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Supporting Online Material

Materials and Methods. The phase qubit circuit used in this work has the following

design circuit parameters: critical current I0 ≈ 2 µA, capacitance C ≈ 1 pF, and induc-

tance L ≈ 720 pH. At the operating bias used in the experiment, the barrier height is

∆U/h̄ωp ≈ 5.5. We use the lowest five states in the well for our qudit.

Microwave control signals are produced by a custom microwave arbitrary waveform

generator (AWG), which modulates an input microwave source at frequency ωc using a

two-quadrature (IQ) mixer. Quadrature voltage envelopes I(t) and Q(t) for the mixer are

generated by a custom 1 ns resolution, 2-channel 14-bit digital-to-analog converter (DAC)

card. The mixer takes the source signal ∝ cos(ωct) and inputs I(t), Q(t) and produces an

output signal ∝ I(t) cos(ωct)+Q(t) sin(ωct). Using envelopes I(t)+iQ(t) = A exp(−iδωt),

the output signal is ∝ A cos((ωc+δω)t), which is shifted from the original carrier frequency,

a technique known as single-sideband mixing. By adding several such sideband-mixing

envelopes, we obtain the desired multi-tone microwave control signal used to manipulate

the qudit state from a single AWG. The DAC timing resolution and output filtering
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determines the bandwidth accessible by sideband mixing, which in the current setup is

∼ 600 MHz, just enough to access all the relevant qudit transitions. Multiple AWG

outputs with different carrier frequencies could be added to access a wider frequency

range, if necessary.

For single-transition rotations, e.g. π- and π/2-pulses, the pulse envelope has length

T = 16-ns and a shifted cosine shape A(t) = (Amax/2)(1 − cos(2πt/T )) for 0 ≤ t ≤ T .

This gives the pulses a smooth turn-on and turn-off envelope and a full-width at half-max

(FWHM) of 8 ns. While not as concentrated in frequency space as a gaussian, this shape

has the advantage of going identically to zero at the endpoints, avoiding the need for

truncation and allowing sequential pulses to be concatenated without additional delays.

For spin-1 and spin-3/2 pulses, the emulated spin rotates more slowly than for single

transitions, so an emulated spin π-rotation requires both qudit transitions to be driven

through more than a π-rotation. This is done with a stretched pulse that consists of an 8 ns

cosine turn on at the beginning, 8 ns cosine turn-off at the end, and constant amplitude

Amax drive in the middle, timed to achieve the desired total Rabi pulse area. This keeps

the pulses shorter than increasing T alone, minimizing the effects of decoherence during

the pulse; at the same time it keeps Amax the same, avoiding unwanted AC Stark shifts

at large drive amplitude and staying within the limited microwave dynamic range.

Qudit measurement requires that we choose appropriate measure-pulse amplitudes

I(n)
meas to maximize the discrimination between neighboring states (Fig. S1). This dis-

crimination is characterized by the visibility, defined as the difference between tunneling

probabilities of the upper and lower states. In this case, the |0〉-|1〉 visibility is 90%, while

the |3〉-|4〉 visibility is just 66%. Note that these visibilities contain contributions from

tunnelling as well as the imperfect state preparation due to T1 relaxation during the state

preparation sequence.
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To characterize the qudit, we measured the relaxation rates of the various states (Fig.

S2). The measured rates are in fairly good agreement with the 1/n scaling seen in a

harmonic oscillator (S1). This is expected due to the relatively small anharmonicity of

the potential at our operating point.

Supplementary Text. The Berry phase factor exp(−imΩ) acquired by a spin rotated

about a closed bath was first predicted by Berry (S2) in the context of an adiabatically

changing, non-degenerate Hamiltonian. Later treatments extended the theory to include

degenerate Hamiltonians (S3). Here we show briefly that the adiabaticity requirement

can also be dispensed with in the case of spin rotations, such as those emulated in the

experiment.

In the derivation of Berry’s phase, one assumes a Hamiltonian Ĥ(t) that varies cycli-

cally in time. If the system starts in an eigenstate |m〉 and stays in an eigenstate through-

out the evolution, then at the end of one cycle, the system will again be in state |m〉 but

now multiplied by a phase factor

exp(iγm) exp

{

−
i

h̄

∫ T

0
Emdt

}

(S1)

where the first term is the “geometric” phase (Berry phase) due to the changing Hamil-

tonian, and the second term is a “dynamical” phase due to the (time-dependent) energy

of the eigenstate. For a spin, the Hamiltonian is simply Ĥ(t) = B(t) · Ŝ, where B(t)

is a time-dependent magnetic field and Ŝ is the spin operator Ŝ = (Ŝx, Ŝy, Ŝz). As the

state evolves, the quantization axis is chosen to be always along the instantaneous spin

direction 〈Ŝ〉.

The requirement that a system starting in an eigenstate |m〉 stay in an eigenstate as

the Hamiltonian evolves is normally guaranteed by requiring the evolution to be adibatic.

For a spin, however, adiabaticity is not required. Suppose the system starts out in an

3



eigenstate of the spin operator, with the quantization along 〈Ŝ〉 as mentioned above. This

eigenvalue condition is

〈Ŝ〉 · Ŝ |ψ〉 = m |ψ〉 . (S2)

Now, the spin is rotated by applying a magnetic field B. The state evolution can be

described in the Heisenberg picture where the spin operator evolves as

∂Ŝ

∂t
= −i[Ŝ, Ĥ] = B × Ŝ. (S3)

Differentiating the eigenvalue condition Eq. S2 and substituting in the time evolution

Eq. S3 gives

∂

∂t

(

〈Ŝ〉 · Ŝ |ψ〉
)

=
∂〈Ŝ〉

∂t
· Ŝ |ψ〉 + 〈Ŝ〉 ·

∂Ŝ

∂t
|ψ〉

= 〈B × Ŝ〉 · Ŝ |ψ〉 + 〈Ŝ〉 · B× Ŝ |ψ〉

= B × 〈Ŝ〉 · Ŝ |ψ〉 −B × 〈Ŝ〉 · Ŝ |ψ〉

= 0,

where we have used vector triple product identities to cancel the terms. This means that

the eigenvalue condition Eq. S2 will continue to hold even when the spin is rotated,

regardless of adiabaticity. Hence the derivation of the geometric phase factor in Eq. S1

proceeds as in the adiabatic case, giving the familiar Berry phase exp(iγm) = exp(−imΩ).

To find the dynamic phase contribution to Eq. S1, recall that the qudit state is de-

scribed in the rotating frame of moving eigenkets, as mentioned in the text. In this

frame, all the spin states have zero energy, so that initially Em = 0. At later times, the

energy of a particular eigenstate is given by the projection of the magnetic field along the

instantaneous spin axis which defines the quantization, that is

Em ∝ −m(B · 〈Ŝ〉). (S4)
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Thus, if we require that the rotation axis, given by B, is always perpendicular to the spin

direction, that is B · 〈Ŝ〉 = 0, then at all times Em = 0, and the dynamical phase vanishes.

This restricts the allowed spin rotations, as explained below, but simplifies the analysis

since the phase accumulated during the rotation is entirely due to the geometric phase

contribution.

As mentioned in the text, applied microwaves can rotate the emulated spin about any

axis in the X-Y plane, giving us control of Bx(t) and By(t), with Bz(t) = 0. To avoid

issues with dynamical phase, we also must satisfy the restriction just mentioned that the

rotation axis be perpendicular to the spin direction. If the spin vector is on the Z-axis,

either up or down, the rotation axis can be chosen as desired, since any vector in the X-Y

plane is perpendicular to Z; however, if the spin state is not on the Z-axis, there is only

one available perpendicular rotation axis in the X-Y plane. Thus, once a rotation axis

has been chosen and the spin has started to rotate away from the Z-axis, the rotation

axis cannot be changed until the state again reaches the Z-axis in the opposite direction,

corresponding to a rotation by angle π. This is the reason for applying successive π-pulses

in the experiment. By changing the axis angle Θ of the second π-rotation relative to the

first, the spin can be made to trace out any desired solid angle, as demonstrated in the

experiment.
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Fig. S1. Qudit measurement. Tunnelling probability is plotted versus measure-pulse

amplitude after preparing the qudit in various states |n〉 using successive π-pulses. Higher

qudit states tunnel with weaker measure-pulses. The measure-pulse amplitudes I(n)
meas are

chosen to maximize the visibility, or difference in tunneling rates, between |n〉 and |n− 1〉.
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Fig. S2. Lifetime of qudit states. (A) Left, the microwave sequence used to measure the

decay of |1〉 is a single π-pulse, followed by a delay and finally measurement. Right, a plot

of P1 versus time shows the decay of |1〉 to the ground state, with a lifetime T1 = 610 ns.

(B-D) Successive π-pulses are used to prepare |n〉 and measure the decay rate Tn. The

data on the left show Pn versus time. The higher states decay more quickly, in rough

agreement with the harmonic oscillator prediction.
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