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A quantum processor (QuP) can be used to exploit quantum mechanics to find the prime factors
of composite numbers[1]. Compiled versions of Shor’s algorithm have been demonstrated on ensem-
ble quantum systems[2] and photonic systems[3–5], however this has yet to be shown using solid
state quantum bits (qubits). Two advantages of superconducting qubit architectures are the use of
conventional microfabrication techniques, which allow straightforward scaling to large numbers of
qubits, and a toolkit of circuit elements that can be used to engineer a variety of qubit types and
interactions[6, 7]. Using a number of recent qubit control and hardware advances [7–13], here we
demonstrate a nine-quantum-element solid-state QuP and show three experiments to highlight its
capabilities. We begin by characterizing the device with spectroscopy. Next, we produces coherent
interactions between five qubits and verify bi- and tripartite entanglement via quantum state to-
mography (QST) [8, 12, 14, 15]. In the final experiment, we run a three-qubit compiled version of
Shor’s algorithm to factor the number 15, and successfully find the prime factors 48 % of the time.
Improvements in the superconducting qubit coherence times and more complex circuits should pro-
vide the resources necessary to factor larger composite numbers and run more intricate quantum
algorithms.

In this experiment, we scaled-up from an architec-
ture initially implemented with two qubits and three res-
onators [7] to a nine-element quantum processor (QuP)
capable of realizing rapid entanglement and a compiled
version of Shor’s algorithm. The device is composed
of four phase qubits and five superconducting coplanar
waveguide (CPW) resonators, where the resonators are
used as qubits by accessing only the two lowest levels.
Four of the five CPWs can be used as quantum mem-
ory elements as in Ref. [7] and the fifth can be used to
mediate entangling operations.

The QuP can create entanglement and execute quan-
tum circuits[16, 17] with high-fidelity single-qubit gates
(X, Y , Z, and H), [18, 19]combined with swaps and
controlled-phase (Cφ) gates[7, 13, 20], where one qubit in-
teracts with a resonator at a time. The QuP can also uti-
lize “fast-entangling logic” by bringing all participating
qubits on resonance with the resonator at the same time
to generate simultaneous entanglement[21]. At present,
this combination of entangling capabilities has not been
demonstrated on a single device. Previous examples have
shown: spectroscopic evidence of the increased coupling
for up to three qubits coupled to a resonator[14], as well
as coherent interactions between two and three qubits
with a resonator[12], although these lacked tomographic
evidence of entanglement.

Here we show coherent interactions for up to four
qubits with a resonator and verify genuine bi- and tripar-
tite entanglement including Bell [9] and |W〉-states [10]
with quantum state tomography (QST). This QuP has
the further advantage of creating entanglement at a rate
more than twice that of previous demonstrations[10, 12].

In addition to these characterizations, we chose to im-
plement a compiled version of Shor’s algorithm[22, 23],
in part for its historical relevance[16] and in part because

this algorithm involves the challenge of combining both
single- and coupled-qubit gates in a meaningful sequence.
We constructed the full factoring sequence by first per-
forming automatic calibration of the individual gates and
then combined them, without additional tuning, so as to
factor the composite number N = 15 with co-prime a = 4,
(where 1 < a < N and the greatest common divisor be-
tween a and N is 1). We also checked for entanglement
at three points in the algorithm using QST.

Figure 1a shows a micrograph of the QuP, made on
a sapphire substrate using Al/AlOx/Al Josephson junc-
tions. Figure 1b shows a complete schematic of the de-
vice. Each qubit Qi is individually controlled using a bias
coil that carries dc, rf- and GHz-pulses to adjust the qubit
frequency and to pulse microwaves for manipulating and
measuring the qubit state. Each qubit’s frequency can be
adjusted over an operating range of ∼ 2 GHz, allowing us
to couple each qubit to the other quantum elements on
the chip. Each Qi is connected to a memory resonator
Mi, as well as the bus B, via interdigitated capacitors.
Although the coupling capacitors are fixed, Fig. 1c illus-
trates how the effective interaction can be controlled by
tuning the qubits into or near resonance with the cou-
pling bus (coupling “on”) or detuning Qi to fB±500 MHz
(coupling “off”)[24].

The QuP is mounted in a superconducting aluminum
sample holder and cooled in a dilution refrigerator to
∼ 25 mK. Qubit operation and calibration are similar
to previous works[7–10, 13],with the addition of an au-
tomated calibration process[25]. As shown in Fig.1d, we
used swap spectroscopy[7] to calibrate all nine of the en-
gineered quantum elements on the QuP, the four phase
qubits (Q1 −Q4), the four quarter-wave CPW quantum
memory resonators (M1 −M4), and one half-wave CPW
bus resonator (B). The coupling strengths between Qi
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FIG. 1: Architecture and operation of the quantum pro-
cessor (QuP). a, Photomicrograph of the sample, fabricated
with aluminum (colored) on sapphire substrate (dark). b,
Schematic of the QuP. Each phase qubit Qi is capacitively
coupled to the central half-wavelength bus resonator B and a
quarter-wavelength memory resonator Mi. The control lines
carry GHz microwave pulses to produce single qubit oper-
ations. Each Qi is coupled to a superconducting quantum
interference device (SQUID) for single-shot readout. c, Illus-
tration of QuP operation. By applying pulses on each control
line, each qubit frequency is tuned in and out of resonance
with B (M) to perform entangling (memory) operations. d,
Swap spectroscopy[7] for all four qubits: Qubit excited state
|e〉 probability Pe (color scale) versus frequency (vertical axis)
and interaction time ∆τ . The centers of the chevron pat-
terns gives the frequencies of the resonators B, M1 − M4,
f = 6.1, 6.8, 7.2, 7.1, 6.9 GHz respectively. The oscillation pe-
riods give the coupling strengths between Qi and B (Mi),
which are all ∼= 55 MHz (∼= 20 MHz).

and B (Mi) were measured to be within 5 % (10 %) of
the design values.

The qubit-resonator interaction can be described by
the Jaynes-Cummings model Hamiltonian[26] Hint =∑
i(h̄gi/2)(a†σ−i +aσ+

i ), where gi is the coupling strength
between the bus resonator B and the qubit Qi, a

† and
a are respectively the photon creation and annihila-
tion operators for the resonator, σ+

i and σ−i are respec-
tively the qubit Qi raising and lowering operators, and
h̄ = h/2π. The dynamics during the interaction between
the i = {1, 2, 3, 4} qubits and the bus resonator are shown
in Fig.1c, and Fig.2 a, b, c respectively.

For these interactions the qubits Q1−Q4 are initialized
in the ground state |gggg〉 and tuned off-resonance from
B at an idle frequency f ∼ 6.6 GHz. Q1 is prepared in
the excited state |e〉 via a π-pulse. B is then pumped
into the n = 1 Fock state[8] by tuning Q1 on resonance
(f ∼ 6.1 GHz) for a duration 1/2g1 = τ ∼ 9 ns, long
enough to complete an iSWAP operation between Q1 and
B, |0〉 ⊗ |eggg〉 → |1〉 ⊗ |gggg〉.

The participating qubits are then tuned on resonance
(f ∼ 6.1 GHz) and left to interact with B for an interac-
tion time ∆τ . Figures 2 a,b,c show the probability PQi of
measuring the participating qubits in the excited state,
and the probability PB of B being in the n = 1 Fock
state, versus ∆τ . At the beginning of the interaction the
excitation is initially concentrated in B (PB maximum)
then spreads evenly between the participating qubits (PB
minimum) and finally returns back to B, continuing as a
coherent oscillation during this interaction time.

When the qubits are simultaneously tuned on reso-
nance with B they interact with an effective coupling
strength ḡN that scales with number of qubits as

√
N [14],

analogous to a single qubit coupled to a resonator in a
N-photon Fock state[8]. For N qubits, ḡN =

√
Nḡ, where

ḡ = [1/N(
∑
i=1,N g

2
i )]1/2. The oscillation frequency of

PB for each of the four cases i = {1, 2, 3, 4} is shown in
Fig.2 d. These results are similar to Ref.[14], but with
a larger number N of qubits interacting with the res-
onator, we can confirm the

√
N scaling of the coupling

strength with N. From these data we find a mean value
of ḡ = 56.5± 0.05 MHz.

By tuning the qubits on resonance for a specific inter-
action time τ , corresponding to the first minimum of PB
in Fig. 2a, b, we can generate Bell singlets |ψS〉 = (|ge〉−
|eg〉)/

√
2 and |W〉 states |W〉 = (|gge〉+|geg〉+|egg〉)/

√
3.

Stopping the interaction at this time (τBell = 6.5 ns
and τW = 5.1 ns) leaves the single excitation evenly dis-
tributed among the participating qubits and places the
qubits in the desired equal superposition state similar to
the protocol in Ref.[12]. We are able to further analyze
these states using full QST. Figures 2e, f show the recon-
structed density matrices from this analysis[15]. The Bell
singlet is formed with fidelity FBell = 〈ψs| ρBell |ψs〉 =
0.89 ± 0.01 and entanglement of formation[27] EOF =
0.70. The three-qubit |W〉 state is formed with fidelity
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FIG. 2: Rapid entanglement for two to four-qubits. Panels a,b,c show the measured state occupation probabilities PQ1−4(color)
and PB(black) for increasing number of participating qubits N = {2, 3, 4} versus interaction time ∆τ . In all cases B is first
prepared in the n = 1 Fock state[8] and the participating qubits are then tuned on resonance with B for the interaction time ∆τ .
The single excitation begins in B, spreads to the participating qubits, and then returns to B. These coherent oscillations continue
for a time ∆τ and increase in frequency with each additional qubit. d, Oscillation frequency of PB for increasing numbers
of participating qubits. The error bars indicate the −3 dB point of the Fourier transformed PB data. The inset schematics
illustrate which qubits participate. The coupling strength increases as ḡN =

√
Nḡ, plotted as a black line fit to the data, with

ḡ = 56.5±0.05 MHz. e,f The real part of the reconstructed density matrices from QST. (e), Bell singlet |ψs〉 = (|ge〉−|eg〉)/
√

2
with fidelity FBell = 〈ψs| ρBell |ψs〉 = 0.89±0.01 and EOF = 0.70. (f), Three-qubit |W〉 = (|gge〉+|geg〉+|egg〉)/

√
3 with fidelity

FW = 〈W | ρW |W〉 = 0.69 ± 0.01. The measured imaginary parts (not shown) are found to be small, with (e) |Im ρψs | < 0.05
and (f) |Im ρW| < 0.06, as expected theoretically.

FW = 〈W | ρW |W〉 = 0.69± 0.01, which satisfies the en-
tanglement witness inequality FW > 2/3 for three-qubit
entanglement [28]. Generating either of these classes of
entangled states (bi- and tri-partite) requires only a sin-
gle entangling operation that is short relative to the char-
acteristic time for two-qubit gates (tg ∼ 50 ns). This
entanglement protocol has the further advantage that it
can be scaled to an arbitrary number of qubits.

The quantum circuit for the compiled version of Shor’s
algorithm is shown in Fig. 3a for factoring the number
N = 15 with a = 4 co-prime [22, 23], which returns the
period r = 2 (“10” in binary) with a theoretical suc-
cess rate of 50 %. Although the success of the algorithm
hinges on quantum entanglement, the final output is ide-
ally a completely mixed state, σm = (1/2)(|0〉〈0|+|1〉〈1|).
Therefore, measuring only the raw probabilities of the
output register does not reveal the underlying quantum
entanglement necessary for the success of the computa-
tion. Thus, we perform a runtime analysis with QST
at the three points identified in Fig.3b, in addition to
recording the raw probabilities of the output register.

The first breakpoint in the algorithm verifies the ex-
istence of bipartite entanglement. A Bell-singlet |ψs〉
is formed after a Hadamard-gate (H) [19] on Q2 and

a Controlled-NOT (CNOT)[7, 13] between Q2 and Q3.
Figure 3d, is the real part of the density matrix recon-
structed from QST on |ψs〉. The singlet is formed with
fidelity FBell = 〈ψs| ρBell |ψs〉 = 0.75 ± 0.01 (|Im ρψs

| <
0.05 not shown) and entanglement of formation EOF =
0.43[29].

The algorithm is paused after the second CNOT gate
between Q2 and Q4 to check for tripartite entanglement.
At this point a three-qubit |GHZ〉 = (|ggg〉+ |eee〉)/

√
2,

with fidelity FGHZ = 〈GHZ| ρGHZ |GHZ〉 = 0.59 ± 0.01
(|Im ρGHZ| < 0.06 not shown) is formed between Q2, Q3,
and Q4 as shown in Fig.3e. This state is found to satisfy
the entanglement witness inequality, FGHZ > 1/2 [28]
indicating three-qubit entanglement.

The third step in the runtime analysis captures all
three qubits at the end of the algorithm, where the fi-
nal H-gate on Q2, rotates the three-qubit |GHZ〉 into
|ψ3〉 = H2 |GHZ〉 = (|ggg〉+ |egg〉+ |gee〉− |eee〉)/2. Fig-
ure 3f is the real part of the density matrix with fidelity
F = 〈ψ3| ρ3 |ψ3〉 = 0.54±0.01. From the three-qubit QST
we can trace out the register qubit to compare with the
experiment where we measure only the single qubit reg-
ister and the raw probabilities of the algorithm output.
Ideally, the algorithm returns the binary output“00” or
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FIG. 3: Compiled version of Shor’s algorithm. a, Four-qubit circuit to factor N = 15, with co-prime a = 4. The three steps in
the algorithm are initialization, modular exponentiation, and the quantum Fourier transform, which computes armod(N) and
returns the period r = 2. b, “Recompiled” three-qubit version of Shor’s algorithm. The redundant qubit Q1 is removed by
noting that HH = I. Circuits a and b are equivalent for this specific case. The three steps of the runtime analysis are labeled
1,2,3. c, CNOT gates are realized using an equivalent controlled-Z (CZ) circuit. d, Step 1: Bell singlet between Q2 and Q3

with fidelity, FBell = 〈ψs| ρBell |ψs〉 = 0.75±0.01 and EOF = 0.43. e, Step 2: Three-qubit |GHZ〉 = (|ggg〉+ |eee〉)/
√

2 between
Q2, Q3, and Q4 with fidelity FGHZ = 〈GHZ| ρGHZ |GHZ〉 = 0.59± 0.01. f, Step 3: QST after running the complete algorithm.
The three-qubit |GHZ〉 is rotated into |ψ3〉 = H2 |GHZ〉 = (|ggg〉 + |egg〉 + |gee〉 − |eee〉)/2 with fidelity, F = 0.55. g,h The
density matrix of the single-qubit output register Q2 formed by: (g), tracing-out Q3 and Q4 from f, and (h) directly measuring
Q2 with QST, both with F =

√
ρ σm

√
ρ = 0.92± 0.01 and SL = 0.78. From 1.5× 105 direct measurements the output register

returns the period r = 2, with probability 0.483 ± 0.003, yielding the prime factors 3 and 5. (i), The density matrix of the
single-qubit output register without entangling gates, H2H2 |g〉 = I |g〉. The algorithm fails and returns r = 0 100 % of the
time. Compared to the single quantum state |ψout〉 = |g〉, the fidelity Fcheck = 〈ψg| ρcheck |ψg〉 = 0.83± 0.01, which is less than
unity due to the energy relaxation.

“10” (including the redundant qubit) with equal proba-
bility, where the former represents a failure and the latter
indicates the successful determination of r = 2. We use
three methods to analyze the output of the algorithm:
Three-qubit QST, single-qubit QST, and the raw proba-
bilities of the output register state. Figures 3g, h are the
real part of the density matrices for the single qubit out-
put register from three-qubit QST and one-qubit QST
with fidelity F =

√
ρ σm

√
ρ = 0.92 ± 0.01 for both den-

sity matrices. From the raw probabilities calculated from
150,000 repetitions of the algorithm, we measure the out-
put “10” with probability 0.483 ± 0.003, yielding r = 2,
and after classical processing we compute the prime fac-
tors 3 and 5.

The linear entropy SL = 4[1−Tr(ρ2)]/3[30] is another
metric for comparing the observed output to the ideal

mixed state, where SL = 1 for a completely mixed state.
We find SL = 0.78 for both the reduced density matrix
from the third step of the runtime analysis (three-qubit
QST), and from direct single-qubit QST of the register
qubit.

As a final check of the requisite entanglement, we run
the full algorithm without any of the entangling oper-
ations and use QST to measure the single-qubit output
register. The circuit reduces to two H-gates separated by
the time of the two entangling gates. Ideally Q2 returns
to the ground state and the algorithm fails (returns “0”)
100 % of the time. Figure 3i is the real part of the density
matrix for the register qubit after running this check ex-
periment. The fidelity of measuring the register qubit in
|g〉 is Fcheck = 〈g| ρcheck |g〉 = 0.83±0.01. The algorithm
fails, as expected, without the entangling operations.
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In conclusion, we have implemented a compiled ver-
sion of Shor’s algorithm on a QuP that correctly finds
the prime factors of 15. We showed that the QuP can
create Bell states, both classes of three-qubit entangle-
ment, and the requisite entanglement for properly execut-
ing Shor’s algorithm. In addition, we produce coherent
interactions between four qubits and the bus resonator
with a protocol that can be scaled to create an N -qubit
|W〉 state, during which we observe the

√
N dependence

of the effective coupling strength with the number N of
participating qubits. These demonstrations represent an
important milestone for superconducting qubits, further
proving this architecture for quantum computation and
quantum simulations.
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