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A precise measurement of dephasing over a range of time scales is critical for improving quantum gates
beyond the error correction threshold. We present a metrological tool based on randomized benchmarking
capable of greatly increasing the precision of Ramsey and spin-echo sequences by the repeated but
incoherent addition of phase noise. We find our superconducting-quantum-interference-device-based qubit
is not limited by 1=f flux noise at short time scales but instead observe a telegraph noise mechanism that is
not amenable to study with standard measurement techniques.
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I. INTRODUCTION

One of the main challenges in quantum information is
maintaining precise control over the phase of a super-
position state. Long-term phase stability is threatened by
frequency drifts due to non-Markovian noise, which arises
naturally in solid-state quantum systems [1,2]. Fortunately,
correlated noise can be suppressed using Hahn spin echo
[3]. In practice, Ramsey and spin-echo measurements of
dephasing [4–6] characterize the dominant noise source for
large error rates (0.1 to 0.5) and long times but are
fundamentally inappropriate for understanding noise dom-
inant on the time scales and error rates needed for fault-
tolerant gate operations (< 10−2).
In this article, we introduce a metrological tool based on

randomized benchmarking (RB) [7–12] to quantify noise
on time scales relevant for quantum gates. Whereas other
measurement techniques based on Ramsey [4–6] and
Rabi [13] measurements measure noise over long time
scales and filter low-frequency noise to infer gate performa-
nce at short time scales, we measure gate fidelity directly,
providing immediate feedback on the impact of noise on
gate performance. We apply it on a superconducting-
quantum-interference-device- (SQUID-)based qubit and
show that this method determines that 1=f flux noise
[1,14,15] is not currently a limiting factor in our device.
This tool also provides a powerful probe of anomalous
telegraph noise sources seen in superconducting devices.
We also show that undesired coherent interactions can be
understood as an effective correlated noise. Finally, we

demonstrate how this method allows for error budgeting
and direct selection of ideal gate parameters in the presence
of non-Markovian noise.
Quantum systems based on ion traps, spin qubits, and

superconducting circuits are rapidly maturing, with indi-
vidual operation fidelity at the levels required for fault-
tolerant quantum computing [10,16–24]. These systems are
often limited by environmentally induced phase noise,
which can manifest as qubit frequency jitter. Noise in
the phase ϕ is characterized by variance hϕ2ðτÞi, increasing
linearly with time τ for white noise and with higher power
for correlated noise [25]. Ramsey and spin-echo experi-
ments measure the decay of phase coherence for large
magnitudes over long time scales; at much shorter time
scales, which are relevant to quantum gates but still slower
than the qubit frequency, dephasing errors are small and,
thus, hard to measure, making physical mechanisms
difficult to directly identify. Here, we quantify phase noise
by using RB to measure the decoherence of an identity
gate vs its duration, providing an unprecedented metro-
logical tool.
We use a superconducting quantum system based on the

planar transmon qubit variant, the Xmon [26], cooled to
20 mK in a dilution refrigerator. This qubit consists of a
SQUID, which serves as a tunable nonlinear inductor and a
large X-shaped shunt capacitor. It is well suited for
characterizing phase noise as the qubit has long energy-
relaxation times, and the SQUID gives a controllable
susceptibility to flux noise. These qubits have frequencies
that can be tuned to 6 GHz and below and have typical
nonlinearities of η=2π ¼ −0.22 GHz, and capacitive cou-
pling strengths between qubits of 2g=2π ¼ 30 MHz [27].
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Single-qubit rotations are performed with microwave
pulses and tuned using closed-loop optimization with
RB [28]. We use a dispersive readout scheme with
capacitively coupled resonators at 6.6–6.8 GHz for state
measurements [29]. For details of the experiment setup and
fabrication process, see Ref. [24].

II. RB RAMSEY EXPERIMENT

Figure 1(a) shows gate sequences for Ramsey and spin-
echo measurements, as well as their RB equivalents that we
call “RB Ramsey” and “RB echo.” The Ramsey experiment
accumulates phase error from a single period τ, whereas the
RB Ramsey experiment accumulates phase error from m
applications of τ, withm typically of order 100. In RB, gate
error is measured directly by interleaving gates with
random Clifford group operators, which depolarize errors
by evenly sampling the Hilbert space, such that repeated
gate applications add error incoherently [30]. Thus, the RB
Ramsey experiment has a factor m higher sensitivity than
the Ramsey experiment when errors and times τ are small.
The error of an idle gate rIðτÞ is directly related to the
variance of the phase noise by (see Appendix A)

rIðτÞ ¼ ⅙hϕ2ðτÞi: ð1Þ

We infer and plot the equivalent Ramsey decay
envelope visibility data V (solid circles) with VðτÞ ¼
A exp½−½hϕ2ðτÞi� þ B in Fig. 1(b), with state preparation
and measurement error parameters A and B extracted from
the Ramsey fit as described in Appendix C and hϕ2ðτÞi
measured by the RB Ramsey experiment according to
Eq. (1). We likewise show the equivalent spin-echo decay
envelope from RB echo data as solid squares. The Ramsey
and spin-echo measurements over the same time scale are
shown for comparison as open circles and open squares,
respectively. We label the length of a single-qubit and two-
qubit entangling gate [23] to emphasize the relevant time
scale. The full Ramsey and spin-echo measurements are
shown on the typical linear scale together with energy
relaxation in the inset of Fig. 1(b).
As shown in Fig. 1(b), the RB Ramsey and RB echo data

are consistent with the Ramsey and spin-echo measure-
ments, respectively, at short to moderate time scales, while
being much more precise. Any structure to short-time
dephasing is obscured in the Ramsey data, whereas the
RB Ramsey data reveal a time dependence that we will
show is consistent with telegraph noise. The use of RB
greatly improves the precision of phase-noise measure-
ments; the uncertainty of the measured Ramsey visibility
for τ < 300 ns is reduced by an order of magnitude. We
note that the total time taken to perform the Ramsey and RB
Ramsey measurements is approximately the same and that
precision will be increased for a higher-fidelity qubit by
simply choosing larger m’s. Because of the imprecision of
the Ramsey data at short time scales, the amount of noise

present can be inferred only from the fit to the entire
Ramsey data set. However, Fig. 1(c) shows that the phase
noise measured by the RB Ramsey experiment can differ
significantly from that expected by the Ramsey fit. The
trend in their difference indicates that there is behavior to

Single-qubit gate

Entangling gate

Time (ns)101 102 103 104

V
is

ib
ili

ty

0.8

0.9

1.0

Time (ns)

0.895

0.885

0 100

V
is

ib
ili

ty

Ramsey Spin echo
RB Ramsey RB echo

Time (µs)0

1
Energy

Spin echo

Ramsey
10

0

0.5

(a)

(b)

(c)

Ramsey

RB Ramsey

Spin echo

RB echo

FIG. 1. (a) Gate diagram for Ramsey and Hahn spin-echo sequ-
ences and their RB equivalents. For the RB Ramsey sequence,
instead of inserting an idle gate between Xπ=2 pulses, we
interleave the idle gate between m randomly selected single-
qubit Clifford gates (C1), after which the qubit is rotated back
(Cr) to the pole and measured. For spin echo and RB echo, an X
gate is inserted at the center of the idle sequence. The range of m
is 21 for the longest τ to 300 for the shortest. (b) (inset) T1 (energy
decay) and Ramsey and spin-echo envelopes; (main) Ramsey
(open circle) and spin-echo (open square) envelopes at short
times. RB decay envelopes are inferred from hϕ2ðτÞi measured
by the RB Ramsey (solid circle) and RB echo (solid square)
experiments; see text for details. Single-qubit and entangling gate
durations are shown for reference. Note the significantly lower
noise of the RB sequences, which take approximately the same
measurement time as the Ramsey and echo experiments. (c) Mag-
nification of the dashed area in (b), showing time scales important
for gates. The RB Ramsey data show a trend different from that
predicted by the Ramsey fit.
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the noise at short times that Ramsey measurements miss.
We examine this in Fig. 2.

III. MEASURING TELEGRAPH NOISE

To identify the dominant noise mechanism, we examine
the dependence of idle gate error on time and compare
against different noise models in Fig. 2. Whereas in Fig. 1
we infer an equivalent Ramsey envelope, here we plot the
idle gate error directly, as measured by the RB Ramsey
experiment (with small T1 effects subtracted; see
Appendix A). For short times, we see a nonlinear increase
of error with gate duration which transitions into a linear
behavior for lengths above approximately 100 ns. The inset
shows the sequence fidelity vs the number of Clifford gates,
with and without interleaved idle gates used to extract the
idle gate error for τ ¼ 40 ns.
While it has long been known that SQUIDs are suscep-

tible to 1=f flux noise [1,14,31–35], we find this is a
negligible contribution to gate error. A system limited by
1=f and white noise will see a linear increase in error at
short times and quadratic increase at long times as the 1=f
component begins to dominate. The data exhibit the
opposite trend. Moreover, the expected contribution to
gate error from 1=f noise, as measured for this system
below 1 Hz using the Ramsey tomography oscilloscope
protocol (see Ref. [14] and Appendix D), is significantly
less than observed here (Fig. 2 thick solid line).
The trend observed in Fig. 2 is consistent with telegraph

noise. For a random telegraph switching of the qubit
frequency, the phase noise is given by

hϕ2
telðτÞi ¼ ð2πΔf10Þ2Tsw

�
τ − Tsw

�
1 − exp

�
− τ

Tsw

���
;

ð2Þ
whereΔf10 is the effective switching amplitude of the qubit
frequency, and Tsw is the switching time scale. We make the
simplifying assumption of symmetric telegraph noise as the
measurement is unable to differentiate up and down
switching rates, and note that while telegraph noise is
not Gaussian, Eq. (2) is still approximately correct for use
in Ramsey and spin-echo analyses (see Appendix A). In a
more general case, the error rate for an idle gate of length τ,
rIðτÞ, can be fit to a combination of error sources: white,
long-time correlated, 1=f, and telegraph phase noise, as
well as T1 decay,

rIðτÞ ¼
τ

3T1

þ⅙fhϕ2
whiteðτÞi þ hϕ2

corrðτÞi

þ hϕ2
1=fðτÞi þ hϕ2

telðτÞig; ð3Þ

where the derivation for hϕ2
whiteðτÞi ¼ 2τ=Tϕ1

, hϕ2
corrðτÞi ¼

2ðτ=Tϕ2
Þ2, and hϕ2

1=fðτÞi are given in Appendix B, and we
assume correlated noise has a longer time scale than the
experiment. The data here are fitted to a noise model
featuring only T1 decay (measured independently) and
telegraph noise,

rIðτÞ ¼
τ

3T1

þ 1

6
hϕ2

telðτÞi; ð4Þ

indicating that 1=f and white noise do not dominate the
error for this qubit. We extract Tsw ¼ 84� 14 ns and
Δf10 ¼ 479� 30 kHz from the fit. The dotted (dashed)
line shows this noise model in the short (long) time limit.
Perhaps surprisingly, this measurement directly shows that
gates of duration 20 ns can achieve fidelity > 0.999 in a
system with characteristic Ramsey scale of Tϕ2

¼ 2.0 μs
(see Appendix C).
Telegraph noise has been studied in superconducting

circuits with a variety of methods. Frequency fluctuations
due to quasiparticle tunneling have been characterized by
Rabi oscillations [36] and repeated direct frequency meas-
urement [37]. For our qubit, the calculated frequency
splitting due to quasiparticle tunneling ranges from 1 Hz
to 14 kHz (see Appendix F), well below the magnitude
necessary to explain the data. Photon shot noise in a
coupled resonator has been shown to cause dephasing in
both transmon [17,18,38] and flux [39] qubits. In our case,
the magnitude of the telegraph noise decreases as the qubit-
resonator frequency difference decreases, indicating that
resonator photon noise-induced dephasing is not the cause.
A more elusive telegraphlike noise has been measured by
T1ρ Rabi spectroscopy in flux qubits [13], hypothesized to
be due to two sets of coupled coherent two-level states.
This noise is similar in frequency to the noise measured
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FIG. 2. RB Ramsey measurement (circles) for short time scales;
note that the small error from T1 decay, which is 9 × 10−4 at
450 ns, is subtracted (see Appendix A). We fit to a telegraph noise
model [Eq. (4)]; the dotted (dashed) lines give the short (long)
time limit of the noise model. The inferred but negligible
contribution from 1=f noise as measured for this qubit (see
Appendix D) is shown as a thick line. The inset shows the
experiment used to extract the 40-ns data point.
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here, with spectroscopic signatures at 1 and 20 MHz,
compared to 1=84 ns ¼ 11 MHz for this measurement.
However, it is much larger in magnitude, presenting as a
“dip” (or “plateau”) in spin-echo measurements, which is
known to happen in the presence of strong telegraph noise
[40] and seen in other systems [37,39,41]. In our device, the
telegraph noise is only dominant at short time scales, as any
evidence of it in longer measurements like the Ramsey
measurement and spin echo is masked by 1=f flux noise.

IV. MEASURING ERROR FROM COHERENT
QUBIT-QUBIT INTERACTIONS

We now apply RB to coherent errors arising from
unwanted qubit-qubit interactions, which can also contrib-
ute to dephasing [42]. In Fig. 3, we explore these effects in
our system. Figure 3(a) shows an energy-level diagram for
capacitively coupled qubits, where the fundamental entan-
gling rate ΩZZ [43] arises from an avoided level crossing
between the j11i state and the j02i and j20i states. This
interaction manifests as a state-dependent frequency shift
falling off with detuning Δ, as measured in Fig. 3(b). We
note that for a qubit coupled to a resonator ΩZZ is
equivalent to the dispersive shift [44] 2χ as defined in
Ref. [45]. The inability to turn this interaction off com-
pletely results in additional errors when operating qubits

simultaneously. Figure 3(c) shows the average gate error vs
duration when a qubit is operated in isolation or simulta-
neously with a coupled qubit (ΩZZ=2π ¼ 0.4 MHz). The
error for a single qubit or simultaneous operation is inferred
from the RB reference error per Clifford gate divided by the
average of 1.875 physical gates per Clifford gate [23]. The
difference between isolated and simultaneous operation
gives the added error from the ΩZZ interaction, which is fit
to a quadratic.
This interaction is correlated, and, therefore, the errors

are quadratic with gate duration; specifically, the error per
gate due to the ΩZZ interaction between two qubits
simultaneously undergoing RB is

E ¼ π2

6

�
ΩZZ

2π
tgate

�
2

; ð5Þ

where ΩZZ=2π is the interaction magnitude, and tgate is the
RB gate duration (see Appendix G). The fit to the data has a
quadratic coefficient of 1.86� 0.1, while π2=6 ≈ 1.64.
Here, the careful application of RB both distinguishes
these errors at the 1 × 10−4 level and indicates that short
gates are effective in suppressing them.

V. MEASURING DIFFERENT GATE
IMPLEMENTATIONS

We now examine the gate fidelity for a variety of gates in
the presence of the non-Markovian noise we have mea-
sured. Figure 4 shows gate fidelity vs gate length for two
implementations each of two different gates: for σI, an idle
and two microwave pulses (X, X), and for σZ, a frequency
detuning pulse and two microwave pulses (Y, X). The
errors of these operations vs duration are determined with
interleaved RB. In agreement with previous measurements,

(a)

(c)

(b)

l

FIG. 3. (a) Energy-level diagram for two capacitively coupled
qubits with coupling strength 2g=2π ¼ 30 MHz, detuned by
frequency Δ. The avoided level crossing between the j11i and the
j02i and j20i states repels the j11i frequency from the sum of
j01i and j10i frequencies by the amount ΩZZ. (b) This entangling
interaction causes the phase of one qubit to precess, conditional
on the state of its neighbor (sketch and inset). TheΩZZ interaction
decreases with Δ, to a level of ΩZZ=2π ¼ 0.4 MHz at
Δ=2π ¼ 750 MHz. (c) RB data isolating the ΩZZ interaction.
Gate error is measured vs gate duration for a single qubit and
when qubits are operated simultaneously (inset). The difference
(main figure) measures the error contribution from the ΩZZ
interaction and is fit to 1.86ðΩZZtgate=2πÞ2 þ 1.4 × 10−4.

FIG. 4. Operation error of σI and σZ, implemented with (closed
symbols) and without (open symbols) echoing, as measured with
interleaved RB. The data are fitted to a linear and quadratic form
representing uncorrelated and correlated noise. The dark gray
region indicates error attributed to T1, the medium gray region
uncorrelated noise, and the light gray region non-Markovian
(e.g., telegraph) noise. Note that the I data are RB Ramsey data,
the same as Fig. 2.
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we find that the error of operations without X or Y pulses
(open symbols) follows a quadratic dependence with gate
duration at these time scales. Using X or Y pulses (closed
symbols), we observe a linear dependence at longer
durations, indicating that the correlated phase noise is
suppressed. Below 40 ns, we find an increased error, which
we attribute to the population of higher levels due to
spectral leakage [46]. The solid (dashed) lines are linear
(linear and quadratic) fits to the data. For full details of the
fits, see Appendix C.
Using the functional forms of the different error types

given in Eq. (3), we can determine an error budget for our
operations. For a typical entangling gate duration of 40 ns,
T1 contributes an error of 5 × 10−4 and telegraph noise an
error of 5 × 10−4. With echoing pulses, the total error is
8 × 10−4, indicating that the added echoing pulses are
either not completely suppressing the phase noise or are
contributing error of their own. Using a combination of RB
Ramsey and RB echo measurements, we determine the
relative contribution of different noise sources to opera-
tional error, and we can also immediately see that either
short gates or long gates with intrinsic echoing are effective
at remedying non-Markovian noise, and by how much.

VI. SUMMARY

The RB Ramsey experiment provides a direct measure-
ment of phase noise in the regime most relevant to quantum
gates. While previous noise spectroscopy has relied on
accumulating noise over longer time scales while filtering
out low-frequency noise with additional pulses, our tech-
nique directly measures small amounts of noise with
repeated incoherent additions. It does not require extensive
calibration and is also robust against state preparation and
measurement error. As a gate-based measurement, it is
useful in a variety of situations: measuring noise due to the
environment of the RB Ramsey experiment, measuring
filtered environmental noise as RB echo, and measuring
dephasing induced by coherent qubit-qubit interactions. As
the measurement output is gate fidelity, it is also immedi-
ately applicable as a tool to determine the highest-fidelity
implementation of different quantum gates in the presence
of noise. We show here that the RB Ramsey experiment is
the metrological tool best suited for measuring noise in
high-fidelity qubits.
We take RB, a protocol for determining the fidelity of

gates, and apply it as a metrological tool for identi-
fying noise processes. Applied to a superconducting
qubit system, we find a telegraph noise mechanism in a
regime inaccessible to previous measurements, accurately
characterize dephasing caused by coherent qubit-qubit
interactions, and determine the highest-fidelity implemen-
tation of different quantum gates. Our results demonstrate
that the RB Ramsey experiment is capable of measuring
small noise processes at short time scales that are directly
relevant to gate fidelity and show that understanding this

non-Markovian phase noise can be lead to its effective
suppression through short gates and echoing.
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APPENDIX A: THEORETICAL RELATION OF
RB ERROR TO hϕ2i

In order to determine the effect of various dephasing
mechanisms on a RB sequence, we first consider the
following simplified model: a single qubit begins in
jψ0i ¼ j0i, then a randomly chosen perfect Clifford rota-
tion C1 is applied, and then a phase ϕg;n is accumulated by
application of a Z rotation to simulate phase noise. The
random Clifford and noise gate pair are repeated N times,
after which the single Clifford gate Cr that is the inverse of
all the previous Clifford gates is applied to rotate back to
(nearly) j0i, and we measure the probability of error,
Perr ¼ jh1jψNij2.
The value of ϕg;n depends on the dephasing model

employed. For example, for static dephasing (e.g., a
frequency offset), it is constant: ϕg;n ¼ ϕg;st. For white
noise, ϕg;n is randomly sampled from a symmetric
Gaussian distribution. In general, ϕg;n is arbitrary, but
we assume jϕg;nj ≪ 1. The average square of ϕg;n is
denoted hϕ2

gi.
We now consider the “error angle” Δϕ the angular

separation of jψNi from j0i in the Bloch sphere picture of a
single qubit, noting that Perr ¼ hðΔϕ=2Þ2i, assuming
jΔϕj ≪ 1. Because jϕg;nj ≪ 1 and N is not too large, after
each rotation, jψi is close to one of the six axes
(�X;�Y;�Z), and the angular distance from the axis is
Δϕ. There is a 1=3 chance that the qubit is near the pole
(i.e., Z axis) and then the rotation ϕg;n does not change Δϕ,
while with a 2=3 probability the qubit is near the equator
and Δϕ is changed.
For any dephasing model, it is straightforward to see that

the evolution of Δϕ is essentially a random walk in two
dimensions and that
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hðΔϕÞ2i ¼ ⅔Nhϕ2
gi; ðA1Þ

assuming Nhϕ2
gi ≪ 1. The RB error is then

Perr ¼ hðΔϕ=2Þ2i ¼ ⅙Nhϕ2
gi: ðA2Þ

It might be expected that in the static dephasing case—
when there are correlated phase contributions—there can
be some sort of echoing effect; for example, if a Clifford
gate takes jψi to theþY axis and it is rotated by ϕg;st, then if
the next Clifford gate is an X rotation putting jψi near the
-Y axis, the following rotation also by ϕg;st will cancel the
previous noise rotation. However, when the full set of
Clifford rotations is used, there are four rotations that take
jψi near the -Y axis, and each orients the previous Δϕ in a
different direction relative to the axis, resulting in equal
probability of canceling the previous rotation, doubling it,
or moving in one of the two perpendicular directions. The
noise accumulated between rotations is, therefore, uncorre-
lated with previous or future noise; the Clifford set is error
depolarizing. Therefore, Eqs. (A1) and (A2) hold regard-
less of the noise model.
This simplified model is confirmed with simulation

for both a static and an uncorrelated noise model with
ϕg;n ¼ �ϕg.
This implies that RB is an effective way to measure

dephasing if the sequence error occurring between the gates
is attributable to dephasing. This can be done easily by
comparing the sequence fidelity of a RB sequence with an
interleaved idling time to that of a reference RB sequence,
effectively subtracting out errors due to the Clifford gates
themselves—in other words, measuring the fidelity of an
idle gate using interleaved RB, as in Ref. [23]. We can,
therefore, measure the dephasing that takes place during an
idle gate period and by varying the length τ of an idle gate
period measure dephasing as a function of time, hϕ2ðτÞi
(for brevity, we remove the subscript g). With rIðτÞ being the
error rate (i.e., error per gate) of an idle gate period we,
thus, arrive at Eq. (1),

Perr=N ¼ rIðτÞ ¼
1

6
hϕ2ðτÞi: ðA3Þ

For completeness, we also mention here the effect of
energy relaxation (T1 decay) on the fidelity of RB sequen-
ces. After each Clifford gate, the qubit state jψi is near the
equator of the Bloch sphere with probability 2=3. In this
case, the probability of the energy-relaxation event is τ=2T1

(we assume τ ≪ T1); such an event moves jψi by approx-
imately the angle π=2 on the Bloch sphere, thus, leading to
the error probability 1=2 at the end of the RB sequence. The
corresponding contribution to the RB error per gate is
ð2=3Þ × ðτ=2T1Þ × ð1=2Þ ¼ τ=6T1. With probability 1=6,
the qubit state after a Clifford gate is close to the north pole
(state j0i); then there is no energy relaxation. Finally, with
probability 1=6, the qubit state is close to the south pole j1i;

then the probability of the energy-relaxation event
is τ=T1, which moves the state by approximately the angle
π, thus, almost certainly leading to the RB error. The
corresponding contribution to the RB error per gate is
ð1=6Þ × ðτ=T1Þ × 1 ¼ τ=6T1. Adding together the two
contributions, we arrive at

Perr=N ¼ τ

3T1

: ðA4Þ

Since T1 can be measured independently, the effects of T1

decay can be calculated and subtracted from the results
obtained with RB, much as it can be subtracted from
Ramsey visibility decays as well. In our experiment, T1 is
relatively large, and, therefore, this correction is small.

APPENDIX B: TYPES OF PHASE NOISE

We now discuss the form of hϕ2ðτÞi for different sources
of noise. For completeness, we also show the similar
characteristic, h ~ϕ2ðτÞi, for the echo sequence of duration
τ (with π pulse at τ=2). Most of the results discussed here
were presented earlier, e.g., in Refs. [4, 25, 33].
The average values hϕ2ðτÞi and h ~ϕ2ðτÞi for the idle and

echo sequence, respectively, can be calculated via the
spectral density SðωÞ of the qubit frequency fluctuation,

hϕ2ðτÞi ¼ τ2
Z

∞

0

SðωÞ
�
sinðωτ=2Þ
ωτ=2

�
2 dω
2π

; ðB1Þ

h ~ϕ2ðτÞi ¼ τ2
Z

∞

0

SðωÞ sin
4ðωτ=4Þ

ðωτ=4Þ2
dω
2π

; ðB2Þ

where SðωÞ is single sided, and the average frequency
fluctuation is assumed to be zero.
For the white noise with a flat spectral density

SðωÞ ¼ S0, we find

hϕ2
whiteðτÞi ¼ h ~ϕ2

whiteðτÞi ¼
S0
2
τ ¼ 2

τ

Tϕ1

; ðB3Þ

where Tϕ1
¼ 4=S0 is the dephasing time due to white noise.

Note that the factor of 2 in the last expression cancels when
the corresponding visibility of a Ramsey or echo sequence
expð−τ=Tϕ1

Þ is calculated.
For noise that is correlated over very long times (very

slowly fluctuating qubit frequency), SðωÞ ¼ 4πσ2qbδðωÞ,
where σqb is the standard deviation of the qubit frequency
2πf10. In this case,

hϕ2
corrðτÞi¼ σ2qbτ

2¼ 2

�
τ

Tϕ2

�
2

; h ~ϕ2
corrðτÞi¼ 0; ðB4Þ

where Tϕ2
¼ ffiffiffi

2
p

=σqb is the Ramsey dephasing time scale
due to such correlated noise. Obviously, in this case there is
no dephasing in the echo sequence visibility.
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For 1=f noise, let us use SðωÞ ¼ ðS1=fÞ=ðω=2πÞ, then
[25,33]

hϕ2
1=fðτÞi ¼ S1=fτ2 ln

0.4007
fcτ

; ðB5Þ

h ~ϕ2
1=fðτÞi ¼ S1=fτ2 ln 2; ðB6Þ

where fc ¼ ωc=2π is the low-frequency cutoff of the 1=f
noise (e.g., the inverse of the total duration of the experi-
ment), which is introduced as the lower limit of integration
in Eq. (B1). Note that in Eq. (B5), we assumed fcτ ≲ 0.2.
As the log part in Eq. (B5) varies slowly, typically it is
ignored, and 1=f noise for hϕ2ðτÞi is treated with Eq. (B4).
Note that the factors in Eqs. (B5) and (B6) are different,
resulting in different effective dephasing times Tϕ2

for the
Ramsey and echo sequences.
Finally, let us consider a telegraph noise, for which the

qubit frequency 2πf10 switches between two values sep-
arated by Δωqb, with an up (down) switching rate of Γ↑
(Γ↓). In this case.

SðωÞ ¼ 4ðΔωqbÞ2Γ↑Γ↓

ΓΣðω2 þ Γ2
ΣÞ

; ΓΣ ¼ Γ↑ þ Γ↓; ðB7Þ

so using Eqs. (B1) and (B2), we obtain

hϕ2
telðτÞi ¼ 2

ðΔωqbÞ2
ΓΣ

Γ↑Γ↓

Γ2
Σ

�
τ − 1 − e−ΓΣτ

ΓΣ

�
; ðB8Þ

h ~ϕ2
telðτÞi ¼ 2

ðΔωqbÞ2
ΓΣ

Γ↑Γ↓

Γ2
Σ

�
τ − 3þ e−ΓΣτ − 4e−ΓΣτ=2

ΓΣ

�
:

ðB9Þ

Note that at short time, τ ≪ Γ−1
Σ , the effect of the telegraph

noise is similar to the effect of the correlated noise with
Tϕ2

¼ ffiffiffi
2

p
ΓΣ=ð

ffiffiffiffiffiffiffiffiffiffiffi
Γ↑Γ↓

p
ΔωqbÞ, while at long time, τ ≫ Γ−1

Σ ,
it is similar to the effect of white noise
with Tϕ1

¼ Γ3
Σ=½Γ↑Γ↓ðΔωqbÞ2�.

Defining the effective switching amplitude as 2πΔf10 ¼
2Δωqb

ffiffiffiffiffiffiffiffiffiffiffi
Γ↑Γ↓

p
=ΓΣ and introducing notation Tsw ¼ 1=ΓΣ,

we can rewrite Eq. (B8) as

hϕ2
telðτÞi ¼ ð2πΔf10Þ2Tsw½τ − Tswð1 − e−τ=TswÞ�; ðB10Þ

which is Eq. (2). In the case where Γ↑ ¼ Γ↓, as we assume,
2πΔf10 provides a lower bound on Δωqb. Note that the
telegraph noise in not Gaussian. Therefore, while the
obtained equations can be used to find the RB error per
gate, they cannot, strictly speaking, be used to find the
visibility of the standard Ramsey and echo sequences.
Nevertheless, they can be used approximately if
jΔωqbj=minðΓ↑;Γ↓Þ ≪ 1, because at short time the

accumulated phase shift is small, and the assumption of
Gaussianity is not needed, while at longer time, when the
phase becomes comparable to 1, the probability distribution
for the phase becomes Gaussian due to a large number of
switching events.

APPENDIX C: T1, RAMSEY,
AND SPIN-ECHO FITS

The T1 data are fit to a simple exponential, P1ðtÞ ¼
A expðt=T1Þ þ B, and we find T1 ¼ 26.7 μs. The Ramsey
and spin-echo envelopes are each fit to a noise model that
includes white and correlated components,

VðtÞ ¼ A exp ½−t=Tϕ1
− ðt=Tϕ2

Þ2� þ B; ðC1Þ

where VðtÞ is the Ramsey or echo visibility, t is the length
of the idle gate as shown in Fig. 1, Tϕ1

is the white-noise
dephasing time scale, Tϕ2

is the correlated-noise dephasing
time scale, and A and B are the result of state preparation
and measurement errors. The fit parameters are given in
Table I. Note that each of the fits includes the full range of
data, from 0 < t < 5.0 μs for the Ramsey fit and 0 < t <
12.0 μs for echo sequences.

APPENDIX D: FLUX NOISE

Flux noise on this device, plotted in Fig. 5, is measured
over the frequency range 10−4 < f < 1 Hz, using the
Ramsey tomography oscilloscope (RTO) protocol of
repeated frequency measurements as described in
Ref. [14]. Four measurements are made on this device
(open markers) at three different operating points, and then

TABLE I. T1, Ramsey, and spin-echo fit parameters.

Sequence Tϕ1
(μs) Tϕ2

(μs) A B

Ramsey 6.8 2.8 0.88 0.015
Spin echo 15.1 7.5 0.88 0.021

FIG. 5. Flux noise as measured with RTO [14].
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each measurement is binned in logspace, and the binned
measurements are averaged together (closed squares). This
average is fit (solid line) to an aliased 1=f and white-noise
model given by

SϕðfÞ ¼ S�ϕ=f
α þ S�ϕ=ð2fn − fÞα þ Swhite; ðD1Þ

where SϕðfÞ is the flux-noise power expressed in
ðμΦ0Þ2=Hz, f is the noise frequency, α is the slope of
the noise (1 for pure 1=f noise), S�ϕ is the flux-noise power
at 1 Hz, fn ¼ 1 Hz is the Nyquist frequency of the
measurement, and Swhite is the white-noise floor. From
the fit, we extract S�ϕ ¼ 2.4ðμΦ0Þ2, α ¼ 0.99, and
Swhite ¼ 9.7ðμΦ0Þ2=Hz. We attribute the white noise to
state preparation and measurement error. The dashed line
shows the 1=f fit extended to 1 Hz, where the value of the y
intercept is S�ϕ.
To plot the inferred flux-noise contribution in Figs. 2 and

6, we use Eq. (B5), with S1=f ¼ ð∂f=∂ϕÞS�ϕ taken from the
measurements above, and fc ¼ 10 min the length of the
experiment. The value of the log factor of Eq. (B5) varies
from 13 to 7 for 1 < τ < 450 ns.
This analysis assumes that the low-frequency flux noise

measured here can be extrapolated to high frequencies. In
Fig. 2, however, we see that this calculation underestimates
the amount of high-frequency noise, and furthermore, that
the noise is telegraph in nature, not 1=f.

APPENDIX E: RB RAMSEY MEASUREMENTS
ACROSS THE QUBIT SPECTRUM

Figure 6 shows the RB Ramsey measurements at three
additional qubit frequencies; the data for the 4.9-GHz
operating point are the same as in Fig. 2. The inset shows
the frequency-flux relation for this qubit, with the four
operating points denoted by symbols; df=dϕ changes by a
factor of 2.7 between the operating points to explore
different susceptibilities to flux noise. The remaining three
data sets are fit to a noise model incorporating telegraph
and white noise; that is,

rIðτÞ ¼ 1=6½hϕ2
telðτÞi þ hϕ2

whiteðτÞi� ðE1Þ

[see Eqs. (B3) and (B9)]. We show the fit parameters in
Table II.

We note that at the highest qubit frequency, the large Tsw
indicates that the telegraph noise model is not needed here
and can be replaced by the correlated-noise model with
Tϕ2

¼ ffiffiffi
2

p
=ð2πΔf10Þ ¼ 1.2 μs. The Ramsey data for this

frequency, fit to Eq. (C1), give Tϕ1
¼ 10.7 μs and

Tϕ2
¼ 3.6 μs, which indicates that even though the tele-

graph dephasing source is not present at this operating
point, the dephasing magnitude measured by the Ramsey
experiment still does not match that found with RB.
Despite tuning the flux Φ=Φ0 over most of its range, we

find that 1=f noise does not contribute appreciably to gate
errors. For typical gates of length 20 ns, idle fidelities
greater than 0.999 are seen over the frequency range,
demonstrating that tunable qubits can achieve high fidelity
even when biased significantly away from the flux-
insensitive operating point.

APPENDIX F: CHARGE NOISE

To calculate the expected frequency fluctuation due to
charge noise, we use Eq. (2.5) from Ref. [45],

ϵm ≃ ð−1ÞmEC
24mþ5

m!

ffiffiffi
2

π

r �
EJ

2EC

�m
2
þ3

4

e−
ffiffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p
; ðF1Þ

where ϵm is the charge dispersion for energy level m, and
EJ and EC are the Josephson energy and charging energy,
respectively, of the qubit. Note that we can also write
EJ=EC ≈ ðω01=η − 1Þ2=8 [following from Eq. (2.11)],
where ω01=2π is the qubit frequency and the qubit
anharmonicity f12−f01¼η=2π¼−215MHz. We then
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FIG. 6. RB Ramsey idling error vs duration for various
frequencies; T1 effects are subtracted according to Eq. (A4).
The dashed lines denote the inferred contribution from 1=f flux
noise at the four different operating points. The inset shows
frequency spectroscopy vs applied flux, following the expected
dependence [45]; the four operating points are shown.

TABLE II. Telegraph fit parameters.

f10
(GHz)

df=dΦ
(GHz=Φ0) T1 (μs) Tϕ1

(μs) Tsw (ns) Δf10 (kHz)

5.1 3.39 30.6 20.6 182 000 184
4.9 4.81 26.7 � � � 84 479
4.5 6.95 31.3 12.4 98 484
4.0 9.23 36.2 15.5 263 469
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calculate ϵ1 for the two ends of the qubit spectrum; we find
ϵ1ðω01=2π¼6GHzÞ¼3.6Hz and ϵ1ðω01=2π ¼ 4 GHzÞ ¼
14.4 kHz, both of which are far below the measured
charge-noise fluctuation frequency of approximately
500 kHz. We also note the qubits used in Ref. [37] have
charge-noise fluctuations of the same order as the telegraph
noise measured here, but charge noise of that magnitude is
expected, as explained by the different parameter range of
those qubits: ω01=2π¼4.387GHz and η=2π¼−334MHz,
giving ϵ1 ≈ 2 MHz.

APPENDIX G: CALCULATION OF ΩZZ

Two capacitively coupled qubits have an XX-type
coupling of the form gðj01ih10j þ j10ih01jÞ, where the
coupling constant g is half the swap rate between the
qubits. The interaction between the higher levels,ffiffiffi
2

p
gðj11ih20j þ j02ih11jÞ þ ffiffiffi

2
p

gðj11ih20j þ j02ih11jÞ,
results in a repulsion of the j11i level from the j02i and j20i
levels; this energy shift in the j11i level produces a ZZ-type
interaction between the qubits. In the far-detuned limit,
neglecting the XX-coupling, the two-qubit Hamiltonian
becomes

H ¼ ω1j10ih10j þ ω2j01ih01j
þ ðω1 þ ω2 þ ΩZZÞj11ih11j; ðG1Þ

ΩZZ ¼ 2g2

Δ − η2
þ 2g2

−Δ − η1
; ðG2Þ

where ωn and ηn are the qubit frequencies and non-
linearities, respectively, and Δ ¼ ω1 − ω2. In our system,
η1 ¼ η2 ≡ η, giving

ΩZZ ¼ 4g2η
Δ2 − η2

: ðG3Þ

When both qubits are simultaneously performing a RB
sequence, phase error ϕ per idle gate in qubit A is

ϕ ¼ �ΩZZ

2
tgate; ðG4Þ

where tgate is the idle gate duration, and the frequency shift
�ΩZZ=2 assumes centering the qubit frequency. This gives
hϕ2i ¼ ðΩZZtgateÞ2=4, and since for RB, the error per gate
is E ¼ hϕ2i=6 [see Eq. (A3)], we arrive at Eq. (5) for the
error per gate due to the ΩZZ interaction,

E ¼ π2

6

�
ΩZZ

2π
tgate

�
2

: ðG5Þ

APPENDIX H: FITS TO GATE ERRORS IN FIG. 4

For the data in the Fig. 4, the fits are made either to a
simple linear model in the case of Markovian noise (the XX
and YX cases) or to a quadratic and linear model in the case
of non-Markovian noise (the I and Z cases). There is no
offset in any fit. See Table III.
Note that the contribution from T1 ¼ 26.7 μs to

the linear portion of the error, given by Eq. (A4), is
9.3 × 10−6 error=ns or roughly half of the error measured.
The remainder is equivalent to a white-noise dephasing
with time constant Twhite ≈ 30 μs, according to Eqs. (A3)
and (B3). The quadratic terms correspond with Tϕ2

≈ 1 μs.

APPENDIX I: TELEGRAPH NOISE MEASURED
IN OTHER DEVICES

Telegraph noise is observed in many other devices. In
Fig. 7, we present RB Ramsey measurements of three other
devices that show telegraph noise, with the data from Fig. 2
reproduced for reference (a); one is another device on the

TABLE III. Gate error fit parameters.

Gate
Linear term

(10−6 error=ns)
Quadratic term
(10−6 error=ns2)

I 17 0.22
XX 20 � � �
Z 24 0.18
YX 22 � � �
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FIG. 7. Telegraph noise measured with the RB Ramsey experi-
ment in other devices. All fits include T1 and telegraph noise only
[Eq. (4)]. (a) A reproduction of Fig. 2 data for reference.
(b) Measurement of another Xmon on the same chip as the
device. (c) Measurement of an Xmon qubit from another sample;
see Ref. [23] for device details. (d) Measurement of a gmon qubit;
see Ref. [47] for device details.
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same chip (b), one another Xmon with different parameters
[23] (c), and the last a gmon qubit [47] (d). All fits are to T1

and telegraph noise only, Eq. (4), with fit parameters given
in Table IV.
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