to the generation of detection events associated with this row
only, lowering their weights below that of other horizontal
lines. Similarly the 2.5% initialization error contributes to the
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FIG. S12. (a) matching of Ex. 3 without accounting for leakage.
(b) leakage is well handled by lowering the weight of nearby edges
following detected leakage. These low weight edges encourage de-
tection events generated as a result of leakage to be paired together
leading to a higher probability of successful correction. In this exam-
ple, after reweighting the suggested corrections successfully return
the output to the input.

first row of horizontal and vertical edges only. The remaining
green edges control the rest of the graph, with a small number
of variables controlling the repetitive weight structure.

Our primary data file contains 90,000 runs for each possi-
ble number of cycles from 1 to 8 and both |0L〉 and |1L〉 as
input, for a total of 1.44 million runs. When our postprocess-
ing is run on this file using the initial depolarizing error model,
18,750 runs lead to logical errors. We can use the total num-
ber of logical errors as a fitness metric and optimize the edge
variables defined above for a total logical error count. We
make use of the standard Nelder-Mead algorithm to perform
this optimization. Optimizing the error model in this manner
reduces the 9-qubit 8-cycle logical error rate from 2.414% to
2.246%.

Optimizing using the entire data set is cheating, however,
since it doesn’t guarantee good performance on unseen data.
To combat this, we first split the full dataset in two parts. The
chosen split was between even and odd entries in the dataset,
which ensures full sampling over the time of the experiment
and input states. Second, we use these two sets to train two
error models. We obtain logical error rates of 2.222% for the
even, and 2.254% for the odd dataset. Note that the logical
error rates differ only in the third significant figure, illustrating
that the optimized performance is not strongly dependent on
the dataset.

Third, to further test the validity of these error models, we
test their performance on the datasets they have not seen. We
obtain logical error rates of 2.300% for the even error model
on the odd dataset and 2.243% vice versa. We note that the
performance here is very close to the full dataset, and that
indeed, the error model trained on odd data, performs even
slightly better when used on the even dataset. These results
underline that the error models are nearly equivalent, and
therefore can be used to infer a reliable logical error rate. We

1

2

3

4

5

6

7

8

FIG. S13. Green edges denote geometrically- or weight-distinct
edges. Every black edge is equivalent to a green edge by time transla-
tion. The relatively low number of unique edges is due to the cyclic
nature of the repetition code, and hence the cyclic nature of error
propagation. Two edges for coping with leakage are also optimized,
but not shown as they are dynamically added when leakage is de-
tected.

TABLE S2. Summary of logical error rates.

algorithm logical error rate
basic errors only 3.350 %
data errors during the cycle 3.290 %
weighted edges 2.897 %
leakage 2.414 %
fine-tuning the error model 2.300 %

took the worst results, namely optimizing on even and running
on odd data, to be the foundation of the discussion in the main
Letter.

In summary, our most basic postprocessing led to a logical
error rate of 3.35%, and our final hardware-optimized postpro-
cessing reduced this to 2.3%, a 30% reduction. Our stepwise
optimization are summarised in table S2. In the next section,
we shall see that there is a better figure of merit characterizing
the performance of a fault-tolerant quantum error correction
system. We think that this is a significant test of the theory
that better error models give a lower logical error rate.

IV. ERROR SUPPRESSION FACTOR Λ - FIGURE OF
MERIT FOR FAULT-TOLERANT QUANTUM ERROR

CORRECTION

This Section discusses a universal figure of merit character-
izing the performance of any fault-tolerant topological quan-
tum error correction system, meaning the totality of both the
quantum hardware and the classical postprocessing. Clearly,
the 9-qubit 8-cycle logical error rate we discussed in the pre-
vious Section is highly specific to our current experiment, and
unlikely to be appropriate for comparison with other hardware
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or experiments. We seek instead a generic figure of merit
characterizing how rapidly errors are suppressed as qubits are
added to the system. This means studying and comparing the
performance of different orders of fault-tolerance.

In the main text we defined n-th order fault-tolerance to
mean a system guaranteeing correction of any combination
of n errors. Our full 9-qubit experiment is 2nd-order fault-
tolerant to X errors. There are three possible 5-qubit subsets
that are 1st-order fault-tolerant. In an effort to make the most
reliable extrapolations to higher orders, instead of separately
running the three possible 5-qubit subsets, we infer the perfor-
mance of these subsets directly from the full 9-qubit data. This
simply means discarding appropriate columns from a larger 9-
qubit run. We believe this will give a more accurate estimation
of Λ than running three separate 5-qubit experiments, which
is experimentally taxing.

For example, the performance of the first 5 qubits can be
inferred from 9-qubit data as follows.

i n 000000000 00000
1 0 1 1 0 0 1
2 0 0 0 0 0 0
3 0 1 1 0 0 1
4 0 0 0 0 0 0
5 1 0 2 0 1 0
6 0 0 0 0 0 0
7 1 0 0 0 1 0
8 0 0 0 0 0 0

f i n 0 0 1 0 0 0 0 1
Example 4. Left, full 9-qubit run data. Right, the same data restricted
to the first five qubits.

This works because the repetition code is topological – its
structure is transversely invariant as it grows and its classi-
cal processing is local on average. The extra piece of unused
repetition code in the above example fundamentally just inter-
acts with the rightmost data qubit introducing a small amount
of additional error on this qubit. This in no way conceptu-
ally changes the performance or required postprocessing of
the leftmost five qubits.

Ideally, a well-constructed topological quantum error cor-
rection system should have a logical error rate that scales as
ε ∼ 1/Λn+1. The universal figure of merit Λ specifies how
much the logical error rate will go down if the order n of fault-
tolerance is increased. For Λ to be well-defined, the system
must operate with sufficiently low error rates to become more
reliable as it grows. Note that it has been traditional to focus
on a threshold error rate in the literature, as this is a theoret-
ical quantity that is straightforward to calculate through sim-
ulation. The threshold error rate is not, however, a terribly
meaningful experimental quantity, as its measurement would
require variable error rate gates, necessitating the artificial in-
sertion of noise. Rather, Λ measures how far below threshold
error rate a system is, without requiring an explicit measure-
ment of this threshold value.

To obtain an estimate of Λ, one requires, at a minimum,
a single system capable of demonstrating 1st- and 2nd-order
fault-tolerance. It is not sufficient to compare a single qubit
to the performance of 1st-order fault-tolerance as a bare qubit
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FIG. S14. Comparison of basic data processing and hardware-
optimized data processing. (top) Fidelity of basic data processing
for each combination of five qubits, and nine qubits vs. cycle num-
ber. (bottom) Fidelity of hardware-optimized data processing for
each combination of five qubits, and nine qubits vs. cycle number.

may have a very long memory time, but high-error gates, lead-
ing potentially to poorer performance of the error corrected
system than a bare qubit, despite the system being below
threshold (Λ > 1).

In Fig. S14 we plot the three possible five qubit logical error
rates and the nine qubit logical error rate for both basic and
hardware-optimized postprocessing. To calculate Λ, we first
calculate the average five qubit logical error rate and take the
ratio of average five qubit error rate to nine qubit error rate.
Given the accumulation of leakage, as discussed in the main
text, we find an increase in error rate with cycle number, thus
degrading Λ with cycle number (Fig. S15). A truly scalable
system would asymptote to a constant value of Λ > 1. Our
data is currently insufficient to know if this will occur.

V. PHYSICAL LEAKAGE MECHANISMS

From previous experiments, we measure a CZ gate to have
1 − 2 · 10−3 population leakage, and a single qubit gates to
have at most ∼ 10−4, determined in Ref.5. Empirically, we
find that dispersive readout at higher powers can cause state
transitions from |1〉 to |2〉, and we suspect this is the primary
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FIG. S15. Changing Λ with cycle number. We find that Λ, the ratio
of five qubit to nine qubit error rate, decreases with increasing cycle
number, see section VII.

source of leakage.

VI. DECOMPOSING THE FAILURE RATE

The state of the data qubits and the decomposition of the
error rate is displayed in Fig. S16 for eight cycles of the nine
qubit repetition code, with 90,000 statistics. The data qubit
input state was |00000〉, hence any deviation of this state
amounts to a bit error. In Fig. S16a, we find that the num-
ber of bit errors in the final data qubit state varies from a ratio
of 0.33 for no error to a ratio of 6.9·10−4 for five bit-flips. The
ratio follows an exponentially decreasing trend with number
of errors, indicating correlated bit-flips are nearly absent. We
note that when running the repetition code for a large number
of cycles, the physical state of the data qubits randomizes, and
asymptotically approaches a uniform distribution.

At the end of each run, the minimum weight perfect match-
ing algorithm gives one of two outcomes: the operator to flip
the data qubits back to the input state (success), or to the bit-
wise inverse (failure). The error correction failure rate is plot-
ted in Fig. S16b as a function of final data qubit state. We
find no failure for the final data qubit state |00000〉. We find
a failure rate ranging from 2 · 10−3 to 11 · 10−3 for the case
of one bit-flip in the final data qubit state, and a general trend
of increasing failure rate with increasing number of data qubit
bit-flips.

The case for final state |01011〉 is highlighted, showing that
in most cases the matching algorithm gives the correct opera-
tor Î ⊗ X̂ ⊗ Î ⊗ X̂ ⊗ X̂ , which changes the final state back
to the input state. In 12.5% of these cases the matching algo-
rithm gives the inverse operator, leading to failure. The final
data qubit state may obscure measurement errors as well as
multiple bit-flips which cancel each other.

VII. INCREASING NUMBER OF DETECTION EVENTS
WITH CYCLE

We observe an increasing pattern of detection events with
cycle number. We attribute this to two main causes: state leak-
age, and measure qubit energy relaxation.

A. State leakage

State leakage, the population of the non-computational
|2〉-state, is shown to grow with repetition code cycle, see
Fig. S17a. This population reduces the fidelity of the CZ en-
tangling gate, leading to an increase in detection events.

In Fig. S17b, we plot the fraction of detection events, de-
fined by the number of detection events divided by the total
number of possible detection events, averaged over both input
states and all eight-cycled runs. We plot this fraction when
using standard |0〉 and |1〉 state discrimination (black), as well
as when post-selecting out the detection events for |2〉 leakage
(red).

For runs without |2〉-events, we notice I) a significantly re-
duced amount of detection events, II) nearly no dependence of
detection events for measure qubits Q1 and Q3 on cycle num-
ber, III) a reduced dependence (slope) for qubit Q3. The data
suggest that non-computational leakage is a significant contri-
bution to the amount of detection events and the increase with
cycle number.

B. Energy relaxation

We attribute the remainder of the increase in detection
events to measure qubit energy relaxation, indirectly induced
by randomization of data qubits. For input states |0L〉 and
|1L〉, the measure qubits end in the state |0〉 at each cycle (see
Fig. 1 of the main Letter). For our system |0〉 is highly ro-
bust. However, after several cycles some of the data qubits
are likely flipped, and some of the measure qubits will switch
between |0〉 and |1〉 with every round; |1〉 is susceptible to
energy relaxation.

A clear indication of this error mechanism is shown in
Fig. S17c, where we plot the fraction of detection events as
a function of cycle number. The fraction of detection events
alternate with every round. This is compatible with energy re-
laxation affecting the measure qubits, which switch between
|0〉 and |1〉 with every round. The rise is then compatible with
the increasing randomization of data qubits with cycle num-
ber. For either input state we find quantitatively a very similar
behaviour, further supporting this interpretation.

VIII. SAMPLE FABRICATION

Devices are fabricated identically to Ref.5. The fabrication
details are reproduced here for convenience.
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FIG. S16. Decomposition of probability and failure rate for the nine qubit repetition code after eight cycles for input state |00000〉. (a)
Histogram of the final data qubit state, ordered with the number of bit-flips. Coloured squares indicate |1〉 states. Inset: averaged ratio versus
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|01011〉 (highlighted): in 87.5% of the cases the minimum weight perfect matching gives the operator Î ⊗ X̂ ⊗ Î ⊗ X̂ ⊗ X̂ which changes
the final data qubit state into |00000〉, successfully recovering the input state. In 12.5% of the cases however, the inverse operator is given,
leading to failure. We find no failure for the final data qubit state |00000〉. The experiment was repeated 90000 times.

The devices are made in a process similar to the fabri-
cation steps outlined in Ref.7, with an important improve-
ment: we have added crossovers to suppress stray microwave
chip modes by tying the ground planes together with low
impedance connections. Otherwise, the many control wires
in our chip could lead to segmentation of the ground plane,
and the appearance of parasitic slotline modes8. The device
is made in a five-step deposition process, (I) Al deposition
and control wiring etch, (II) crossover dielectric deposition,
(III) crossover Al deposition, (IV) Qubit capacitor and res-
onator etch, (V) Josephson junction deposition. The qubit ca-
pacitor, ground plane, readout resonators, and control wiring
are made using molecular beam epitaxy (MBE)-grown Al on
sapphire9. The control wiring is patterned using lithography
and etching with a BCl3/Cl2 reactive ion etch. A 200 nm thick
layer of SiO2 for the crossover dielectric is deposited in an e-
beam evaporator, followed by lift-off. We fabricate crossovers
on all the control wiring, using a SiO2 dielectric that has a
non-negligible loss tangent. An in-situ Ar ion mill is used
to remove the native AlOx insulator, after which a 200 nm
Al layer for the crossover wiring is deposited in an e-beam
evaporator, followed by lift-off. We used 0.9 µm i-line pho-
toresist, lift-off is done in N-methyl-2-pyrrolidone at 80◦C.
A second BCl3/Cl2 etch is used to define the qubit capaci-
tor and resonators; this step is separate from the wiring etch
to prevent the sensitive capacitor from seeing extra process-
ing. Lastly, we use electron beam lithography, an in-situ Ar
ion mill, and double angle shadow evaporation to deposit the
Josephson junctions, in a final lift-off process. See Ref.7 for
details.

IX. QUBIT COHERENCE

We measure T1 values for all nine qubits as a function of
frequency in Fig. S18. We consistently find values in the 20-
50 µs range.

In Fig. S19 we perform Ramsey experiments as a function
of frequency. We find Ramsey 1/e times of 15 µs near the
flux-insensitive point, and Ramsey 1/e times varying between
2 and 5 µs at frequencies away from the flux insensitive point.

X. MEASUREMENT: READOUT AND BANDPASS FILTER
DESIGN

The readout circuitry of the device is highlighted in
Fig. S20. Qubits (blue) are coupled capacitively to individual
readout resonators (purple). The readout resonators are cou-
pled inductively to a bandpass filter (green), which is weakly
coupled to the input (white, coupling quality factor Q = 300)
and strongly coupled to the output (red, coupling quality fac-
tor Q = 33). At the output an impedance matched paramet-
ric amplifier (IMPA) acts as first stage amplifier10. The high
bandwidth and saturation power is critical for system perfor-
mance.

The bandpass filter isolates qubits from the 50 Ω environ-
ment formed by the readout lines. The bandpass filter (BPF)
design used in this device is similar to Ref6. Here, the BPF
is designed for a bandwidth of roughly 220 MHz, so plac-
ing nine readout resonators in this band with 30 MHz spacing
requires a high level of precision. We use a design which ge-
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ometrically enforces minimal frequency difference between
resonators and filter:

• The filter used here is a half wave (λ/2) resonator. This
provides more space for coupling all qubits to the same
filter.

• The input and output lines are coupled using voltage
taps, which do not shift the filter frequency. A parallel
plate capacitor, for example, could cause the frequency
to shift if the dielectric thickness is unreliable.

• The coplanar waveguide geometry of the filter is chosen
identical to that of the readout resonators. Therefore the
kinetic inductance changes the frequencies of filter and
resonators equally.
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FIG. S17. State leakage and fraction of detection events for
k = 8. (a) State leakage, |2〉-state population, for the four measure-
ment qubits. Note that increase in measured |2〉 state population can
come from misidentification of increasing |1〉 state population. (b)
Fraction of detection events for the four measure qubits as a func-
tion of cycle number for standard |0〉 and |1〉 state discrimination
(black), and without |2〉-events. Solid lines denote the averages. (c)
Fraction of detection events for data qubit input states |00000〉 and
|11111〉, showing a clear alternating pattern of increased detection
events when measure qubits are likely in the |1〉 state. Used data is
without |2〉-events.

• The coupling capacitor between readout resonator and
qubit has identical geometry for both data and measure
qubits. This ensures a proper frequency spacing of read-
out resonators, as the self-capacitance, and therefore the
pull on the readout resonator frequency, is identical.

• We chose a small resonator-filter coupling for data
qubits to reduce measurement induced dephasing.

• We time-multiplex the readout of data and measure
qubits to achieve high-fidelity readout for all nine
qubits. The IMPA provides a gain of 15-18 dB, with
saturation power around -100-110 dBm for the entire
band. While the saturation power is high, it is a lim-
itation for simultaneous readout of all nine qubits, ne-
cessitating time-multiplexing: We read out all five data
qubits simultaneously, and all four measure qubits si-
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multaneously.

XI. MULTI-STATE READOUT

The demodulated inphase (I) and quadrature (Q) data from
individual readout shots for preparing the |0〉, |1〉, and |2〉
states are shown in Fig S21 for each measure qubit. After
accumulating statistics, the location in IQ space for the ideal
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FIG. S19. Dephasing. Ramsey experiment for all nine qubits as
a function of frequency. Phase envelope is the length of the Bloch
vector on the XY plane. Oscillating features are interactions with
coupled qubits.

|0〉, |1〉, and |2〉 states are determined. State discrimination
is performed by calculating which ideal state is closest in IQ
space to a measured value.

XII. DEVICE PARAMETERS

The device parameters are listed in table S3. Note that the
coupling rate g is defined such that strength of the level split-
ting on resonance (swap rate) is 2g (Ref.11).

XIII. PRESERVATION OF TWO-QUBIT GATE FIDELITY
WHEN SCALING UP

We quantify the fidelity of multi-qubit operating by us-
ing two-qubit randomized benchmarking (RB), shown in
Fig. S22. See Ref.5 for details on the implementation of
Clifford-based randomized benchmarking. The reference de-
cay from performing two-qubit Cliffords C2 is a metric for
system performance, as it contains simultaneous single and
two-qubit gates (each C2 contains on average 33

4 single qubit
gates and 3

2 CZ gates). We have performed two-qubit ran-
domized benchmarking on qubits Q4 and Q5 as a character-
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with individual readout resonators (purple) are coupled to single
half wave (λ/2) bandpass filter (green). The filter isolates qubits
from the 50 Ω environment. A high bandwidth, high saturation
power impedance matched parametric amplifier (IMPA) allows for
frequency domain multiplexed readout using a single readout line.
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TABLE S3. Parameters for the device when running the repetition code. f are frequencies. η is qubit nonlinearity. g is coupling strength. κ is
resonator leakage rate.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Qubit frequencies and coupling strengths
fmax10 (GHz) 5.30 5.93 5.39 5.90 5.36 5.94 5.33 5.91 5.39
η/2π (GHz) -0.230 -0.216 -0.229 -0.214 -0.227 -0.214 -0.242 -0.212 -0.225
f idle10 (GHz) 4.3 5.18 4.43 5.28 4.49 5.40 4.60 5.46 4.7
fres (GHz) 6.748 6.626 6.778 6.658 6.601 6.687 6.540 6.718 6.567
gres/2π (GHz) 0.110 0.128 0.111 0.109 0.110 0.110 0.098 0.111 0.104
gqubit/2π (MHz) 13.8 14.1 15.4 14.4
gqubit/2π (MHz) 14.5 14.4 14.6 15.6
1/κres (ns) 675 69 555 30 1144 36 590 28 473

Readout (RO) parameters
RO error 0.015 0.004 0.067 0.007 0.048 0.013 0.017 0.011 0.018
simult. RO error 0.004 0.012 0.022 0.013
separation error 4 · 10−6 2 · 10−5 2 · 10−3 2 · 10−3

Thermal |1〉 pop. 0.013 0.007 0.028 0.01 0.037 0.018 0.012 0.009 0.012
RO pulse length (ns) 800 160 800 300 800 300 800 300 800
RO demodulation length (ns) 800 560 800 460 800 460 800 460 800
f10,RO (GHz) 5.46 5.31 5.40 5.54
resonator nphotons 37 18 10 14

Gate parameters
Single qubit gate error 0.0006 0.0009 0.001 0.001
Xπ length (ns) 25 20 25 20 25 20 25 20 25
CZ length (ns) 45 45 45 45
CZ length (ns) 45 45 45 45

Qubit lifetime at idling point
T1 (µs) 26.3 24.7 39.2 21.3 41.1 19.1 22.0 28.1 18.6

Inphase

Q
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a
d
ra

tu
re

Q1 Q3

Q5 Q7

l0>

l1>

l2>

FIG. S21. Three state readout for measure qubits. Individual mea-
surement shots for preparing the |0〉, |1〉, and |2〉 states for each mea-
sure qubit.

istic pair. We find an average error per two qubit Clifford C2

of 0.0191, which is close to the result of 0.0189 obtained for
the five qubit chip in Ref.5. This shows that gate performance
was maintained while scaling up to nine qubits and integrating

high-fidelity measurement.

XIV. MEASURE QUBITS IN DETAIL

We carefully characterize the four measure qubits in this de-
vice in Fig. S23. These qubits simultaneously combine long
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FIG. S22. Two-qubit randomized benchmarking data. The refer-
ence curve for two-qubit Cliffords C2 for Q4 and Q5. The observed
error rate is consistent with a simultaneous single qubit gate fidelity
> 0.999 and a CZ gate fidelity > 0.99.



17

coherence with high fidelity gates and readout. For a full list-
ing of parameters, see table S3.

XV. Z CONTROL: CROSSTALK

We measure a crosstalk between the frequency Z con-
trol lines and qubits that is small, approximately 0.1 −
0.9%. The crosstalk matrix MΦ is shown below, defined
as: Φactual = (1 + dMΦ)Φideal, with Φ the flux threaded
through each qubit’s superconducting quantum interference
device (SQUID) loop. The magnitude of the crosstalk drops
off with distance between lines and the sign depends on the
routing direction of the wires, as expected.

dMΦ ≈ 10−3



0 2 −1 −2 −3 −1 −2 −2 −2
2 0 −5 −2 −3 −1 −2 −1 −2
2 5 0 −5 −3 −2 −3 −1 −2
1 4 2 0 −7 −3 −3 −2 −2
1 4 2 2 0 −8 −5 −2 −2
1 3 2 2 0 0 −9 −4 −2
1 3 1 2 0 −1 0 −7 −2
1 2 1 2 0 −1 −5 0 −6
1 2 1 2 1 −1 −7 −1 0



XVI. RUNNING THE REPETITION CODE

A. Controlled-phase gates with nearest neighbor coupling

Our system consists of a linear array of qubits with nearest
neighbor coupling g, where multiqubit ΩZZ interactions are
turned on and off by frequency tuning5. As each qubit is cou-
pled to more than one neighbor, operation frequencies must
be carefully considered to prevent unwanted interactions.

There are three effects that must be simultaneously consid-
ered, see Fig. S24: I) The interaction which enables the CZ
gate, by bringing the |11〉 and |02〉 close to resonance, needs
to be turned off by detuning (∆) the qubits; this interaction
turns of quadratically for ∆� g. II) During a CZ gate, other
neighboring qubits must be detuned to mitigate stray interac-
tions, see Fig S24b. III) Next-nearest neighboring qubits have
a small parasitic coupling (on the order of gi,i+2/2π = 0.75
MHz). Therefore, while idling they effectively perform a par-
asitic CZ. To minimize this interaction we detune next-nearest
neighbor qubits by η/2 ≈ 100 MHz which is sufficient to pre-
vent coupling of |10〉 to |01〉 and |11〉 to |02〉, see Fig. S24c.

With these three effects in mind, we consider how to per-
form the CZ portion of the repetition code. Each repetition
code cycle consists of a CZ between each pair of neighboring
qubits; 8 CZ gates for a 9 qubit array. This sequence can be ex-
ecuted, in principle, in the time of two CZ gates by performing
4 CZ gates in parallel at at time, this is technically demanding
and resource intensive in terms of frequency space. Instead,
we use a three step sequence which naturally mitigates stray
interactions. Figure S24d shows the qubits in their idling state
to minimize all interactions; neighboring qubits are detuned
by ∆ ≈ 800 MHz, next-nearest neighbor qubits are detuning
by ∆ ≈ 100 MHz. Additionally, this configuration is conve-
nient to minimize microwave crosstalk between next-nearest
neighbors, as resonant stray microwaves are detrimental to
fidelity13.

Figure S24e-g shows the three step operation to perform all
eight CZ gates, where similar ∆s are maintained between non-
interacting qubits. Additionally, this basic pattern is scalable
to a one-dimensional array of arbitrary length. We note that
these essential techniques can be transferred to the operation
of the two-dimensional surface code where each qubit has four
nearest neighbors, instead of two.

B. Evaluating the qubit spectrum

With generic operation principles outlined in the previous
sections, we must choose specific operation frequencies for
qubit idling, gates, and readout. In our Xmon qubits, the
energy relaxation time T1 varies over frequency; this is due
to the fine structure from spectral distribution of incoherent
defects7. Typically, T1 times can differ by a factor of two to
three over nearby frequencies, and careful characterization of
the qubit spectrum is critical.

We see three kinds of features in the qubit spectrum. The
most innocuous are incoherent defects, which suppress T1 to
the few µs range, but generally have small spectral width and
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FIG. S23. Measure qubit characterization. We measure coherence, gate and readout properties on the four measure qubits. We find T1

values in the 20-30 µs range for these operating points. Ramsey 1/e decay times are in the 2-3 µs range. Single qubit gate fidelities all meet or
exceed 0.999. The RB Ramsey12 experiment shows that the Ramsey 1/e time is not a limitation to gate fidelity. The AC stark shift and optimal
demodulation windows displayed are used to achieve separation fidelities > 0.998.

can be safely swept past in frequency. We also see strongly
and weakly coupled coherent features. Strongly coupled de-
fects and strongly coupled qubits can coherently move pop-
ulation and affect phases – much more detrimental to algo-
rithms – and sweeping qubits past them fast enough becomes
challenging. Lastly, we see weakly coupled coherent defects
and qubits which are slow enough such that we can move past
them quickly in frequency. Thus, the qubits can be thought
of as moving freely in a frequency band between strongly co-
herently coupled features, where operations should be done at
frequencies away from incoherent defects and weakly coupled
features.

Figure S25a shows the experiment for measuring the qubit
spectrum. The qubit is excited to the |1〉 state, idles at a fre-
quency for 100 ns, and measured. By sweeping over the op-
erable frequency range for a qubit, we can identify population
loss from incoherent or coherent features. Figure S25b shows

the spectral data for the nine qubits. We identify bad regions
in the spectrum by finding all frequencies that have population
below a threshold value. We choose a threshold of 2% below
the median |1〉 state population, corresponding to an added
5 µs T1 mechanism over the qubit baseline. The data above
threshold (operable regions) are plotted in black, and the data
below threshold (inoperable regions) are plotted in red. Inco-
herent defects and weakly coupled coherent features (such as
next-nearest neighbor qubits) have a thin spectral width and
are easily avoided. Strongly coherently coupled features are
easily identified through the coherent population swapping,
such as seen in the spectrum of Q6 at 4.3 GHz to 3.5 GHz and
below.
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C. Programming the repetition code

With the principles for operating gates and efficiently us-
ing the qubit spectrum above, we now construct the repetition
code algorithm. Figure S26a shows the high-level operation
sequence for the nine qubit repetition code. Each measure
qubit performs two CNOT gates with the control on the neigh-
boring data qubits, and a measure. Figure S26a shows the ac-
tual physical gate sequence. For our system we decompose
CNOT gates into CZ and π/2 gates. Additionally, we use
detune gates to move unused qubits away in frequency space
to avoid unwanted interactions, such as in Fig. S24. Echo
Xπ gates are inserted between CZ and detune gates to sup-
press non-Markovian noise12. Figure S26b shows raw pulse
waveforms for one repetition code cycle. The operations on
each qubit have an XY, and Z control, as well as a multiplexed
readout (RO) line. XY and RO waveforms are shown before
up-conversion to GHz frequencies with an IQ mixer. Full con-
trol waveform data for eight cycles of the nine qubit repetition
code can be found in Fig S27.

Operating frequencies for idling, readout, and CZ gates are
chosen away from frequencies characterized to have poor co-
herence, as in section XVI B. Figure S28 shows qubit fre-
quencies at various stages in the gate sequence. The verti-
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FIG. S24. CZ interactions. (a) Neighboring qubits are coupled with√
2g coupling between |11〉 and |02〉 states used for the CZ gate.

(b) During a CZ gate, other neighboring qubits must be detuned to
mitigate stray interactions. (c) Stray coupling between next-nearest
neighbor qubits, approximately 1/20 of nearest neighbor coupling. A
small detuning ∆ is sufficient to avoid interaction. (d) Qubit idling
frequencies to turn off nearest and next-nearest neighbor interactions.
(e-g) Three step sequence to perform all 8 CZ of the repetition code
with stray interactions in mind.
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FIG. S25. Qubit spectrum. (a) Experiment for measuring the qubit
spectrum. A qubit is excited to the |1〉 state and allowed to idle at dif-
ferent frequencies for 100 ns via a detuning pulse. (b) Spectrum data
for nine qubits. Data is thresholded into good (black) and bad (red)
regions. We define the threshold as 2% below the median |1〉 state
population. This successfully identifies incoherent defects, coher-
ent defects, and neighbouring as well as next-nearest neighbouring
qubits.

cal bar associated with each qubit shows operable (grey) and
non-operable (red) frequencies. Note that during a CZ, the
qubit higher in frequency has its |2〉 state virtually populated,
thus it is important to this state to also avoid non-operable re-
gions. We also plot the AC stark shift vs. time, as the qubit
follows a non-trivial trajectory in frequency during readout,
see Fig. S28.
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FIG. S26. Single repetition code waveform data. Rectangular gates indicate detuning pulses.

XVII. EXPERIMENTAL SETUP

The experimental setup is described in Figure S29.

XVIII. PROTECTING THE GHZ STATE FROM BIT-FLIP
ERRORS: CONDITIONAL QUANTUM STATE

TOMOGRAPHY

The density matrices of the GHZ states at the input and
at the output of two cycles of the repetition code are recon-
structed using quantum state tomography. We apply gates
from { I, X/2, Y/2, X }⊗3. With quadratic maximum like-
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FIG. S27. Waveform data for eight cycles of the nine qubit repetition code.

lihood estimation, using the MATLAB packages SeDuMi and
YALMIP, we constrain the density matrix to be physical.
Non-idealities in data qubit measurement and state prepara-
tion are suppressed by performing tomography on a zero-
time idle14,15. For conditional tomography, we separate out
the measured data qubit probabilities based on the detection
events. The experiment was repeated 12 · 103 times.

The raw and corrected output density matrices are shown in
Fig. S30.
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FIG. S29. Electronics and Control Wiring. Diagram detailing all of the control electronics, control wiring, and filtering for the experimental
setup. Each qubit uses one digital to analog converter (DAC) channel for each of the X, Y, and Z rotations. Additionally, we use a DC
bias tee to connect a voltage source to each qubit frequency control line to give a static frequency offset. All nine qubits are read out using
frequency-domain multiplexing on a single measurement line. The readout DAC generates nine measurement tones at the distinct frequencies
corresponding to each qubit’s readout resonator. The signal is amplified by a wideband parametric amplifier10, a high electron mobility
transistor (HEMT), and room temperature amplifiers before demodulation and state discrimination by the analog to digital converter (ADC).
All control wires go through various stages of attenuation and filtering to prevent unwanted signals from disturbing the quantum processor.
Two local oscillators (LOQ) are used for qubit XY control, at 4.38 and 5.202 GHz. The readout LOR is at 6.58 GHz. All LO, DAC, and ADC
electronics are locked to a 10 MHz SRS FS725 rubidium frequency standard. Photograph of nine qubit device shown in the lower right.
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FIG. S30. Protecting the GHZ state from bit-flip errors: All detection events. The leftmost column displays the detection events and
matching, indicating the most likely error, as well as the correction to apply in postprocessing to recover the input state. Raw and corrected
output density matrices, reconstructed using quantum state tomography, conditional on all detection events. Corrected output density matrices
are obtained by exchanging raw density matrix elements based on the correction. The real parts are shown. The likelihood indicates the
prevalence of the detection event. See Fig. 3 of the main Letter for the quantum circuit diagram.
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FIG. S31. Quantum circuit for the generation of the GHZ state.
Rectangular gates indicate detuning pulses.

XIX. GHZ GENERATION

The gate sequence for generation of the GHZ state used in
the main text is shown in Fig. S31.
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