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Superconducting resonators, used in astronomy and quantum computation, couple strongly to

microscopic two-level defects. We monitor the microwave response of superconducting resonators

and observe fluctuations in dissipation and resonance frequency. We present a unified model where

the observed dissipative and dispersive effects can be explained as originating from a bath of

fluctuating two-level systems. From these measurements, we quantify the number and distribution

of the defects. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818710]

Superconducting microwave resonators are solid state

devices that play important roles in quantum computation as

memory elements, zeroing registers, and data transfer buses.1,2

Resonators are also used as pixels in submillimeter-

wavelength, energy-resolved telescopes where they are known

as microwave kinetic inductance detectors (MKIDs).3,4 The

performance of these devices is limited by bistable tunneling

defects, which are present in the amorphous dielectrics on the

device surface. Originally studied in the context of glasses,5

these microscopic two-level systems (TLSs) reduce MKID

sensitivity through the introduction of noise6–9 and limit quan-

tum coherence through the absorption of energy.10,11

Previous studies have shown that TLSs cause fluctua-

tions in the resonance frequency of superconducting resona-

tors.7,8,12 The amplitude of these fluctuations decreases with

increasing resonator excitation energy,8 such that when

exciting resonators with energies exceeding 106 photons, the

excess dissipation noise can be reduced to below the quan-

tum limit.9 However, when operated at small excitation ener-

gies, such as in quantum information applications, these TLS

fluctuators present a fundamental challenge.13

In this letter, we present measurements of fluctuations in

both the resonance frequency and the internal loss of super-

conducting microwave resonators, driven with excitation

energies ranging from a single photon to 104 photons. We

describe a model of fluctuating TLSs that allow us to extract

the number and distribution of these defects. Surprisingly,

we find that, despite the macroscopic size of the devices, the

observed fluctuations are dominated by a small number of

defects located near the metal edges.

The devices used in this experiment were quarter-

wavelength coplanar waveguide (CPW) resonators capaci-

tively coupled to a transmission line; such a device is shown

in Fig. 1. The resonators were patterned from a 100 nm thick

aluminum film atop a 600 lm thick sapphire substrate. Each

6� 6 mm2 die contained 12 resonators connected to a single

transmission line. The CPW center strips were 6 lm wide

with 4 lm spacing to ground, and were approximately 6 mm

in length with distinct resonance frequencies ranging from

4.88 to 5.03 GHz. An individual die was wire bonded into an

aluminum sample mount and placed on the 50 mK stage of

an adiabatic demagnetization refrigerator. Details regarding

attenuators, filters, shielding, and amplifiers in the experi-

mental setup, as well as sample growth conditions, are avail-

able in Refs. 14 and 15.

Near the CPW fundamental resonance frequency, the

resonator can be represented by the equivalent circuit shown

in Fig. 1(b), using a lumped capacitance C and parallel in-

ductance L, with resonator loss and fluctuations in the reso-

nator’s response accounted for by the parallel admittance Yjj.
The average resonator frequency is ��R ¼ 1=2p

ffiffiffiffiffiffi
LC
p

; the res-

onator characteristic admittance is Y0 ¼
ffiffiffiffiffiffiffiffiffi
C=L

p
. For drive

frequencies � near ��R, the resonator admittance Yð�Þ can be

written in dimensionless form as

yð�Þ � Yð�Þ
Y0

� 1

Qi
þ 2i

� � �R

��R
; (1)

with real part yR equal to the internal resonator loss 1=Qi and

imaginary part yI given by the fractional detuning 2ð�
��RÞ=��R of the microwave drive frequency � from the

instantaneous value of the resonance frequency �R.

FIG. 1. (a) Optical micrograph of a quarter wavelength CPW resonator used

in this experiment. Light regions correspond to aluminum; dark regions cor-

respond to exposed sapphire. (b) Equivalent circuit for the CPW near its fun-

damental resonance frequency, with lumped capacitance C, inductance L,

and coupling capacitance Cc to the measurement transmission line. Loss and

fluctuations in the dielectric response of the resonator are captured by the

equivalent parallel admittance Yjj, which is found to vary with microwave

drive power and time.
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The devices were characterized using a vector network

analyzer to measure the transmission scattering amplitude

S21 through the coupled transmission line. The inverse scat-

tering amplitude of the CPW is given in terms of yð�Þ by14

S�1
21 ð�Þ ¼ 1þ 1

Qce�i/

1

y
; (2)

where Qc is the resonator-transmission line coupling quality fac-

tor and / is a geometry-dependent phase shift resulting from

impedance mismatches on either side of the transmission line.

Here, we focus on measurements taken at a fixed micro-

wave drive frequency �, near the resonance frequency ��R,

during which we capture the time-dependent value of S�1
21 .

Each data set comprises 16 000 measurements taken at a

sampling rate ranging from 10 kHz to 1 Hz. Single-frequency

transmission data are shown in Fig. 2, taken at 4.98 GHz

with microwave drive power P corresponding to an average

resonator occupation of 7500 photons. The response sweeps

out a circle in the complex S�1
21 plane, although we empha-

size that these measurements are taken at a fixed frequency;

the response varies due to fluctuations in the resonator pa-

rameters, which correspond to fluctuations in the parallel ad-

mittance Yjj in the equivalent circuit.

The time-dependent components of y can be determined

from the measured S�1
21 using Eq. (2), and are displayed in

the inset of Fig. 3. We Fourier-transform the data to yield the

power spectral densities SRðf Þ and SIðf Þ of yR and yI as a

function of the Fourier-transform frequency f, plotted in the

main panel of Fig. 3. These spectral densities are calculated

by dividing each time-domain data set into segments of 256

data points, followed by a Fourier transform and averaging

in the frequency domain. We see that both power spectra

SRðf Þ and SIðf Þ have a clear 1/f dependence, flattening out

above a few Hz into a white noise background where the

measurement noise dominates. The cross spectral density of

yR and yI (not shown) indicates that the fluctuations in the

two components are uncorrelated with one another. We note

that 1/f noise originating in the microwave amplifier chain is

far below the levels measured here.

Measurements of the type shown in Fig. 3 were made

for different microwave drive powers P; in general, the level

of fluctuations falls monotonically with drive power. Both

the 1/f frequency dependence and the power dependence are

consistent with lossy two-level systems interacting with the

electric fields of the resonator, causing loss and dispersive

frequency shifts. We, therefore, desire a detailed model to

provide a more quantitative understanding of these effects.

The response of TLSs is well described by the Bloch

equations.5,8 These equations describe an ensemble of TLSs

with dipole moments d and TLS decoherence rate

C2 ¼ 1=T2. The resulting linear response can be expressed

as an equivalent circuit admittance YTLS, as in the equivalent

circuit in Fig. 1(b), with

YTLS ¼ G
nd2

3��h

X
j

C2

Dx2
j þ C2

2j
2
þ i

Dxj

Dx2
j þ C2

2j
2

 !
; (3)

where G is an overall geometric scaling factor, n is the num-

ber of TLSs per unit volume, � is the permittivity of the

dielectric in which the TLSs are embedded, Dxj=2p is the

detuning between the microwave drive frequency � and the

natural transition frequency of the jth TLS, and j
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2=E2

s

p
describes the saturation of the TLS in an

electric field E, with saturation field Es. (For simplicity, we

have ignored thermal effects from a tanhð�hx=2kBTÞ term, as

well as negative frequency terms from the counter rotating

response.) The local electric field varies with the geometric loca-

tion of the TLS in the resonator, but for now we neglect this

detail; we will return to this question below when we discuss a

finite element model. Equations (1) and (3) allow us to relate the

microscopic TLS model to the experimentally accessible resona-

tor loss 1=Qi and instantaneous frequency detuning � � �R.

The average admittance at low temperatures is approxi-

mated by replacing the sum in Eq. (3) with an integral over

detuning Dx and a uniform TLS density of states qðDxÞ,
yielding8,10

RefYTLSg ¼ G di=j; (4)

where di ¼ pqnd2=3� is the intrinsic loss tangent of the

dielectric.

We calculate fluctuations in the real and imaginary parts

of YTLS by assuming that the coupling to each TLS fluctuates

in time with a fractional variance A2, which ranges between

FIG. 2. Fixed-frequency measurements of the complex transmission ampli-

tude S�1
21 versus time (color). The resonance circle, shown in black, is traced

over as the resonator response fluctuates in time.

FIG. 3. (Inset) Time-dependent real and imaginary parts of the dimension-

less admittance y, corresponding to internal resonator loss and fractional fre-

quency detuning, respectively. Main panel: Power spectral densities SRðf Þ
and SIðf Þ of the real and imaginary parts of y, as a function of Fourier trans-

form frequency f. Dashed lines are fits to a=f þ b.
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0 and 1; justification for this assumption comes from a good

fit to the data. Integrating over the TLS population yields the

magnitude of the mean-squared fluctuations,

hðDYR;TLSÞ2i ¼
ð

�hq
GAnd2

3��h

C2

ðDxÞ2 þ C2
2j

2

 !2

dðDxÞ

¼ G2d2
i

A2

N

1

j3
(5)

and

hðDYI;TLSÞ2i ¼
ð

�hq
GAnd2

3��h

Dx

ðDxÞ2 þ C2
2j

2

 !2

dðDxÞ

¼ G2d2
i

A2

N

1

j
; (6)

where N ¼ 2pC2�hq is the effective number of TLS coupled

to the device.

Equations (4)–(6) make specific predictions for the rela-

tion between loss and fluctuations: The variances in the dissi-

pative and dispersive fluctuations should scale with the square

of the intrinsic loss di. Furthermore, the loss and variance in

resonator frequency should scale with microwave power P as

1=j, while the variance in loss should scale as 1=j3.

We can compare these predictions with our measure-

ments by calculating the variances in the real and imaginary

parts of the measured dimensionless admittance, hðDyRÞ2i
and hðDyIÞ2i. These variances are calculated by integrating

the 1/f component of the measured power spectral densities

in Fig. 3. We approximate the full integrals by numerically

cutting off the integrals below 1 mHz and above 5 kHz; the

results only depend on the logarithmic ratio of these cutoffs.

The calculated variances are plotted as a function of resona-

tor photon occupation number in Fig. 4.

We compare the measured dependence of the squared

loss 1=Q2
i , and the variances hðDyRÞ2i and hðDyIÞ2i, with the

model predictions. The power-dependent loss 1=Qi can be

scaled to match well to the dispersive fluctuations in yI. The

power dependence of loss cubed, 1=Q3
i , is also seen to match

well to the dissipative fluctuations in yR, as expected (we note

that the relative magnitude of the dispersive and dissipative

variances differs from one another by a factor of 2 at low

power). We see that at single photon excitations,

hðDyRÞ2i � hðDyIÞ2i � ð1=30Þð1=QiÞ2; the loss yR fluctuates

by almost 20% of its mean value. We observe similar behav-

ior for a device with an internal quality factor that is roughly

3 times greater; this device displays roughly an order of mag-

nitude lower variance, in agreement with the model, which

scales as d2
i . A generalization of Eqs. (5) and (6) for the covar-

iance hðDyRDyIÞi involves an integral over an odd function of

Dx, which vanishes, in agreement with our measurements.

Assuming that the model variance A2 is of order 1, Eq.

(5) and the measured fractional variance imply that a rela-

tively small equivalent number of TLSs, approximately 30,

are affecting the device performance. Smaller values of A
would imply fewer TLSs: as we do not yet observe single

fluctuators, A2 � 1 seems to be a reasonable estimate.

The contribution of different TLSs to the overall admit-

tance Y is weighted by the local electric field, which we

ignored in our previous TLS model. To better understand

this dependence, we used a finite element electromagnetic

simulation to calculate the TLS contribution as a function of

TLS location and local jðEÞ. We model a thin (3 nm thick)

uniformly lossy dielectric with a relative permittivity of �
¼ 10 on all of the device interfaces (see Ref. 17). Using the

simulated electric fields, we calculate the percentage contri-

bution to dissipation and noise as a function of distance from

the substrate-electrode corners, shown in Table I. The contri-

bution to loss from a small volume at low power, j � 1,

scales as E2, and the local field E scales with distance x from

the edge of a metal film as 1=
ffiffiffi
x
p

, resulting in loss contribu-

tions that are distributed logarithmically. The contribution to

FIG. 4. Power-dependent loss squared 1=Q2
i (green) and variances in yR (red) and yI (blue), as a function of resonator power, plotted in units of resonator pho-

ton occupation number16 for two different resonators. (a) Resonator with low-power internal quality factor Qi;0 ¼ 250 000 and (b) resonator with

Qi;0 ¼ 725 000. We observe lower noise for the device with lower loss. The dashed lines overlaying the blue, green, and red datasets are proportional to the

measured dissipation, dissipation squared, and dissipation cubed, respectively (see text). Solid lines correspond to electromagnetic simulations of the CPW

loss and noise.

TABLE I. We simulate a CPW with a thin dielectric layer on all surfaces of

thickness 3 nm and relative permittivity of 10. The percent contribution to

loss and noise is presented as a function of distance from the metal-substrate

corners.

0–10 nm 10–100 nm 0.1–1 lm 1–10 lm

Loss (%) 29 28 30 13

Noise (%) 88 11 1 <1
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the overall variance at low power, however, scales with the

square of the loss, i.e., E4, resulting in contributions domi-

nated by the corners.

In Fig. 4(a), we plot the simulated power dependence of

the loss squared, 1=Q2
i , and fluctuations in YR;TLS; YI;TLS, as

solid lines overlaying the experimental data. Closest agree-

ment between data and simulation is seen by setting the TLS

saturation field to 10.0 V/m, the intrinsic loss tangent to

di ¼ 1:1� 10�3, and the TLS density to 2/lm3. These values

agree with previous measurements10,18,19 and the resulting

power dependence and number of TLSs are in good agree-

ment with the data.

In conclusion, we have shown measurements of power-

dependent fluctuations in the loss and resonance frequency

of superconducting resonators. We have presented a model

that reproduces the measured power dependence and scaling

with internal loss. From these measurements, we were able

to estimate the number of defects that contributed to the res-

onator fluctuations. The response of these devices appears to

be dominated by a few dozen TLSs.
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Nanofabrication Facility, a part of the NSF-funded National

Nanotechnology Infrastructure Network. This research was
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(IARPA), through Army Research Office Grant No.

W911NF-09-1-0375.
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