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ABSTRACT

Given a quantum algorithm, it is highly nontrivial to devise an efficient sequence of physical gates implementing the algorithm
on real hardware and incorporating topological quantum error correction. In this paper, we present a first step towards this goal,
focusing on generating correct and simple arrangements of topological structures that correspond to a given quantum circuit
and largely neglecting their efficiency. We detail the many challenges that will need to be tackled in the pursuit of efficiency.
The software source code can be consulted at https://github.com/alexandrupaler/tgec.

Appendix: Glossary

Box: the bounding box of the geometric description of a distillation circuit. The type of the box is identical to the state distilled
by the distillation circuit. The term is used to also reference distillation sub circuits.

Computational universality: capability of a computing model to capture all of the power of quantum computation.

Configurable input/output: a circuit input/output which can be initialised/measured in various bases (e.g. X, Z).

Connection: defect spanned between a distillation box pin and a circuit pin.

Cube: a subdivision of a volume unit representing all the unit cells necessary for constructing defects with a diameter
enabling topological error-correction with a specific distance.

Defect (geometry): the geometric abstraction of a lattice defect. It contains at least one segment.

Defect (lattice): a set of physical face qubits arranged on neighbouring unit cells missing from the lattice. The qubits are
removed without affecting the connectivity of their neighbourhood by performing Z-basis measurements.

Distance (code): a measure of error-detection and -correction capabilities of a specific code.

Dual (face qubit): face qubit of a dual unit cell.

Dual (lattice): the self-similar lattice after geometrically translating the one constructed by tiling unit cells.

Dual (logical qubit): a logical qubit defined in the dual lattice.

Dual (unit cell): the unit cell resulting after tiling two primal unit cells along each of the three axis (Fig. 2).

Face qubit: any qubit located at the center of one of the faces of the cubic unit cell.

Failure probability (box): the probability that a distillation circuit will not output a state with a higher fidelity.

Failure probability (gate): the probability that a quantum gate (physical or logical) will not deliver the expected output.

Fault-tolerant threshold: physical gate failure probability below which it is possible to use error correction to perform an
arbitrarily large quantum computation arbitrarily reliably.

Fidelity: for our purposes a distance measure between two states # and v both expressed as complex column vectors. A
high fidelity is characteristic of states that are close. The fidelity F of a state u is computed by comparing it with an ideal
version v using F = u'v.

Geometric description: captures all the necessary elements for describing a TQEC circuit at the logical layer. It consists
of the three dimensional coordinates of the defect segments and inputs/outputs.

Ghost pin: a nonexistent pin, but whose existence is simulated just for allowing the construction of a schedule. Spare boxes
are scheduled using ghost pins, but are connected when necessary to real pins.

Graph state: a specific quantum state derived from a graph of vertices and edges by associating a qubit prepared in |+)
with each vertex and applying a CZ gate to every pair of qubits associated with the end points of every edge.

Heterogeneous (schedule): a schedule computed for boxes of different types.

Homogeneous (schedule): a schedule computed for boxes of the same type.


https://github.com/alexandrupaler/tqec

ICM circuit: a quantum circuit consisting only of qubit initialisation, CNOT gates and qubit measurements. The circuits
are useful for representing fault-tolerant universal computations.

Input/output (circuit): the interface of a circuit that is used to either input a state to be processed or to output a resulting
state. Accordingly, each logical qubit has an input (used for initialisation) and an output (used for measurement). For TQEC
circuits the inputs/outputs abstract physical qubit coordinates from the lattice.

Lattice: a highly regular structure resulting after tiling unit cells) along the three axes of a three dimensional space. Its
resulting structure is of a graph state where physical qubits are entangled according to the unit cell pattern. Each qubit can be
associated with an integer three dimensional coordinate. The lattice includes two self-similar sub lattices: itself (primal) and a
version of itself which is geometrically translated by the vector (1, 1, 1) (dual). By convention, the unit cells forming an initial
lattice are considered primal.

Logical layer: an abstraction of the physical layer where multiple entities from the physical layer are used for defining a
single logical entity with better characteristics. For example, logical qubits with lower failure probabilities are constructed out
of multiple physical qubits each with higher failure probabilities. Another example is the logical CNOT gate which is the result
of braiding defects, an abstraction involving many physical operations.

Logical qubit: two defects each abstracted in the geometric description by a sequences of segment end points.

Matrix-like circuit representation: the result of mapping the circuit representation to an array of integers. Each integer
represents a different element of the circuit (e.g. -100 for inputs, -101 for outputs, 1 for CNOT control and 2 for CNOT target).

Optimisation (TQEC circuit): the process of reducing the bounding box of a geometric description corresponding to a
TQEC circuit.

Physical layer: one of the layers at which error corrected computational models operate. The physical layer is an abstraction
of the hardware, where entities existing at this layer mostly have a direct hardware equivalent. For example, physical qubits are
direct abstractions of the hardware representing and/or operating a qubit (e.g. photon).

Physical qubit: the quantum state represented and manipulated by a single physical quantum hardware entity.

Pin: the three dimensional coordinate of a box or circuit interface. Two pins exist for each box or circuit input/output
because their coordinates indicate where a connection has to be attached. A connection is a geometric abstraction of a defect,
and because information is manipulated as logical qubits there are two connections required for each box or circuit input/output.

Pin pair: the two pins associated to the same input/output.

Primal (face qubit): face qubit of a primal unit cell.

Primal (lattice): lattice.

Primal (logical qubit): a logical qubit defined in the primal lattice.

Primal (unit cell): a uniz cell used for constructing the lattice necessary for TQEC circuits.

Real pin: pin.

Region: a rectangular two dimensional space extracted from a three dimensional space by constraining two coordinates to
intervals and the third coordinate to a particular value. Regions are used for placing the geometric description and the schedules.

Rotation gate: arbitrary single qubit gate. The most utilised rotation gates are 7, P and V because they are sufficient for
achieving computational universality. In TQEC these are implemented through teleportation circuits which use injected states.

Schedule: list of three dimensional space coordinates where boxes are to be placed.

Scheduler: algorithm that places boxes in a three dimensional space.

Segment (connection): part of a connection. It is geometrically abstracted by a line segment.

Segment (defect): sub set of physical qubits, from the defect, which would exist on co-linear unit cells if the lattice is
drawn in a three dimensional space.

Spare box: bounding box of a potential additionally required distillation circuit. Spares are used because distillation
circuits have an associated failure probability and a failed box cannot be used for the implementation of a TQEC rotation gate.

State distillation: circuit that takes multiple low fidelity instances of the same state and outputs a single higher fidelity
state.

State injection: process of encoding a specific rotated state of a lattice physical qubit (|A) or |Y)) at the logical layer. The
resulting logical qubit has two defects originating from the physical qubit. The latter does not belong to any of the defects. For
this reason, both defects have a pyramid structure with its tip at the three dimensional coordinate of the physical qubit.

Synthesis (circuit): process of transforming an algorithmic description into a circuit description. For the case of TQEC,
the logical layer circuit description is the geometric description.

Topological assembly: the set of elements representing a TOQEC circuit specified by a geometric description.

Topological cluster state: the quantum state represented as graph state having the structure of a lattice.

Topological error-correction: a class of quantum error-correction procedures based on fopological cluster states.

TQEC circuit: Topological Quantum Error Corrected circuit. For this work, an ICM circuit.

2/8



Unit cell: a particular graph state shown in 2. A single cell contains 18 physical qubits such that six are entangled with
four neighbours and 12 qubits are entangled with two neighbours. In an infinite three dimensional tiling of unit cells, every
qubit is entangled with four neighbours and each unit cell contributes six qubits.

Verification (TQEC circuit): process of checking if a specified geometric description has the structure required for
implementing a particular quantum computation.

Volume unit: a cubic structure consisting of 125 cubes used for measuring the volume of a geometric description in a
manner which is error-correction code independent.

Appendix: Geometrical Description Volume

Bounding boxes were initially introduced when referring to the distillation subcircuits, and mentioned in the context of
optimising a synthesised geometric description. However, the metric of bounding boxes was not introduced and discussed
accordingly. This section presents the equivalent volume’ of a geometric description and the considerations backing its
definition.

Figure 25. A lattice of 3 x 1 x 1 primal unit cells where two single cell defects were defined. The ring of qubits marked pink
(Iength = 4) and the chain of qubits marked yellow (length = 3) are used for error-correction.

TQEC circuits use a quantum error-correction procedure based on topological cluster states in which information is encoded
by constructing defects and operated on by braiding the defects. Error-correction is based on logical operators which are defined
as rings of specific physical qubits around defects and specific physical qubit chains connecting defects. The overall code
distance is the minimum value between the shortest ring and the shortest chain. The shortest ring is found at the defect with
the smallest diameter, and the shortest chain exists between the closest defects. Fig. 25 depicts the way rings and chains are
determined when considering the lattice layout: each unit cell on the defect margin contributes a physical qubits to the ring
diameter dy, each unit cell along the distance between two defects contributes a physical qubit to the chain length d;. The
perimeter py of aring is 4d ¢, where dy equals the number of unit cells along the diameter, because the defects are considered to
have quadratic cross-sections. In order to have a code distance of py, the shortest chain has to have a length greater than p:
dy = 4dy+ 1 is achieved when two defects are at least 4dy unit cells apart. Therefore, in general, it can be argued, that in order
to use an error-correction with distance 4d, the defects are required to have a diameter of d unit cells and need to be at least 4d
unit cells apart. Because the code distance is a function of physical failure rates, diameters and defect distances need to be
increased for high failure rates.

The general error-detection procedure is detailed in'>!'! and for the purpose of this section it suffices to mention that it uses
the parities of lattice unit cells: there are six face qubits on each unit cell, and their X basis measurement parity is even in the
absence of errors. An error is detected on odd parity cells, and correction is performed after choosing pairs of odd parity cells
as end points of even parity unit cell chains.

Apart from the previous discussion, the minimal distance (three) is achieved when the diameter is one unit cell wide, and
each defect is two unit cells apart from another. Therefore, the definition of a logical qubit requires at least four unit cells from
the i,j-plane of a three dimensional lattice. Considering the configurable geometries at input/outputs, the minimal length of a
defect connecting an input to an output will be four unit cells long. However, such a construction is not fault-tolerant'!, because
errors on the qubits measured in the Z basis cannot be detected and could propagate in an uncontrolled manner (cascade).
Fault-tolerance is achieved after increasing the defect diameters and using the error-correction method presented in'!: consider
the chain of pairs of neighbouring five-sided dual unit cells sharing Z-measured qubits nearest to the defect border. Thus, the
minimal defect diameter required to implement fault-tolerant TQEC is of two unit cells (2 x 2 unit cells, dy = 2). The code
distance will be d = 8, requiring at least eight unit cells between any two defects (d; = 9). Thus, the 1/4 ratio between diameter
and distance is again obtained.

It is simpler to use a volume measure which is code distance independent, instead of counting the number of lattice unit
cells required to execute a geometrically described TQEC computation. For this reason, a cubic volume unit, a standardised
lattice with fixed dimensions, is introduced (Fig. 26). The volume unit is obtained by tiling cubes instead of unit cells, where a
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Figure 26. A volume unit consists of 5° primal cubes (very light gray): a) a five boxes long defect occupies a volume unit; b)
two primal defects require two volume units; ¢) a dual circular defect (dark gray) around a single primal defect; d) a dual
circular defect around two primal defects; d) the necessary volume is doubled after deforming the dual defect and extending the
primal defects; e) twelve volume units are required for the bridged CNOT.

cube with sides of length d contains d> primal unit cells. Therefore, the complete lattice required for executing a TQEC circuit
is the result of tiling volume units, which contain an exact number of cubes, which in turn are three dimensional tilings of unit
cells. Volume units and cubes are intermediate abstractions between a complete lattice and unit cells.

A volume unit contains (1 +4)> = 5% cubes having the necessary diameter for defect construction so that distance 4d
error-correction is possible. Cubes are formed of primal unit cells but, the definition could be extended, after observing that a
cube of dual unit cells is obtained in the middle of a 2 x 2 X 2 cube arrangement. Tiling cubes has the same effect as tiling unit
cells (Fig. 2).
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In a volume unit there are enough cubes so that a primal defect having three non-parallel segments could be defined at
the margins. Two volume units are the minimum for defining two defects parallel in the same i,j plane. It is not possible to
construct a circular dual defect around any of the defects without increasing the lattice to 1 x 2 X 2 volume units. A dual defect
around both primal defects requires a lattice of 1 X 2 x 3 volume units. Implementing the bridge CNOT (cf. Fig. 24 and 26)
requires a lattice of 12 volume units due to the 2 x 2 x 3 necessary arrangement.

As a conclusion, the geometric description captures the computation (ICM circuit) being implemented into TQEC circuits,
and is independent of the code distance. However, in the previous sections it was always mentioned that segment end point
coordinates are specified using unit cell coordinates. For geometries implemented using a distance four error-correction this is
true, as each defect is only a single unit cell wide. For codes with larger distances, those definitions do not hold for unit cells. If
one replaces every occurrence of unit cell with the term cube, the geometric description is valid for arbitrary error-correction
procedures using topological cluster states. A single aspect remains to be discussed: the effect of code distance scaling on
defect construction. For the distance four code, a cube includes a single unit cell. Scaling the code distance by two, a cube
will contain eight unit cells, and each cube face will consist of four unit cell faces. Therefore, when a segment end point is
specified having the coordinate of cube and code distance is scaled by two, four unit cell face qubits from the same cube face
are measured in the Z basis.

Appendix: Using a Geometrical Description

The geometric description of a synthesised TQEC circuit is a high-level description of the operations a fault-tolerant quantum
computer needs to execute. This section explains why the i- and j-axis coordinates can be understood as hardware entity
addresses, and the t-axis coordinate as the time when the entities are to be used. The execution of a geometrically described
computation starts by mapping the description to an empty lattice!?, determining the bases of physical qubit measurement bases
and then operating the quantum hardware. There are multiple justifications why the latter operation is performed by gradually
constructing and measuring the lattice.

The first explanation is related to the complexity of TQEC circuits. Circuit depth is a measure of complexity for classical
and quantum circuits, and it represents the longest path, expressed usually in terms of number of gates, between any input
and output of the circuit. The depth of a geometry is not considered an appropriate measure of the underlying ICM circuit
complexity. This is because, ICM circuits are Clifford+T® instances, and the relevant complexity in executing such circuits is
generated by the number of T gates. It could be argued that the depth of an ICM circuit can be defined as the maximum number
of T gates between an input and an output. The T gates on any circuit path introduce a temporal ordering: the sequence in
which gates have to be executed. In terms of ICM circuit, this would correspond to an ordered sequence of (M)easurements
because gates are implemented through teleportations; gate execution is finalised only after corresponding qubits were measured.
Moreover, in ICM circuits, the T gate ordering is equivalent to the ordering of the probabilistic P gate corrections necessary for
teleported T gates. If any of these corrections is left out, the executed computation is not correct. The correction mechanism
was briefly mentioned and illustrated using the circuits from Fig. 3.

TQEC geometric descriptions were synthesised so that inputs have the lowest and outputs have the highest t-axis coordinate,
while braids and measurements have intermediary coordinates. For example, in Fig. 20, the measurements corresponding
to selective source and destination subcircuits follow on the t-axis immediately after the braids. It can be also observed that
the ordering of the measurements has a geometric representation: for the gates on the same wire in Fig. 5, the corresponding
measurements have increasing t-and j-axis coordinates. The j-coordinate increases because of the additional ancillae introduced
during ICM transformation, while the t-coordinate is just a reflection of the gate ordering.

The second justification for which the lattice is gradually constructed and measured is related to a quantum hardware
optimisation problem. If the complete lattice would be constructed and measured afterwards, a very large number of quantum
hardware entities corresponding to physical qubits would be required. Anyway, as previously explained, there is an order in
which the measurements have to be executed, meaning that on average each hardware entity would be required to maintain the
states of the physical qubits for a long time. This requirement has a threefold problematic: firstly, it is very difficult to build
hardware able to correctly maintain states for long times; secondly, even if the hardware would support this, the cost of building
such a high number of entities would be prohibitive; and thirdly why should the physical qubits be initiated that soon if their
states are unused for a long time?

The solution to the above problem uses a layered approach: the geometry is sliced along the t-axis into a sequence of primal
and dual layers (Fig. 28), and the number of required hardware entities is trimmed to just the one necessary to manipulate states
from two subsequent layers. The highly regular structure of the lattice offers the support for obtaining the slices. Each logical
qubit measurement is specified in terms of physical qubit coordinates: the i- and j- axes coordinates are quantum hardware
entity addresses and the t-axis coordinate indicates the time when the hardware is initialised, entangled with neighbouring
entities and measured.
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Figure 27. Implementing an arbitrary rotation gate decomposed into three single qubit rotated measurements using two qubits.
Colour coding: white - uninitialised state; black - output state; very light gray - initialised qubit; intermediate levels of gray -
intermediate output states obtained after each rotated measurement of one of the qubits; measured qubit - thick black outline.
At time step 1 both qubits are not initialised. At time steps 2 and 3, the qubits are initialised and entangled. The first
measurement is performed on the leftmost qubit at step 4. The sequence is repeated again twice, until at time 13 the rightmost
qubit has the output state of the rotation gate.

Constructing and measuring the layers according to their t-axis coordinate will effectively enforce the ordering of the
gates from the ICM circuit. The suitability of the layered approach is based on the observation that the execution of a TQEC
circuit encoded into a topological cluster state is the execution of a measurement-based quantum computation'3, where the
measurement basis of individual physical qubits is a function of the computation implemented at the higher level (logical layer).
The method is similar to how a linear graph state (e.g. Fig. 27) would be measured to implement a rotation gate: decompose the
rotation in a time ordered measurement sequence (X,Z,X basis rotated measurements), and execute the measurement sequence.

Considering that a lattice is sliced then the number of primal layers is larger by one compared to the number of dual layers.
Assuming that the layer sequence is { po,do, p1,di,-..,dn—1,Pn}, @ quantum computer executing a TQEC geometric description
will execute the following steps: 1) initialise and entangle pg and dy, for i = 0; 2) measure the primal layer p;; 3) initialise
the primal layer p;;; and entangle it to the dual layer d;; 4) measure the dual layer d;; 5) reinitialise the dual layer d;;| and
entangle it to the primal layer p;; 6) increase i by one; 7) go to step 2 until no primal layer is left (i = n).

The structure of the layers is illustrated in Fig. 28. Primal layers have the physical qubits arranged according to Fig. 28d,
and dual layers similar to Fig. 28e. In the process of entangling layers the physical qubits with the same i-, j-coordinates
and sequential t-coordinates are entangled (e.g. the layer from Fig. 28d will be entangled to the one from Fig. 28e). As a
consequence, the gradual construction and measurement of layers is respecting the structure imposed by tiling unit cells along
three dimensions.
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Figure 28. A primal defect (green) braided with a dual defect (blue): a) defect structure; b) defects superimposed on a lattice;
¢) j-axis view of the lattice having the slice positions indicated with parallel vertical lines; d-n) sequence of lattice slices.
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