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INTRODUCTION

Successful operation of a quantum computer will re-
quire unprecedented control of quantum systems. The
basic qubit operations, quantum logic gates, are de-
scribed by the linear Schrodinger equation: the “analog”
nature of quantum state evolution makes these logic gates
fundamentally sensitive to imperfections in control and
loss of energy. In contrast, conventional digital logic can
correct errors due to built-in gain and non-linearity. In a
quantum computer, these imperfections fortunately can
be removed with error-correction protocols, which work
as long as the probability for the production of errors is
small enough.

The performance specifications for error correction de-
pend on details of the quantum computer architecture.
Rough estimates for conventional gate-based architec-
tures give limits below ∼ 10−4 [1], whereas more recent
proposals based on surface codes may allow errors in the
10−2 range [2].

Much research in superconducting qubits has been di-
rected towards improving the coherence of qubits and
demonstrating quantum logic gates, both for single and
coupled qubits. I am optimistic that quantum gates can
eventually meet performance requirements needed for er-
ror correction.

Here, I focus on several important issues concerning
the high-level design of quantum logic gates. In particu-
lar, I will review the need to effectively turn on and off
coupling interactions between qubits to produce scalable
controlled-not (CNOT) gates. This is an important topic
for superconducting qubits, since they typically use fixed
coupling elements set by fabrication.

TRANSITION LOGIC GATES

To illustrate some design issues, I first discuss a sim-
ple example of logic gates defined by inducing transitions
between quantum states that are selected by their transi-
tion frequency. Figure 1a shows the energy-level diagram
for two uncoupled qubits with frequency ω1 and ω2. A
single qubit gate is generated by applying a pulse of mi-
crowaves, at an excitation frequency ω1 for changing the
first qubit state, or frequency ω2 for the second. As the
two qubits are not coupled, the energy level diagram has
equal transition frequencies for pairs of states, given by
the dashed and dotted arrows.

Although single qubit gates are simple to generate
when they are uncoupled, it is not possible to also have
CNOT logic. As illustrated in Fig. 1b, the CNOT gate
must swap the state amplitudes between |10〉 and |11〉
while other state amplitudes remain unchanged. A sim-
ple solution would be to produce a π-pulse transition
between these two state, as shown in Fig. 1a. However,
this transition frequency is degenerate with that for the
states |00〉 ↔ |01〉, and such action would produce a pair
of transitions that are, of course, equivalent to a single
qubit gate.

This problem can be overcome by adding coupling be-
tween the two qubits, such that the four transition fre-
quencies are all different [3]. Now, an applied π-pulse at
the |10〉 ↔ |11〉 frequency gives a CNOT since all other
transitions are off resonant. However, this solution adds
significant complexity: now a pair of frequencies have
to be applied to make the single qubit transitions, and
their pulse strength has to be matched carefully in order
to maintain symmetric transition strengths and produce
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FIG. 1: Single and CNOT logic gates, in the transition pic-
ture, for two uncoupled qubits. Plotted is the qubit energy
(vertical) for the four possible states. (a) Here, the transition
frequency ω1 for the first qubit (dashed lines) is the same for
the pair of transitions |00〉 ↔ |10〉 and |01〉 ↔ |11〉. There
is a similar pair (dotted lines) at frequency ω2 for the second
qubit. (b) The CNOT logic gate must swap only the states
|10〉 and |11〉, which cannot be accomplished because of the
degeneracy with the transition frequency |00〉 ↔ |01〉.
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what looks like a single qubit logic operation.
Although such transition logic is often discussed in the

literature as “CNOT gates for quantum computation”,
in reality they probably cannot be used in a real quan-
tum computer because they are not scalable gates. What
happens to these logic gates as the number of qubits n in-
creases? First, the number of transition frequencies that
one must track grows as 2n, which implies that simply
calibrating the qubit system has exponential overhead.
The exponentially large number of transition frequencies
implies there can be significant problems with frequency
overlap and crowding. The number of applied frequen-
cies for single and CNOT gates grows as 2n−1 and 2n−2,
respectively, so that such gates become increasing more
complex to generate and control accurately. Even at a
modest size of n = 8, keeping track of 128 transition
frequencies for a single qubit logic gate would certainly
be taxing. The fundamental problem is that exponential
growth of classical resources is needed to control logic
built with transition frequencies, which makes the system
unscalable for constructing a real quantum computer.

TUNABLE FREQUENCY LOGIC

A solution to this scaling problem is to turn the qubit
coupling on and off. Although adjustable couplers have
been demonstrated in superconducting qubits [4, 5], the
circuitry is somewhat complex, and the more favored ap-
proach is to use fixed capacitive coupling and a tunable
qubit frequency. Here, circuit design is simpler, and the
interaction strength can be effectively turn up and down
by tuning the qubits into and out of resonance. In Fig. 1a,
“on coupling” would correspond to adjusting the qubit
frequencies ω1 = ω2 so that the |10〉 and |01〉 states are
resonant, with the resulting swapping [6] between the two
gates combined with single qubit gates [7, 8] producing
a CNOT.

The figures of merit for tunable logic is given through
the fixed coupling energy g and the off detuning energy
∆. When the qubits have zero detuning, the swapping
frequency [6] is given by 2g/h̄, whereas when off reso-
nance the effective interaction energy between the qubits
is given by the dispersive interaction [9], which scales as
g2/∆. In this simple picture, the off to on strength is the
ratio of these energies (g2/∆)/g = g/∆. Note here that
the effective coupling is never entirely turned off; with
typical values for the phase qubit given by g/h = 30 MHz
and ∆/h = 300 MHz, the off-coupling detuning is not
large enough to neglect.

There are presently two general ways to design such
gates. At UCSB, we use direct swapping transitions be-
tween the |10〉 and |01〉 states, as well as between the |11〉
and |20〉 states for controlled-phase and CNOT [10]. The
Yale group uses a dispersive interaction between these
states [11], which requires about 5 times larger g than

for coupling interaction so that the gates can remain adi-
abatic in similar gate times; the off coupling is similar
since they use greater detuning.

Logical errors from finite dispersion g2/∆ can be un-
derstood in a simple model. Defining the transition en-
ergy between the ground and excited state of qubit 1 as
E1, this energy depends on whether qubit 2 is in the state
Ψ2 = |0〉 or |1〉

E1 =
{

Ec for Ψ2 = |0〉
Ec + g2/∆ for Ψ2 = |1〉 , (1)

where Ec is a constant. The dispersion energy of qubit
1 depends on the state of the coupled qubit 2. Defin-
ing a rotating frame for qubit 1 at frequency E1/h, the
time dependence of an equal superposition of ground and
excited states is

Ψ1(t) =
1√
2
×

{ |0〉+ |1〉 for Ψ2 = |0〉
|0〉+ e−itg2/h̄∆|1〉 for Ψ2 = |1〉 ,

(2)

which shows a dependence on the state of qubit 2. For
uncoupled qubits (∆ →∞), the state of qubit 1 does not
depend at all on the state of qubit 2: for finite ∆, the
phase change in the second equation can be understood
as a phase error from non-zero coupling. Note that this
phase error is zero at time t = 0, increases quadratically
with time, and then has a maximum magnitude of unity
at tg2/h̄∆ = π.

Although small at first, the potentially large magni-
tude from this phase error implies that small disper-
sive coupling cannot be ignored. It can be neglected
for present experiments because the simple algorithms
do not need to store data for long times, but as algo-
rithm complexity grows, this error growing as t2 will be
increasingly important.

REFOCUSSING

The phase error of Eq. (2) may be reduced through
refocussing techniques [1], as developed for nuclear mag-
netic resonance (NMR). The basic idea is to periodically
change the state of a qubit with a π-pulse so that the
phase accumulation is effectively balanced out between
the |0〉 and |1〉 states. For best cancelation, the phase
reversal should occur halfway during the qubit storage
time.

Although simple for two qubits, refocussing becomes
increasing complex as the number of qubits increase,
since refocussing should optimally be placed between ev-
ery pair of qubits that are coupled together. As the num-
ber of pairs scales as n!, significant control overhead is
expected for large n. For example, in the experiment
to factor 15 in NMR, most of the time of the algorithm
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FIG. 2: Quantum Von Neumann architecture and RezQu pro-
tocol. (a) Plot of qubit and resonator frequency (vertical) for
two qubits and their memory resonator, along with a bus
resonator. Qubits and resonators are coupled (vertical thin
lines), and qubit frequency may move up and down to the
bus and memory frequencies. Only small (4th-order) residual
coupling remains between the memory |q1〉 and bus |b〉 states
(dashed line). (b) Plot of qubit frequency versus time showing
memory to qubit transfer, single qubit logic via a microwave
pulse, and qubit to bus transfer.

was spent turning off the coupling between spins via refo-
cussing [12]. It will be interesting to see if this technique
will be a scalable solution for a large number of qubits.

QUANTUM VON NEUMANN ARCITECTURE
AND REZQU PROTOCOL

Another solution to the off-coupling problem uses what
we call the quantum von Neumann architecture [13], as
illustrated in Fig. 2. Here each qubit is coupled to a mem-
ory resonator as well as the resonator bus, the latter pro-
viding inter-qubit coupling. The qubit and resonator bus
has residual coupling as described previously, so a state
in the resonator bus will disperse the state of each qubit,
causing phase errors.

This source of error is minimized in the von Neumann
architecture by storing the qubit state in the memory
resonator. In the RezQu (resonator zero-qubit) protocol,
the qubit state is swapped into the memory resonator
when it is not being manipulated by single or coupled
qubit logic. When a quantum state is stored in memory,
the qubit is in the ground state |0〉. Although there is
a frequency shift in the memory qubit and the bus from
the qubit ground state, no error is generated since the
state is known and always produces a constant shift.

Phase errors remain between the memory and bus res-
onators, but they are quite small because they proceed
through a 4th order process that produces a virtual state
in the qubit by memory-qubit coupling, then a frequency
shift in the bus through qubit-bus coupling. It is inter-
esting to note that this coupling from memory to bus
goes to zero when the qubit frequency is placed halfway
between the memory and bus frequencies [14].

An additional advantage of this architecture is the use

of resonators as qubit memories, since these elements
presently have the longest coherence time. Additionally,
resonators require no control signals, so they are inex-
pensive in terms of control lines and electronics. Using
memory resonators with closely tuned frequencies might
also minimize the difficulty of accurately tracking differ-
ential phases between the many qubits.

CONCLUSIONS

Now that long coherence times have been demon-
strated in superconducting qubits, achieving high-fidelity
gates is an important topic for future research. In this
article, I have discussed two fundamental issues that con-
front the designer of quantum logic: scalability and qubit
errors from residual off-coupling. As solutions are avail-
able, either with refocussing or using the RezQu archi-
tecture, much progress is expected in the next few years.
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