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QUASISTATIC FLUX NOISE MEASUREMENT

We refer to noise slower than the experimental repeti-
tion rate as quasistatic. To measure the quasistatic flux
noise in Φxt (i.e., noise in ε), we use a pulse sequence
similar to that used in Ref. [1] combined with the signal
processing techniques used in Refs. [2, 3]. This allows
us to obtain data both well below and well above 1 Hz,
the latter being achieved by directly processing a binary
sequence of single-shot measurements.

The measurement works as follows. We treat each ex-
perimental repetition as if it had a static flux offset, and
repeatedly measure a function f(Φxt (t)) that is sensitive
to fluctuations in Φxt but not to fluctuations in Φxba. We
do this by performing the pulse sequence illustrated in
Fig. 1(a). We initialize the qubit in its ground state (by
energy relaxation) in the single-well regime at zero tilt.
We then symmetrically raise the barrier so that in the
absence of noise in Φxt there would be probability 0.5 to
end up in the left or right well, completely uncorrelated
with any previous or future measurement. Deviations
from P = 0.5 correspond to deviations away from zero
tilt in Φxt . We calibrate this experiment by measuring
P|R〉 (the probability of ending up in the right well) as a
function of applied tilt bias Φxt , as shown in Fig. 1(b).
Since we accurately know the applied flux, this curve
gives a direct calibration P|R〉(Φ

x
t ) between physical flux

and probability, which (as detailed below) can be used to
convert between probability noise and flux noise as long
as the flux excursions are small enough that they remain
on the linear part of the curve (close to P|R〉 = 0.5). The
exact functional form of this curve depends on the ramp
rate due to factors including non-adiabatic transition and
thermalization, but it is possible to choose a ramp rate
such that the flux fluctuations remain within the linear
part of the curve. We verify this by looking at the raw
measurement statistics of the noise measurement when
nominally parked at P|R〉 = 0.5. For example, Fig. 1(c)
gives a histogram of probabilities obtained by averaging
every 100 consecutive single-shot samples, along with a
Gaussian fit. We also checked experimentally that the

quasistatic sensitivity to the barrier bias, dP|R〉/dΦxba,

was less than 1
100 · dP|R〉/dΦxt , which is certainly negligi-

ble upon taking the square when comparing the relative
contributions of incoherent flux noise.
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Figure 1. (a) Illustration of pulse sequence for the quasistatic
flux noise measurement. (b) Calibration curve giving probability
to end up in the right well as a function of external tilt flux bias.
(c) Semi-log histogram of probabilities (obtained by averaging ev-
ery 100 consecutive single-shot measurements) showing a Gaussian
distribution with a standard deviation small enough to be within
the linear part of the flux-probability curve.

For flux noise data below ∼ 0.1 Hz, we measure a time
series of P|R〉 (each value being the average of a few hun-
dred consecutive stats) over a total period of ∼ 24 hours
and use the same signal processing techniques as in Ref.
[2] to obtain S+

Φxt
(f). For the data above ∼ 0.1 Hz, we

instead obtain S+
Φxt

(f) by processing time series of N ≈ 1



2

million single-shot measurements taken with a regularly
spaced sampling interval δt (ranging from 10 − 100µs)
and use a variant of the signal processing techniques used
in Ref. [3]. We refer to this method as a “1-bit detector
measurement” because it involves keeping all single-shot
measurement results without explicitly computing proba-
bilities. Given an underlying sequence of flux fluctuations
{δΦn} in the qubit, we obtain a finite probabilistic binary
sequence {xn} of length N , with xn ∈ {−1,+1} corre-
sponding to each single-shot measurement, where −1/+1
are assigned to the outcomes |L〉/|R〉 respectively. The
probability Pxn of obtaining −1 or +1 is related to the
underlying sequence {δΦn} according to

Pxn(x) = δ(x− 1)

[
1

2
+

dP

dΦxt
δΦn

]
+ δ(x+ 1)

[
1

2
− dP

dΦxt
δΦn

]
, (1)

where for short we now use P to denote P|R〉 and we
have assumed a linear probability-flux curve. Defining
the DFT coefficients as

x̃k ≡
N−1∑
n=0

xne
−i2πnk/N , (2)

then the expected value for the periodogram (PSD es-
timate) of {xn} can be related to the underlying power
spectral density of {δΦn} according to

〈|x̃k|2〉 =

N−1∑
n,m=0

〈xnxm〉e−i2π(n−m)k/N

=

N−1∑
n,m=0

[
4

(
dP

dΦxt

)2

δΦnδΦm + δn,m

]
e−i2π(n−m) kN

= 4

(
dP

dΦxt

)2
∣∣∣∣∣
N−1∑
n=0

δΦne
−i2πnk/N

∣∣∣∣∣
2

+N

= 4

(
dP

dΦxt

)2 ∣∣∣δ̃Φk∣∣∣2 +N, (3)

where in the second line we have used the relation for the
correlation

〈xnxm〉 =

{
4
(
dP
dΦxt

)2

δΦnδΦm n 6= m

1 n = m

computed from (1). We can then convert to a physical
single-sided flux noise PSD after assigning a sampling
interval time δt to the sequence according to

S+
Φ (f) =

2T

N2

∣∣∣δ̃Φk=fT

∣∣∣2
=

2δt

N

1

4
(
dP
dΦxt

)2 〈|x̃k=fT |2〉 − 2
1

4
(
dP
dΦxt

)2 δt . (4)

where T = Nδt is the total acquisition time for the
dataset of N samples. The normalization convention
for S+

Φ is chosen so that the total power in the sig-
nal is obtained by integrating over positive frequencies
only. It is normalized such that the deterministic sig-
nal Φ(t) = A sin(2πft), with f in the baseband of the
sampled DFT, has total power A2/2 as physically ex-
pected. The ability to correctly extract the underlying
S+

Φ (f) with these formulas was verified by numerically
feeding in an artificially generated noise source into a
numerical simulation of our measurement, which was in
turn fed into the data analysis software.

Equation (4) tells us that the PSD of our measurement
sequence S+

x (f) will be a combination of the underlying
S+

Φ (f) plus a white noise floor. This noise floor makes
sense because if there were no flux noise at all, we would
expect shot noise from a perfectly uncorrelated proba-
bility of 0.5 for each measurement result. This white
noise floor can be substantial: for typical parameters of
δt = 10−100µs and dP/dΦxt ≈ 2000/Φ0, it has an equiv-
alent flux noise amplitude of order 1µΦ0/

√
Hz. Since this

is the typical strength expected for the intrinsic 1/f flux
noise of the device, this means the white noise floor will
dominate the signal above ∼ 1 Hz.

Fortunately, there is a way to process the data that
allows one to drastically reduce the shot noise floor and
infer S+

Φ (f) from the measurement of S+
x (f) without no-

ticeably distorting the underlying flux noise signal [3].
The idea is inspired by the technique of using two sep-
arate detectors to sample a signal and computing the
cross spectrum to throw away the detectors’ contribu-
tion to the noise. By breaking {xn} into two interleaved
series and taking the cross-spectral density (CSD) of the
two sub-series, in the limit of infinite statistics this would
completely eliminate the white noise floor, as shown be-
low. The intuition behind this is that the interleaving
removes the zero-delay autocorrelation term because the
point δΦn never “sees itself” in the sum. However, the
actual datasets are finite, so as discussed below this can-
cellation will not be perfect. Regarding the underly-
ing 1/f signal itself, at least at low enough frequencies,
the two interleaved flux noise signals should be approxi-
mately equal because the noise is highly correlated, and
so the spectrum should not become distorted. This will
be shown numerically below.

Mathematically, we define the two subsequences

x′n = x2n, x
′′
n = x2n+1 (5)

n = 0, 1, 2, ...,M − 1, where M = N/2. We define a CSD
for these interleaved sequences multiplied by a particular
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frequency-dependent phase factor:〈
x̃′k (x̃′′k)

∗〉
ei2πk/N (6)

=

M−1∑
n,m=0

〈x′nx′′m〉ei2π(n−m)k/Mei2πk/2M

= 4

(
dP

dΦxt

)2 M−1∑
n,m=0

δΦ2nδΦ2m+1e
−i2π(n−m− 1

2 )k/M ,

(7)

where the extra phase factor in line (6) corrects for the
phase shift arising from the time domain offset between
the two interleaved sequences. This phase offset ensures
that the interleaved CSD of a deterministic sinusoidal
signal with integer wave index q is itself real.

Equation (7) says that if we perform the interleave and
take the CSD in the absence of underlying flux noise, we
would observe absolutely no noise (since δΦn is identi-
cally zero). Of course, the only reason the noise cancel-
lation is exact is due to the use of the expectation value
operator, 〈·〉, which means an average over an ensem-
ble of infinitely many realizations of {xn} generated by
a given {δΦn}. In reality, we deal with finite sequences
(N ≈ 106), and instead of (6), we can only compute the
CSD coefficients x̃′k (x̃′′k)

∗
ei2πk/N for a finite number of

finite sequences. The simplest way to understand the ef-
fect of interleaving on the white noise floor in the actual
experiment, then, is to think about a random walk of
phasors in the complex plane. First, let us consider how
we can reduce the noise floor within a single dataset, and
then we will consider averaging over multiple datasets.
When {δΦn} is identically zero (no flux noise), each CSD
coefficient of the 1-bit detector measurement will itself a
Gaussian distributed complex random variable, with uni-
formly distributed phase and some distribution of mag-
nitude that is peaked close to δt/(dP/dΦxt )2. Thus, the
white noise floor will not actually be reduced unless we
perform some sort of averaging, either across frequency
bins or across datasets. Since it is informative to plot flux
noise on a log-log scale, it is natural to use a logarithmic
averaging scheme where the number of neighboring fre-
quency bins whose CSD coefficients are averaged together
is proportional to frequency. In other words, the number
of bins per decade of frequency used in the averaging is
constant, as is done for the quasistatic flux noise data
shown in the main paper. Since the number of points N
averaged in a frequency bin is chosen to scale as f , and
sum of N random phasors scales in magnitude as

√
N ,

then upon taking the average over each frequency bin
we would expect the white noise floor power to decrease
as 1/

√
N , meaning as 1/

√
f . Thus, the act of interleav-

ing and taking a coherent logarithmic frequency average
within a given dataset amounts to a 1/

√
f filter for the

white noise floor. This can be seen from the slope of
the observed filtered white noise floor in the numerical
simulation of Fig. 2.

Raw PSD (periodogram) of simulated 1-bit detector measurement
Theoretical PSD underlying numerically generated 1/f noise
Log-averaged interleaved CSD of simulated 1/f 1-bit detector measurement (K = 400)

Filtered white noise floor of simulated 1-bit detector measurement (K = 400)

Theoretical shot noise floor of raw 1-bit detector measurement

Theoretical PSD underlying numerically generated 1/f0.9 noise
Log-averaged interleaved CSD of simulated 1/f0.9 1-bit detector measurement (K = 400)

Figure 2. Numerical simulation of the 1-bit detector flux noise
measurement for artificially generated 1/f and 1/f0.9 noise pro-
cesses. The red line shows the expected white noise level for the
raw 1-bit detector measurement without interleaving. Green shows
the raw PSD of the simulated 1-bit detector measurement for a sin-
gle realization of the numerically generated 1/f noise. The dashed
magenta line shows the theoretical PSD used to generate the arti-
ficial 1/f noise. Magenta circles show the result of the simulated
1-bit detector measurement using the same processing that was
used on the experimental data (interleaved + log-averaged over
frequency, averaged over K = 400 realizations of the numerically
generated 1/f noise). Orange: same but for numerically generated
1/f0.9 noise. The blue circles show the white noise floor of the
simulated measurement after interleaving and averaging, with the
blue line its theoretically expected level.

However, we find that the filtered suppression of the
white noise floor from averaging over frequency bins
within a single dataset alone is not enough to bring
the white noise floor below the qubit flux noise signal
at high frequencies. Because of this, we further aver-
age the CSD coherently over K datasets, with K a few
hundred, before taking the real part. This gives a fac-
tor of

√
K ≈ 10 further reduction in the filtered white

noise floor power without distorting the underlying (pre-
sumably) correlated flux noise signal, according to the
numerical simulation of the measurement shown in Fig.
2. This simulation uses artificially generated 1/fα noise
signals with α = 1 and α = 0.9 and magnitude at 1 Hz
equal to 5µΦ0/

√
Hz, the value extracted from experi-

ment. We note that the discretely generated artificial
1/f noise extends an order of magnitude higher in fre-
quency than the sampling frequency of the simulated 1-
bit detector measurement. This was done purposefully
to make sure there is no influence from aliasing. We find
that the interleaving technique greatly reduces the effects
of aliasing that would otherwise be present from the sub-
stantial amount of 1/f noise that is likely present above
the Nyquist frequency of the measurement. From the
simulation, we see that the 1-bit detector measurement



4

after interleaving and coherently averaging over datasets
would faithfully reproduce the 1/f power spectrum with-
out any significant distortions except for the highest half-
decade of frequency. The filtered white noise is well below
the simulated 1/f noise (below the highest half-decade
of frequency), which means it is even further below the
experimentally measured flux noise (because of the sig-
nificant “bump” observed starting at 10 − 100 Hz in the
experimental data) 1. As an extra consistency check, we
note that the extracted flux noise data in the experiment
was not materially changed (apart from the highest fac-
tor of 2 in frequency) whether we coherently averaged
over 250 or 500 datasets.

CONSISTENT DEFINITION OF S+
Φ (f) AT LOW

AND HIGH FREQUENCIES

Because the low and high frequency flux noise are mea-
sured by very different methods, we must be careful to
have consistent definitions of S+

Φ (f) at low and high fre-
quencies. In other words, in Fig. 2(e) of the main text,
we must be sure we are plotting the same physical quan-
tity at low and high frequencies, without any discrepant
factors of 2 or 2π. Such a discrepancy could for example
affect the best-fit value of α in an interpolating power
law between the two frequency ranges.

To infer S+
Φ (f) at low frequencies, we measure the

discrete time sequence Φn, where Φn is a classical real
number, over N discrete time steps indexed by n ∈
{0, 1, ..., N − 1} and separated by the physical sam-
pling interval δt (meaning total data acquisition time
T = (N − 1)δt ≈ Nδt). We then estimate the single-
sided PSD by computing

S+
Φ (f) =

2T

N2
〈|Φ̃k=fT |2〉, (8)

where the DFT coefficients Φk are defined by

Φ̃k ≡
N−1∑
n=0

Φne
−i2πnk/N . (9)

and 〈·〉 denotes an ensemble average since Φ̃k is itself a
random variable.

At high frequencies, we instead infer the flux noise
spectral density through Fermi’s golden rule [4] using the
fact that 1/T1 = Γ↑ + Γ↓, which implies the relation

S+
Φ (f) ≡ SΦ(f) + SΦ(−f)

=
~2

T1

1

|〈0| dĤdΦxt
|1〉|2

=
~2L2

T1

1

|〈0|Φ̂|1〉|2
, (10)

1 We note that the “bump” in noise around 100 Hz in the experi-
mental data is unchanged when the pulse tube compressor of the
dry dilution refrigerator is turned off.

where [4]

SΦ(ω) ≡
∫ ∞
−∞

dτeiωτ 〈Φ(τ)Φ(0)〉. (11)

Here, Φ could be an operator, but for simplicity we can
assume it’s a real number, since it is sufficient to check
whether or not the two definitions (8) and (10) for S+

Φ

coincide for a classical incoherent flux noise source acting
on the qubit. Showing this will turn out to be equivalent
to deriving the Wiener-Khinchin theorem for a stationary
stochastic process.

First, we can write (9) in the continuum limit N →
∞, δt→ 0 with T held constant, so that Φ(t = nδt) = Φn
and Φ̃k=ft → 1

δt

∫ T
0

Φ(t)e−i2πftdt. Since Φ(t) is a random

process, so is Φ̃(f), so we keep the 〈·〉 before taking the
limit T → ∞. We can obtain its expectation value by
taking the limit T → ∞ after plugging the continuum
limit expression into (8),

S+
Φ (ω) = lim

T→∞

2

T

〈∣∣∣∣∣
∫ T

0

Φ(t)e−iωtdt

∣∣∣∣∣
2〉

= lim
T→∞

2

T

∫ T

0

∫ T

0

dt dt′ eiωte−iωt
′
〈Φ(t)Φ(t′)〉

= lim
T→∞

2

T

∫ T

0

∫ T

0

dt dt′ e−iω(t−t′)〈Φ(t− t′)Φ(0)〉,

(12)

where in the last step we have assumed that Φ(t) is a sta-
tionary process. To continue, we note that the integrand
[call it f(t, t′)] inside the double integral is a function of
τ ≡ t′ − t alone, meaning that f(τ) = f(t − t′) is con-
stant along lines of constant τ defined by the equation
t′ = t + τ within the t-t′ plane. We can therefore con-
vert the double integral into a one-dimensional integral in
f(τ), by integrating the diagonal “slices” formed by such
lines across the two-dimensional domain of integration.
The domain of integration is the square [0, T ]× [0, T ] in
the t-t′ plane, which is covered by diagonal strips pa-
rameterized by τ ranging from −T to T . The area of
each diagonal strip corresponding to τ with infinitesimal
width dτ is

√
2(T − |τ |) dτ√

2
= (T − |τ |)dτ , so we can con-

vert
∫ T

0

∫ T
0
dt dt′ f(t − t′) to

∫ T
−T dτ f(τ), meaning that

(12) becomes

S+
Φ (ω) = lim

T→∞

2

T

∫ T

−T
dτ eiωτ 〈Φ(τ)Φ(0)〉(T − |τ |)

= lim
T→∞

2

∫ T

−T
dτ eiωτ 〈Φ(−τ)Φ(0)〉

(
1− |τ |

T

)
= 2

∫ ∞
−∞

dτ eiωτ 〈Φ(τ)Φ(0)〉, (13)

where in the last line we have used the property that the
autocorrelation function 〈x(t+τ)x(t)〉 is an even function
of τ . Comparing this to (11) and (10) shows that the two
definitions of S+

Φ are indeed equivalent.
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FLUX NOISE AT HIGH AND LOW
FREQUENCIES CHANGES SIMILARLY

BETWEEN SAMPLES

Untreated sample

FDTS sample

Untreated sample

FDTS sample

Figure 3. Comparison of flux noise at low and high frequencies
between two different samples at base temperature. The sam-
ples were nominally identical apart from differing fabrication post-
treatments.

Fig. 3 shows low and high frequency flux noise data
for nominally the same qubit on two different chips, with
the second chip seeing extra post-processing in the form
of a downstream oxygen ash clean and the application
of a (nominal) monolayer of perfluorodecyltrichlorosilane
(FDTS) via molecular vapor deposition. The second
sample also sat covered in photoresist for 6 months longer
than the first sample. The flux noise power just below
1 GHz changes by a factor of 1.6, while the flux noise
power around 1 Hz changes by a factor of approximately
1.5. Consistent with this we also observe that the Ram-
sey decay time Tφ2 away from zero tilt was ∼ 30% lower
on the FDTS sample when measured at a point with the
same sensitivity of f10 to tilt flux (this degradation was
reproducible at several bias points).

SURFACE HYDROGEN AS POSSIBLE ORIGIN
OF DISSIPATION PEAK AT 1.4 GHZ

The mysterious “mode” at 1.4 GHz, where there is a
peak in dissipation, is present at the same frequency and
similar strength in all qubits with different chip and sam-
ple box sizes, different qubit geometries, and differing

types of filtering and attenuation on the bias lines, in-
cluding the addition of attenuation on the output of the
readout line. There is reason to believe that this feature
is something physically intrinsic to the materials of the
qubit, because it persists even when significantly chang-
ing the filtering and attenuation on all the coaxial lines
going to the qubit box, and is furthermore independent
of chip size and box size, and so is unlikely to be due to
coupling to an environmental electromagnetic mode.

Recently, using on-chip ESR techniques, de Graaf et
al. found evidence for coupling of superconducting res-
onators to the ground state hyperfine transition of surface
hydrogen, whose presence is claimed to be due to physi-
cal adsorption as a by-product of water dissociation [5, 6].
It so happens that the ground state hyperfine transition
frequency of hydrogen is 1.42 GHz, the frequency of the
feature observed in this work. Below, we provide a rough
calculation to determine what surface density of weakly
bound hydrogen atoms would be needed to explain the
peak in dissipation observed in the fluxmon.

We suppose that there is a distribution of hydrogen
atoms weakly bound to the surface of the fluxmon’s
coplanar waveguide (CPW) segment, so that the ground
state hyperfine levels are roughly those of an isolated H
atom. First, we write down the interaction Hamiltonian
between the fluxmon and a single such atom (electron
plus proton) at a lateral position z (−W/2 ≤ z ≤ W/2)
on the surface of the CPW center trace (Fig. 4),

Ĥint = −µe ·B(z)− µp ·B(z) (14)

= −µBB̂z(z)σze −
gpe

2mp

~
2
B̂z(z)σ

z
p ,

where we have assumed the magnetic field generated by
the qubit at the atom is in the z direction (see Fig. 4).

The magnetic field generated by the qubit on the sur-
face of the metal at position z is related to the qubit
current operator according to

B̂z(z) =
µ0Î

πW

1√
(1− 2z

W )(1 + 2z
W )

(15)

This equation is valid as long as z is further than ∼
λ2/2t ≈ 50 nm from the edge of the CPW strip [7]. Note

Figure 4. Cross section of center trace of fluxmon CPW (treated as
a thin film) and definition of coordinates. Fluxmon current flows
into the page (x direction), generating a magnetic field in the z
direction. W ≈ 10µm is the width of the CPW center trace.
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that it is normalized so that effectively half the current
flows on the bottom and half flows on the top side of the
CPW. Since the CPW center trace dominates the sur-
face magnetic participation, we have ignored the CPW
ground planes.

We claim that the qubit’s magnetic field (which is uni-
form over the hydrogen atom) will couple to the transi-
tion between the singlet hyperfine ground state |S〉 and
the m = 0 triplet state |T0〉 1.4 GHz above. We will want
to do a Fermi’s golden rule calculation to calculate the
induced |e〉 → |g〉 transition rate in the qubit. This re-
quires computing the matrix element between initial and
final states, |i〉 = |e〉|S〉 and |f〉 = |g〉|T0〉, where |S〉 and
|T0〉 are the singlet and m = 0 triplet states

|S〉 =
1√
2

(| ↑e〉| ↓p〉 − | ↓e〉| ↑p〉), (16)

|T0〉 =
1√
2

(| ↑e〉| ↓p〉+ | ↓e〉| ↑p〉)

We compute for a hydrogen atom at position z

〈f |Ĥint|i〉(z) = 〈g|Î|e〉µB
µ0

πW

1√
(1− 2z

W )(1 + 2z
W )

, (17)

where we have dropped a second term due to the proton
because it is much smaller (by a factor of ∼ me

mp
). We rec-

ognize 〈g|Î|e〉 = 1
L 〈g|Φ̂|e〉 as the qubit persistent current

Ip, which at 1.4 GHz is approximately 0.3µA.
Now we are ready to use Fermi’s golden rule to com-

pute the decay rate induced in the qubit by a large col-
lection of hydrogen atoms. We need to know the density
of states of hyperfine splittings. Since the peak in qubit
dissipation at 1.4 GHz has a linewidth of 150 MHz, signif-
icantly wider than the dephasing-limited qubit linewidth
of 20 - 30 MHz, we assume the hyperfine splittings are
spread out over ∼ 100 MHz, presumably due to an inho-
mogeneous weak interaction with the AlOx surface. A
naive interpretation Ref. [8] suggests that this spread
might be possible if the hydrogen was weakly bound to
O atoms with a mean distance of ∼ 4.5 Bohr radii with
an inhomogeneous spread of ∼ 0.2 Bohr radii. Further
theoretical study of the surface physics is needed to deter-
mined whether or not this spread is physically realistic.

In any case, this gives us the density of states ρ(E10)
to use in Fermi’s golden rule,

Γ|e〉→|g〉 =
2π

~

∫ W/2−50 nm

−W/2+50 nm

dz |〈f |Ĥint|i〉(z)|2ρ(E10),

(18)
where for simplicity we use a length cutoff of 50 nm ≈ λ
from the CPW edge in order to have a convergent inte-
gral. Using the true current distribution that correctly
treats the edge is not expected to significantly change the
answer.

Using the fact that the fluxmon has a length of 2 mm
(i.e., the dimension going into the page in Fig. 4), we
back out that to get the experimentally observed excess
dissipation Γ|e〉→|g〉 ≈ 1/(200 ns), we must have an areal
density of ∼ 1× 1016/m2, or about 1 H atom per 10 nm,
on the AlOx surface.

CHECKING FOR DISTORTION OF
EXTRACTED S±Φxt

(f) FROM NONLINEAR

CROSSTALK

In the main text, to deduce the high frequency flux
noise S±Φxt (f) in the main qubit loop we measure T1 at

zero tilt, because at degeneracy only flux noise in ε(Φxt )
and not noise in ∆(Φxba) would induce transitions be-
tween qubit energy eigenstates. However, this is no
longer strictly true if the two junctions in the DC SQUID
are not perfectly symmetric, which is to be expected due
to fabrication imperfections. It can be shown [9] that if
the junction asymmetry is d ≡ EJ1−EJ2

EJ1+EJ2
, any flux thread-

ing the DC SQUID loop will lead to an offset in tilt flux
according to the nonlinear relation

∆Φxt =
Φ0

2π
tan−1 (d tan [πΦxba/Φ0]) , (19)

implying that noise in Φxba leads to noise in Φxt according
to the differential transfer function

dΦxt
dΦxba

=
d

2

1

d2 sin2(πΦxba/Φ0) + cos2(πΦxba/Φ0)
. (20)

By measuring ∆Φxt as a function of Φxba and subtract-
ing out any contribution from linear geometric crosstalk
between barrier and tilt bias lines, we can extract this
intrinsic nonlinear transfer function experimentally. For
the data in the main text, we obtain ( dΦt

dΦba
)2 < .005 over

the range of ∆(Φxba) measured, corresponding to a junc-
tion asymmetry of ∼ 1%. This suggests that dissipation
from incoherent flux noise is likely dominated by noise in
Φxt and not Φxba, since the 1/f noise in Φxba should be less
than or comparable to the noise in Φxt (using conventional
Ramsey experiments [2] at zero tilt we obtain the noise in
the DC SQUID flux Φxba has magnitude 1−2µΦ0/

√
Hz at

1 Hz, compared to ∼ 5 µΦ0/
√

Hz for Φxt ). However, this
does not exclude the possibility of the relative strength
of noise in Φxt and Φxba changing greatly between 1 Hz
and GHz, but given that we see similar T1’s over sev-
eral samples with different junction asymmetries d, this
seems not to be the case. Note that this analysis does
not rule out noise from surface spins fluctuating on the
wiring of the DC SQUID, because this wire is shared by
both barrier and tilt loops; rather, it only implies that
noise from such fluctuators would affect the T1 data via
induced noise in Φxt and not due to induced noise in Φxba.
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CHECKING FOR DISSIPATION FROM
NON-EQUILIBRIUM QUASIPARTICLES

The frequency dependence of the fluxmon T1 at zero
tilt below ∼ 3 GHz is also consistent with quasiparticle
dissipation if one were to assume a large enough popula-
tion of non-equilibrium quasiparticles in the system. We
give theoretical and experimental arguments as to why
this is unlikely to be a dominant effect in our system,
including a test of the effects of magnetic vortices.

Quasiparticles with energy near the superconducting
gap ∆ can absorb energy from the qubit when they tunnel
across one of the Josephson junctions, while “hot” quasi-
particles with energies more than ~ω10 from the gap can
excite the qubit. If the energies of all quasiparticles in-
fluencing the qubit are sufficiently less than 2∆, then for
an arbitrary quasiparticle occupation distribution f(E),
the decay and excitation rates induced on the qubit are
given by [10]

Γi→f =
∑
j=1,2

∣∣∣∣∣〈f | sin φ̂j2 |i〉
∣∣∣∣∣
2

Sjqp(ωif ), (21)

where j indexes the two Josephson junctions of the flux-
mon and

Sjqp(ω) =
32EJj
π~

∫ ∞
0

dx ρ((1 + x)∆)ρ((1 + x)∆ + ~ω)×

f [(1 + x)∆](1− f [(1 + x)∆ + ~ω])
(22)

is the double-sided quasiparticle current spectral density,
with ρ(E) = E/

√
E2 −∆2 ≈ 1/

√
2(E −∆)/∆ the nor-

malized quasiparticle density of states. The formula (22)
works for ω < 0 by simply swapping the arguments of f
and replacing ω with −ω. In a non-tunable gap flux qubit
(i.e., a single-junction fluxmon), at zero tilt the junction
would be biased at π, meaning that quasiparticle dissi-

pation (∝ |〈0| sin φ̂
2 |1〉|

2) would vanish (physically, this is
due to destructive interference between electron-like and
hole-like tunneling [11]). However, for the gap-tunable

fluxmon, even though the effective dynamical phase φ̂ =
(φ̂1 + φ̂2)/2 can be biased at π at zero tilt, the phase of
the individual junctions are not. Instead, flux quantiza-
tion dictates that φ̂1 = φ̂− πΦba/Φ0, φ̂2 = φ̂+ πΦba/Φ0,
meaning that the matrix element can be non-zero and
quasiparticle dissipation can occur even at zero tilt.

While a thermal distribution of quasiparticles would
be much too small to explain the observed dissipation,
this does not rule out the possibility of non-equilibrium
quasiparticles. A reasonable model for computing the
distribution of non-equilibrium quasiparticles is outlined
in Refs. [12–14]. Here, quasiparticles are assumed to be
injected at some energy or range of energies well above
the gap and, via electron-phonon scattering and recom-
bination, relax to some steady-state distribution that is

essentially independent of the injection energy as long as
the injection energy is high enough. Using the steady
state equations outlined in Ref. [13], we can calculate
the expected distribution of nonequilibrium quasiparti-
cles as a function of injection rate and phonon tempera-
ture Tph, and then using (21) and (22) numerically cal-
culate the resulting up and down transition rates to ob-
tain the quasiparticle-induced T1 and stray population.
We choose an injection rate that leads to a quasipar-
ticle density that best matches the measured T1 data
while choosing the phonon temperature to be equal to
the fridge temperature. We assume the same injection
rate for all four fridge temperatures used in the main
paper. The injection energies were between 2.1∆ and
2.2∆, though changing this energy range does not ma-
terially affect the result. The results are summarized in
Fig. 8, where we plot the computed f(E), T1 and stray
population/effective temperature induced on the qubit
on top of the T1 and stray population data used in Fig.
3 of the main paper. The best fit yields a quasiparti-
cle density nqp ≡ 2D(EF )

∫∞
∆
ρ(E)f(E) dE of 3.5/µm3,

or a fractional quasiparticle density xqp = nqp/ncp =
nqp/(D(EF )∆) = 1.3 × 10−6, where D(EF ) is the den-
sity of electron states at the Fermi energy.

Figure 5. Data vs. fit to nonequilibrium quasiparticle theory.
Although a quasiparticle density can be chosen large enough to
roughly match T1 vs. frequency, a simultaneous fit to stray popu-
lation is not possible within this model.

We make several observations about this calculation.
While the fits do match the T1 data reasonably well below
∼ 4 GHz, the stray population is quite off and does not
have nearly a large enough dependence on temperature
at low frequencies. We also see that the quasiparticle-
induced qubit effective temperature does not approach a
constant value at low frequencies like the data appears to
do, and like the stray populations, the predicted effective
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temperatures do not match the data well at all, especially
for the lowest three temperatures. Furthermore, there
are several experimentally-based estimates substantially
below xqp = 1.3× 10−6 in the superconducting qubit lit-
erature, for example 1 × 10−8, 4 × 10−8, and 3 × 10−7

in Refs. [15–17], and 2.2 × 10−7 in Ref. [18] (where the
nonequilibrium quasiparticle density explained both T1

and stray population), so it is not unreasonable that xqp

is similarly low in our system, especially given the strin-
gent level of light-tight filtering used in our setup [19]. In
addition, we note that if the non-equilibrium quasipar-
ticle density was indeed xqp = 1.3 × 10−6, the T1 limit
imposed on our standard Xmon qubits would be 7µs at
3 GHz, but Xmons consistently achieve T1 a factor of 10
higher than this at 3 GHz, and furthermore show a defect
structure and opposite overall scaling in frequency from
that predicted from quasiparticles. We have no reason
to believe the quasiparticle density would be any higher
in the fluxmon device given that the device is fabricated
with identical materials and chip mount, and the fridge
wiring is essentially identical to that used for Xmon ex-
periments. If the quasiparticles were being introduced
by the long (few µs) readout pulses used for the flux-
mon, we would expect T1 to depend on the repetition
time between experiments. We do not see any change in
T1 as we vary the repetition time from 50µs to 1000µs.

One more experimental check we can perform is to see
if T1 improves after inducing magnetic vortices into the
Al film of the sample. Abrikosov vortices, which have
quasinormal cores, form when a thin-film superconduc-
tor is cooled through Tc in the presence of a magnetic
field. It is well-known that such vortices trap quasi-
particles, and have even been shown to significantly de-
crease quasiparticle-induced dissipation in superconduct-
ing qubits [17]. In particular, for a thin-film Al trans-
mon qubit vortices were shown to significantly decrease
quasiparticle-induced dissipation with a modest applied
field of ∼ 10 mG [17]. To check if there is any improve-
ment in T1 to be gained from the presence of vortices,
we added a magnetic coil to the setup directly outside
the qubit box, which we used to apply a several different
magnetic fields between −30 and 30 mG to the qubit chip
as it cooled through its superconducting transition. The
result of these magnetic field cools are shown in Fig. 7.
We see only degradation of qubit T1 with applied mag-
netic field. This data suggests that quasiparticles are
not playing a dominant role in qubit dissipation in the
fluxmon device.

We also note that, as depicted in Fig. 6 for the zero
field data, the raw T1 traces of 1-state population versus
time fit very well to an exponential decay as opposed
to showing a measurable non-exponential behavior that
could be due to fluctuation in quasiparticle number [20].

Figure 6. Field cool data. Inducing vortices only degrades T1.

Figure 7. Swap spectroscopy time traces at zero applied field show
an exponential time dependence. State preparation infidelity is due
to imperfect π pulse given the short T2 time, and relaxation during
the detuning pulse.

LOW AND HIGH FREQUENCY NOISE
CUTOFFS FOR MACROSCOPIC RESONANT

TUNNELING RATES

In the main text, it was argued that the low-frequency
cutoff fl in the noise integral for the MRT tunneling
linewidth W should be the inverse of the total experi-
mental data acquisition time, whereas the fl for the inte-
gral for the reorganization energy εp should be the tun-
neling rate near maximum tunneling. The latter phys-
ically makes sense as the reorganization energy should
not depend on the time at which the experiment was
performed. In other words, only dissipation at frequen-
cies higher than the slowest timescale of the tunneling
can affect this energy. However, different instances of
the tunneling experiment may have different quasistatic
flux offsets δε = 2IpδΦ

x
t as discussed earlier in the con-

text of the low frequency flux noise measurement, which
can give additional broadening of the MRT tunneling
peak. For simplicity, let us take the Gaussian approx-



9

imation to the lineshape described in the main text,

Γ(ε) =
√

π
8

∆2

~W exp
[
− (ε−εp)2

2W 2

]
, so that what is actually

measured after averaging is the quantity

Γ(ε) =

∫ ∞
−∞

d(δε)Γ(ε+ δε)p(δε), (23)

where p(δε) = 1√
2πσ2

e−
(δε)2

2σ2 describes the Gaussian dis-

tribution of quasistatic flux fluctuations. Performing the
integration yields

Γ(ε) =
π

8

∆2√
W 2

0 + σ2
e
− (ε−εp)2

2(W2
0 +σ2) , (24)

which shows that the original W0 (obtained from in-
tegrating down to fl equal to the maximum tunnel-
ing rate) is broadened by the r.m.s. quasistatic flux
fluctuations via addition in quadrature. Since W 2 =

4I2
p

∫ fh
fl
df S+

Φ (f), this amounts to extending fl down to
the inverse total experimental averaging time.

For the high frequency cutoff to the tunneling rate in-
tegral, we use the oscillation frequency of the inverted
potential barrier. Previous theoretical and experimental
work in macroscopic quantum tunneling has shown this
to be the physical high-frequency cutoff [21–24]. Never-
theless, we find that the tunneling rate near resonance
according to full integral in Eq. (3) of the main text is
not materially affected by this high frequency cutoff.

TEMPERATURE INDEPENDENCE OF THE
CLASSICAL LOW FREQUENCY FLUX NOISE

Figure 8. Quasistatic flux noise measurement is not noticeably
changed between fridge temperatures 10 mK and 100 mK.

We do not see any systematic temperature dependence
of the quasistatic noise at low frequencies or of the Ram-
sey decay time Tφ2, consistent with a picture of a para-
magnetic environment with temperature-independent re-
laxation times (see the following sections).

FLUCTUATION-DISSIPATION RELATION
BETWEEN S±Φ (ω) AND MAGNETIC

SUSCEPTIBILITY

Here we give a simple, generic argument for how the
two-sided spectrum S±Φ (ω) is related to the dynamic sus-
ceptibility χ(ω) = χ′(ω) + iχ′′(ω) of the magnetic envi-
ronment. In particular, we outline how S−Φ (ω) may be
related to the absorptive part of the environment’s linear
response, and that its 1/T dependence is consistent with
a paramagnetic environmental susceptibility.

The most common assumption in models for 1/f noise
is that the noise comes from a collection of dynamical
fluctuators, each characterized by an exponential decay
with a single relaxation time. The 1/f scaling then arises
from an exponentially broad distribution of these relax-
ation times (see discussion in next section). The fluc-
tuators could be represented by weakly interacting spin
clusters of various sizes on the qubit surface, where the re-
laxation time is exponentially dependent on cluster size.
An alternative model invokes a spin diffusion mechanism
where collective diffusion modes play the role of individ-
ual fluctuators, and the broad distribution of relaxation
times arises from the highly non-uniform distribution of
the magnetic field around the superconducting metal of
the flux qubit loop.

Whatever the microscopic source of these fluctuators
may be, each fluctuator will have an effective magnetic
moment operator Mn that will couple flux into the qubit
according to ∆Φ = gnMn. The two-sided flux noise spec-
trum in the qubit can then be written as

SΦ(ω) =

∫ ∞
−∞

dτeiωτ 〈Φ̂(τ)Φ̂(0)〉 (25)

=

∫ ∞
−∞

dτeiωτ

〈∑
n,m

gnMn(τ)gmMm(0)

〉
≈
∑
n

|gn|2SMn
(ω),

where SMn is the full two-sided spectral density of mag-
netization noise, and in the last line we have assumed
negligible correlations between fluctuators (spin clus-
ters/diffusion modes). We now use the fluctuation-
dissipation theorem, which states that the equilibrium
fluctuations of each moment are related to the dissipa-
tive part of its response to a non-equilibrium perturba-
tion according to

SMn(ω, T ) = ~(1 + coth [~ω/2kBT ])χ′′n(ω, T ), (26)

where χ(ω, T ) = χ′(ω, T ) + iχ′′(ω, T ) is the frequency-
domain linear response function (dynamical susceptibil-
ity) to a magnetic field. Inserting this relation above
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yields

SΦ(ω, T ) =
∑
n

~|gn|2
[
1 + coth

(
~ω

2kBT

)]
χ′′n(ω, T ).

(27)
Since χ′′(ω, T ) is an odd function of ω, looking at the
antisymmetric part shows that the experimental 1/T de-
pendence of S−Φ (f) below the classical-quantum crossover
is consistent with a dynamical susceptibility χ′′n that
scales as 1/T for all fluctuators. This is consistent with
previous measurements the 1/T dependence of the static
susceptibility in SQUIDs [25], assuming a temperature-
independent distribution of relaxation times.

1/fα SCALING NEAR THE CROSSOVER AND
HIGH-FREQUENCY CUTOFF

Here we discuss the 1/fα form of the noise and its mod-
ifications due to a possible high frequency cutoff for the
relaxation times of the magnetic fluctuators. We argue
that while our data clearly shows that such a cutoff must
be of order kBT/h or higher, a model where the cutoff is
a few times kBT fits the temperature dependence data
slightly better than one with a much higher cutoff.

To obtain a 1/fα scaling, we assume a single relax-
ation time τn for each fluctuator. The dynamic sus-
ceptibility of a single such fluctuator is given by a

standard Drude formula χn(ω, T ) = χn(0,T )
1+iωτn

, meaning
χ′′n(ω, T ) = χn(0, T ) ωτn

1+ω2τ2
n

. For paramagnetic spins,

χn(0, T ) ∝ 1/T . In the limit of many fluctuators with
different relaxation times, we can convert (27) into an
integral over τ with an effective weight for each τ :

SΦ(ω) = ~
[
1 + coth

(
~ω

2kBT

)]∫ τmax

τmin

ρ(τ)
1

T

ωτ

1 + ω2τ2
,

(28)
where τmin and τmax are lower and upper cutoffs for the
relaxation times, and we have included a uniform 1/T
factor in the integrand under the assumption that all the
fluctuators are paramagnetic.2 In the classical limit,3

S+
Φ (ω � kBT/~) ∝ kB

∫ τmax

τmin

dτρ(τ)
τ

1 + ω2τ2
, (29)

S−Φ (ω � kBT/~) ∝ ~
T

∫ τmax

τmin

dτρ(τ)
ωτ

1 + ω2τ2
. (30)

2 We have neglected a possible dependence of the static susceptibil-
ity χ(0, τ, T ) on τ because it should be very weak. For instance, if
we consider superparamagnetic clusters with different values for
the total spin S that fluctuate by tunneling through anisotropy
barriers U ∝ S2, then for a given S, χ(0) ∝ 1

3
S(S + 1) while

log τ ∝ U ∝ S2. Thus χ(0, τ, T ) depends on τ only logarithmi-
cally and can be safely replaced by its average value.

3 We note that in the fully classical limit ~ → 0, S−Φ will vanish
while χ′′(ω) (the dissipation) does not need to vanish.

Figure 9. 1/f noise according to the finite high frequency cutoff
model (31) for different values of ωmax, showing the three qualita-
tive ‘flavors’ the noise scaling near the classical-quantum crossover.
Dash-dotted lines are S−Φ while solid lines are S+

Φ . The ‘smoothest’

transition through the cutoff where S+
Φ (f) remains close to 1/f for

all frequencies is achieved for ωmax ≈ 3kBT/~.

As before, from this we can see that our experimental
data below the classical-quantum crossover is consistent
with an environment of magnetic fluctuators with a para-
magnetic static susceptibility χ(0), under the assumption
that ρ(τ) is independent of temperature.

If we postulate ρ(τ) ∝ 1
τ between τ1 and τ2, then per-

forming the integration leads to S+
Φ (ω) ∝ 1/ω assuming

1
τ2
� ω � 1

τ1
(ωmin � ω � ωmax), which is the usual

picture of 1/f noise in the classical limit. However, more
precisely performing the full integration (28) without as-
suming anything about ω relative to T or τmin/max yields
for the full spectrum

SΦ(ω) ∝ ~
T

[
1 + coth

(
~ω

2kBT

)]
tan−1(ωτ)

∣∣τmax

τmin
(31)

As long as τmin/max don’t depend exponentially on T ,

the temperature dependence of S−Φ will again be given
by that of the static susceptibility. Let us assume that
ωmin � kBT/~ (justified by the presence of 1/f flux
noise well below 1 GHz) and look at the shape of the
classical-quantum crossover for different ωmax. Fig. 9
shows that there are three qualitative types of scaling be-
havior of S±Φ (f) around the crossover. If ωmax � kBT/~,
then S+

Φ (f) would approach the crossover from below as
1/f2, inconsistent with the data. On the other hand, if
ωmax � kBT/~, then S+

Φ (f) will turn into white noise
just above the crossover. There is also an intermediate
regime ωmax ≈ 3kBT/~ where S+

Φ (f) is very close to 1/f
for all frequencies except for a slight deviation at the
crossover point.

In Fig. 10, we compare the phenomenological thermo-
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Model 1 Model 2

Figure 10. Comparison of two models with the constraint that
the ohmic exponent γ be the same at all temperatures. The model
with a finite, temperature-dependent ωc ≈ 3kBTeff fits the temper-
ature dependence data somewhat better than the phenomenological
model with α = 1.05 used in the main text at base temperature.
Here, Teff is the temperature deduced from the data below the
crossover. However, there is no significant difference between the
fits just looking at 30 mK alone.

dynamic power law model used in the main text,

Sphen.
Φ (ω) = A

ω

|ω|α
[1 + coth (~ω/[2kBTA])] (32)

+Bω|ω|γ−1[1 + coth (~ω/[2kBTB ])], (33)

to the finite high-frequency cutoff model (31). The for-
mer implicitly assumes that ωmax � kBT/~, so that
any deviation of S+

Φ from a perfect 1/f scaling near the
classical-quantum crossover would be due to temperature
alone. Although this seems to fit our data at base tem-
perature, we find that incorporating a finite ωmax fits the
higher temperature data slightly better under the condi-
tions of the fit (constant α and γ for all temperatures).
Namely, we use the “intermediate” type of crossover,
ωmax = 3kBTeff , where Teff is the limiting effective tem-
perature deduced from the stray population data below
the crossover. A high frequency cutoff that scales linearly
with temperature might have a natural physical mean-
ing. For instance, if the inverse relaxation times τ−1

n are
determined by spin-phonon interactions, both τ−1

n and
ωmax will be proportional to the number of phonons with
energy close to the typical Zeeman splittings of the fluc-
tuators, which scales linearly with T (since the Zeeman
splittings should be � kBT even for clusters).

IMPLICATIONS OF HIGH FREQUENCY
CUTOFF FOR SPIN DIFFUSION

We mention one more mechanism that would give a
frequency-dependent α due to a finite ωmax, but with
a different functional form. Namely, we consider spin
diffusion, which was proposed by Faoro and Ioffe [26] to
explain 1/f noise in SQUIDs and further explored in the
context of D-Wave flux qubits by Lanting et al. [27].
We conclude that given the 1/f scaling of S+

Φ (f) near
1 GHz, spin diffusion is unlikely to be the source of the

1/f noise near the classical-quantum crossover unless i.)
the spin diffusion constant is several orders of magnitude
higher than estimates in the literature [26, 27] or ii.) the
spin density is substantially inhomogeneous, leading to a
shallower power law at high frequencies, in which case a
separate physical mechanism needs to be invoked for the
1/f power law at lower frequencies.

Within the spin diffusion model, the total spin is con-
served and spin excitations will diffuse around the surface
of the superconducting qubit metal, generating flux noise
by coupling to a non-uniform distribution of the magnetic
field. In Ref. [26], the mechanism of diffusion was pro-
posed to be an RKKY interaction mediated through the
superconductor. The diffusion equation for the coarse-
grained magnetization is

∂Mα(r, t)/∂t = D∇2Mα(r, t), (34)

where D is the diffusion coefficient and α = x, y, z. Eq.
(34) can be solved using the Laplace transform Mα(r) ∝
e−Γntϕn(r), which leads to the eigenvalue problem

∇2ϕn(r) = −Γnϕn(r), (35)

with periodic boundary conditions on the surface of the
qubit metal. Solving for the eigenmodes ϕn(r) allows one
to express the dynamic magnetic susceptibility from the
Green’s function for Eq. (34):

χ′′αβ(r, r′, ω) = δαβχ(0, T )
∑
n

ϕn(r)
ωΓn

ω2 + Γ2
n

ϕn(r′).

(36)
The flux noise then becomes a sum of Lorentzians corre-
sponding to each diffusion mode

SΦ(ω) = ~ωχ(0, T )

[
1 + coth

(
~ω

2kBT

)]∑
n

b2n
Γn

ω2 + Γ2
n

,

(37)
where b2n =

∑
α b

2
αn, bαn =

∫
drbα(r)ϕn(r), are coupling

factors describing how the local moment couples to the
qubit’s magnetic field and by reciprocity the qubit loop
itself. Therefore the spin diffusion model naturally leads
to a broad set of relaxation times τn = 1/Γn with a
temperature-independent distribution function ρ(τn) =
b2n given by the form factors. The temperature depen-
dence of S−Φ will then arise solely from that of the static
magnetic susceptibility χ(0, T ).

In the limit of a flat wire (thin film), one would expect
a 1/fα=1 power law for ωmin � ω � ωmax, kBT/~. But
allowing for a finite aspect ratio or for inhomogeneity of
the spin density on the surface, one can have an exponent
α 6= 1. In particular, if the spins are concentrated near
edges we can have α < 1 [28]. An analytic approximation
for the noise summation is [28]

SΦ(ω) = A

[
1 + coth

(
~ω

2kBT

)]
~ω
kBT

∫ ∞
0

dx
x3−2αe

− x√
ωmax

ω2 + x4
.

(38)
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One would expect the high frequency cutoff ωmax

for Γn to be given by ωmax ≈ D/`2, where ` is the
smallest dimension associated with the qubit geometry,
which for our device should be the metal thickness of
∼ 100 nm. The highest estimates in the literature for
D are 108 − 109 nm2/s [26], which would imply a phys-
ically expected cutoff of ωmax/(2π) ∼ 100 kHz.4 There-
fore, for spin diffusion to be relevant to the classical-
quantum crossover, we would need either a much larger D
and/or α < 1. If α < 1, this would mean the quasistatic
flux noise (which shows α = 1 below 10 Hz) is not spin
diffusion noise, but it may be possible to have different
physical mechanisms in different frequency ranges with
the noise power still scaling similarly between samples at
high and low frequencies.
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