
Defining and detecting quantum speedup

Troels F. Rønnow,1 Zhihui Wang,2 Joshua Job,3 Sergio Boixo,4 Sergei V. Isakov,5

David Wecker,6 John M. Martinis,7 Daniel A. Lidar,8 and Matthias Troyer∗1

1Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland
2Department of Chemistry and Center for Quantum Information Science & Technology,

University of Southern California, Los Angeles, California 90089, USA
3Department of Physics and Center for Quantum Information Science & Technology,

University of Southern California, Los Angeles, California 90089, USA
4Google, 150 Main St, Venice Beach, CA, 90291

5Google, Brandschenkestrasse 110, 8002 Zurich, Switzerland
6Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA

7Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA
8Departments of Electrical Engineering, Chemistry and Physics,

and Center for Quantum Information Science & Technology,
University of Southern California, Los Angeles, California 90089, USA

The development of small-scale digital and analog quantum devices raises the question of how
to fairly assess and compare the computational power of classical and quantum devices, and of
how to detect quantum speedup. Here we show how to define and measure quantum speedup in
various scenarios, and how to avoid pitfalls that might mask or fake quantum speedup. We illustrate
our discussion with data from a randomized benchmark test on a D-Wave Two device with up to
503 qubits. Comparing the performance of the device on random spin glass instances with limited
precision to simulated classical and quantum annealers, we find no evidence of quantum speedup
when the entire data set is considered, and obtain inconclusive results when comparing subsets of
instances on an instance-by-instance basis. Our results for one particular benchmark do not rule out
the possibility of speedup for other classes of problems and illustrate that quantum speedup is elusive
and can depend on the question posed.

I. INTRODUCTION

The interest in quantum computing originates in the
potential of a quantum computer to solve certain com-
putational problems much faster than is possible classi-
cally. Examples are the factoring of integers [1] or the
simulation of quantum systems [2]. Shor’s algorithm can
find the prime factors of an integer in a time that scales
polynomially in the number of digits of the integer to be
factored, while all known classical algorithms scale ex-
ponentially. The simulation of the time evolution of a
quantum system on a classical computer also takes ex-
ponential resources, because the Hilbert space of an N
particle system is exponentially large in N , while quan-
tum hardware can simulate the same time evolution with
polynomial complexity [3, 4].

In these examples the quantum algorithm is exponen-
tially faster than the best available classical algorithm.
This type of exponential quantum speedup substantially
simplifies the discussion, since it renders the details of the
classical or quantum hardware unimportant. According
to the extended Church-Turing thesis all classical com-
puters are equivalent up to polynomial factors [5]. Sim-
ilarly, all proposed models of quantum computation are
polynomially equivalent, so that a finding of exponential
quantum speedup will be model-independent. In other
cases, in particular on small devices, or when the quan-

tum speedup is polynomial, defining and detecting quan-
tum speedup becomes more subtle. One such subtlety is
how to properly define the hardness of a problem given
prior knowledge about the answer [6].

Here we discuss how to define “quantum speedup”
and show that this term may refer to different quanti-
ties depending on the goal of the study. In particular,
we define what we call “limited quantum speedup”—
essentially a speedup relative to a given, corresponding
classical algorithm—and explain how such a speedup can
be reliably detected. To illustrate these issues we com-
pare the performance of a 503-qubit D-Wave Two (DW2)
device to classical algorithms running on a standard CPU
and analyze the evidence for quantum speedup on ran-
dom spin glass problems. This example is particularly
relevant since it is an open question whether quantum
annealing [7] or the quantum adiabatic algorithm [8] can
exhibit a quantum speedup for such problems. Random
spin glass problems are an interesting benchmark prob-
lem, though not necessarily the most relevant for practi-
cal applications, such as machine learning. We also dis-
cuss issues that might mask or fake a quantum speedup
when not considered carefully, such as comparing subop-
timal algorithms or improperly accounting for the scaling
of hardware resources.
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II. DEFINING QUANTUM SPEEDUP

A. The classical to quantum scaling ratio

When the time to solution depends not only on the
problem size N but also on the specific problem instance,
then the purpose of the comparison becomes another fac-
tor in deciding how to measure performance. Specifically,
when a device is used as a tool for solving problems, then
the question of interest is to determine which device is
better for the hardest problem, or for almost all possible
problem instances. On the other hand, if we are inter-
ested in aspects of the underlying physics of a device
then it might suffice to find some instances or a subclass
of instances where a quantum device exhibits a speedup.
These two questions will lead to different quantities of
interest.

In all of these cases we denote the time used by a clas-
sical device to solve a problem of size N by C(N) and
the time used on the quantum device by Q(N), defining
quantum speedup as the ratio

S(N) =
C(N)

Q(N)
. (1)

Note that in both the quantum and classical case this
definition includes a specific choice of algorithm and de-
vice.

The first question that arises is which classical algo-
rithm to compare against, i.e., what is C(N). This leads
to different definitions of quantum speedup.

B. Five different types of quantum speedup

The optimal scenario is one of a provable quantum
speedup, where there exists a proof that no classical algo-
rithm can outperform a given quantum algorithm. Per-
haps the best known example is Grover’s search algo-
rithm [9], which exhibits a provable quadratic speedup
over the best possible classical algorithm [10], assuming
an oracle.

A strong quantum speedup was defined in [11] by using
the performance of the best classical algorithm for C(N),
whether such an algorithm is known or not. Unfortu-
nately the performance of the best classical algorithm
is unknown for many interesting problems. In the case
of factoring, for example, all known classical algorithms
have super-polynomial cost in the number of digits N of
the number to be factored [12], while the cost of Shor’s
algorithm is polynomial in N . However, a proof of a
classical exponential lower-bound for factorization is not
known [13]. A less ambitious goal is therefore desirable,
and thus one usually defines quantum speedup (without
additional adjectives) by comparing to the best available
classical algorithm instead of the best possible classical
algorithm.

However, this notion of quantum speedup depends on
there being a consensus about “best available”, and this

consensus may be time- and community-dependent [14].
In the absence of a consensus about what is the best clas-
sical algorithm, we define potential (quantum) speedup as
a speedup compared to a specific classical algorithm or
a set of classical algorithms. An example is the simula-
tion of the time evolution of a quantum system, where the
propagation of the wave function on a quantum computer
would be exponentially faster than a direct integration of
Schrödinger’s equation on a classical computer. A poten-
tial quantum speedup can of course be trivially attained
by deliberately choosing a poor classical algorithm (for
example, factoring using classical instead of quantum pe-
riod finding while ignoring known, better classical factor-
ing algorithms), so that here too one must make a genuine
attempt to compare against the best classical algorithms
known, and any potential quantum speedup might be
short-lived if a better classical algorithm is found.

Underlying all the above notions of quantum speedup
is the availability of a fully coherent, universal quantum
computer. A weaker scenario is one where the device
is merely a putative or candidate quantum information
processor, or where a quantum algorithm is designed to
make use of quantum effects but it is not known whether
these quantum effects provide an advantage over classical
algorithms. To capture this scenario, which is of central
interest to us in this work, we define limited quantum
speedup as a speedup obtained when comparing specifi-
cally with classical algorithms that “correspond” to the
quantum algorithm in the sense that they implement the
same algorithmic approach, but on classical hardware.
In the context of an analog quantum device this can be
thought of as being the result of decohering the device.
Since there is no unique way to decohere a quantum de-
vice, one may arrive at different corresponding classical
algorithms. A natural example is quantum annealing im-
plemented on a candidate physical quantum information
processor vs either classical simulated annealing, classi-
cal spin dynamics, or simulated quantum annealing (as
defined in Methods). In this comparison a limited quan-
tum speedup would be a demonstration that quantum
effects improve the annealing algorithm [15].

III. CLASSICAL AND QUANTUM ANNEALING
OF A SPIN GLASS

As our primary example we will use the problem of
finding the ground state of an Ising spin glass model de-
scribed by a “problem Hamiltonian”

HIsing = −
∑
i∈V

hiσ
z
i −

∑
(i,j)∈E

Jijσ
z
i σ

z
j , (2)

with N binary variables σz
i = ±1. The local fields {hi}

and coupling {Jij} are fixed and define a problem instance
of the Ising model. The spins occupy the vertices V of a
graph G = {V, E} with edge set E . Solving this problem
problem is NP-hard already for planar graphs [16], which
means that no polynomial time algorithm to find these
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ground states is known and the computational effort of
all existing classical algorithms scales exponentially with
problem size. NP-hardness refers only to the hardest
problems, but the typical problem in our benchmarks,
where the graph forms a two-dimensional (2D) lattice,
is still hard since for zero local fields (hi = 0) there ex-
ists a spin glass phase at zero temperature. While the
critical temperature Tc = 0 for these 2D spin glasses
makes the problem easier than 3D spin glasses with a
nonzero Tc > 0 [17], solving the typical problem instance
is nevertheless non-trivial and with all known algorithms
a super-polynomial scaling is observed. While quantum
mechanics is not expected to reduce this scaling to poly-
nomial, a quantum algorithm might still scale better with
problem size N than any classical algorithm.

We use simulated annealing (SA) [18], simulated quan-
tum annealing (SQA) [19, 20], and a DW2 device to find
the ground states of the Ising model above (see Methods
for details). The D-Wave devices [21–24] are designed
to be physical realizations of quantum annealing using
superconducting flux qubits and programmable couplers.
Tests on a 108-qubit D-Wave One (DW1) device [25] have
shown that despite decoherence and coupling to a ther-
mal bath, the device correlates well with SQA, which is
consistent with it actually performing quantum anneal-
ing [26, 27]. It also correlates well with the predictions of
a quantum master equation [28], which is consistent with
it being governed by open system quantum dynamics. It
is well understood that the D-Wave devices, just like any
other quantum information processing device, must be
error-corrected in order to overcome the effects of deco-
herence and control errors. While such error correction
has already been demonstrated [29], our study focuses on
the native performance of the device.

All annealing methods mentioned above are heuristic.
They are not guaranteed to find the global optimum in
a single annealing run, but only find it with a certain
instance-dependent success probability s ≤ 1. We deter-
mine the true ground state energy using an exact belief
propagation algorithm [30]. We then perform at least
1000 repetitions of the annealing for each instance, count
how often the ground state has been found by comparing
to the exact result, and use this to estimate the success
probability s for each problem instance.

The total annealing time is defined as the time to per-
form R annealing runs, where R is the number of repeti-
tions needed to find the ground state at least once with
probability p:

R =

⌈
log(1− p)
log(1− s)

⌉
(3)

In order to reduce the effect of calibration errors on the
DW2, it is advantageous to repeat the annealing runs
for several different encodings (“gauges”) of a problem
instance. See Methods for details.
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FIG. 1. Scaling of the typical time to find a solution
at constant annealing time. Shown is the typical (me-
dian) time to find a ground state with 99% probability for
spin glasses with ±1 couplings and no local field. A) for SA,
B) for SQA. The envelope of the curves at constant ta, shown
in red, corresponds to the minimal time at a given problem
size N and is relevant for discussion of the asymptotic scal-
ing. Annealing times are given in units of Monte Carlo steps
(MCS). One MCS corresponds to one update per spin. Note
in particular that the slope for small N is much flatter at
large annealing time (e.g., MCS = 4000) than that of the
true scaling.

IV. CONSIDERATIONS WHEN COMPUTING
QUANTUM SPEEDUP

Let us first consider the subtleties of estimating the
asymptotic scaling from small problem sizes N , and inef-
ficiencies at small problem sizes that can fake or mask a
speedup. In the context of annealing methods the opti-
mal choice of the annealing time turns out to be crucial
for estimating asymptotic scaling.
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FIG. 2. Pitfalls when detecting speedup. Shown is the
speedup of SQA over SA, defined as the ratio of median time
to find a solution with 99% probability between SA and SQA.
Two cases are presented: a) both SA and SQA run optimally
(i.e., the ratio of the true scaling curves shown in Figure 1),
and there is no asymptotic speedup (solid line). b) SQA is run
suboptimally at small sizes by choosing a fixed large annealing
time ta = 10000 MCS (dashed line). The apparent speedup
is, however, due to suboptimal performance on small sizes
and not indicative of the true asymptotic behavior given by
the solid line, which displays a slowdown of SQA compared
to SA.

A. Asymptotic scaling: SA vs SQA

To illustrate these issues we consider the time to so-
lution using SA and SQA run at different fixed anneal-
ing times ta, independent of the problem size N . The
problem instances we choose are random couplings of
Jij = ±1 on each of the edges in a perfect Chimera graph
of L×L unit cells, containing N = 8L2 spins (see Meth-
ods). We set the local fields hi = 0. Figure 1 shows the
scaling of the median total annealing time (over 1000 dif-
ferent random instances) for both SA and SQA to find
a solution with probability p = 0.99. We observe that
at constant ta, as long as ta is long enough to find the
ground state almost every time, the scaling of the total
effort is at first relatively flat. The total effort then rises
more rapidly, once one reaches problem sizes for which
the chosen annealing time is too short and the success
probabilities are thus low, requiring many repetitions.

Figure 1 demonstrates that no conclusion can be drawn
from annealing (simulated or in a device) about the
asymptotic scaling at fixed annealing times. It is mis-
leading to conclude about the asymptotic scaling from
the initial slow increase at constant ta, and instead the
optimal annealing time topta needs to be found for each
problem size N [25, 31]. The lower envelope of the scaling
curves (indicated in red in Figure 1) corresponds to the
total effort at an optimal size-dependent annealing time
topta (N) and can be used to infer the asymptotic scaling.
In fact, the initial, relatively flat slope is due to subop-

timal performance at small problem sizes N , and should
therefore not be interpreted as speedup. To illustrate this
we show in Figure 2 (solid line) the true “speedup” ratio
of the scaling of SA and SQA (actually a slowdown), and
a misleading, fake speedup (dashed line) due to using a
constant and excessively long annealing time ta for SQA.
Since the initial, slow increase of the total SQA effort at
constant annealing time is a lower bound for the scaling
of the true effort, the speedup slope obtained from this
data—which depends inversely on the SQA effort—is an
upper bound, as confirmed by Figure 2.

B. Resource usage and speedup from parallelism

A related issue is the scaling of hardware resources
with problem size and parallelism in classical and quan-
tum devices. To avoid mistaking a parallel speedup for
a quantum speedup we need to scale hardware resources
(computational gates and memory) in the same way for
the devices we compare, and employ these resources op-
timally. These considerations are not universal but need
to be carefully applied for each comparison of a quantum
algorithm and device to a classical one.

For a problem of size N , the DW2 uses only N out of
512 qubits and O(N) couplers and classical logical con-
trol gates to solve a spin glass instance with N spin vari-
ables. We denote the time it needs to solve a problem by
TDW(N). The classical simulated annealer (or simulated
quantum annealer) running on a single classical CPU,
on the other hand, uses fixed resources independent of
problem size N , and we denote the time it requires to
solve a problem by TSA(N). We consider here only the
pure annealing times, as they are what is relevant for
the asymptotic scaling rather than the readout or setup
times, which scale subdominantly for large problems.

In order to avoid confusing quantum speedup with par-
allel speedup we thus consider as a classical counterpart
to the DW2 a (hypothetical) special purpose parallel clas-
sical simulated annealing device, with the same hardware
scaling as the DW2. Simulated annealing (and simulated
quantum annealing) is perfectly parallelizable for the bi-
partite Chimera graphs realized by the DW2. The rea-
son is that one Monte Carlo step (consisting of one at-
tempted update per spin) can be performed in constant
time, since all spins in each of the two sublattices can
be updated simultaneously. The time to solve a problem
on this equivalent classical device, denoted by TC(N), is
thus related to the time TSA(N) taken by a simulated
annealer using a fixed-size classical CPU by

TC(N) ∝ 1

N
TSA(N), (4)

since the latter needs time O(N) for one Monte Carlo
step, while the former performs it in constant time.

The quantum part of speedup is then estimated by
comparing the times required by two devices with the
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same hardware scaling, giving

S(N) =
TC(N)

TDW(N)
∝ TSA(N)

TDW(N)

1

N
. (5)

The factor 1/N in the speedup calculation thus discounts
for the intrinsic parallel speedup of the analog device
whose hardware resources scale as N . See Methods for
an alternative derivation that leads to the same results
(up to subleading corrections) by using a fixed size device
efficiently.

V. PERFORMANCE OF D-WAVE TWO
VERSUS SA AND SQA

A. Comparing devices

If the goal is to compare the performance of devices
as optimizers, then one is interested in solving almost
all problem instances. In this case we should run the
devices in such a way that all but a small fraction of
the problems can be solved. This will lead to a speedup
defined as the ratio of the quantiles (“R of Q”) of the
time to solution, with an emphasis on the high quantiles,
which we discuss in Sec. V C. A complementary question
is to ask whether a device exhibits better performance
than another for some problems. To answer this question
we compare the time to solution individually for each
problem instance. We then consider the quantiles of the
ratio (“Q of R”) of the time to solution, and discuss this
approach in Sec. V D.

A complementary distinction is that between wall-clock
time, denoting the full time to solution, and the pure an-
nealing time. Wall-clock time is the total time to find a
solution and is the relevant quantity when one is inter-
ested in the performance of a device for applications and
has been used in Ref. [32]. It includes the setup, cooling,
annealing and readout times on the DW2, and the setup,
annealing and measurement time for the classical anneal-
ing codes. The pure annealing time is simply Rta, where
R is the number of repetitions and ta the time used for
a single annealing run. It is the relevant quantity when
one is interested in the intrinsic physics of the annealing
processes and in scaling to larger problem sizes on future
devices. We discuss both wall-clock and pure annealing
times below.

B. Problem instances

The family of problem instances we use for our bench-
marking tests employ couplings Jij on all edges of N =
8LL′-vertex subgraphs of the Chimera graph of the DW2,
comprising L×L′ unit cells, with L,L′ ∈ {1, . . . , 8}. We
set the fields hi = 0 since nonzero values of the fields hi
destroy the spin glass phase that exists at zero field, thus
making the instances easier [33]. We choose the values

of the couplings Jij from 2r discrete values {n/r}, with
n ∈ {−r,−r − 1, . . . ,−1, 1, . . . , r − 1, r}, and call r the
“range”. Thus when the range r = 1 we only pick values
Jij = ±1. This choice is the least susceptible to calibra-
tion errors of the device, but the large degeneracy of the
ground states in these cases makes finding a ground state
somewhat easier. At the opposite end we consider r = 7,
which is the upper limit given the four bits of accuracy of
the couplings in the DW2. These problem instancess are
harder since there are fewer degenerate minima, but they
also suffer more from calibration errors in the device. In
the Supplementary Material we present additional results
for r = 3.

C. Performance as an optimizer: comparing the
scaling of hard problem instances

1. Pure annealing time

We start our analysis by focusing on pure annealing
times and show in Figure 3 the scaling of the time to find
the ground state at least once with probability p = 0.99
for various quantiles, from the easiest instances (1%) to
the hardest (99%), for two different ranges. Since we
do not a priori know the hardness of a given problem
instance we have to assume the worst case and perform
a sufficient number of repetitions R to be able to solve
even the hardest problem instances. Hence the scaling
for the selected high quantile will apply to all problem
instances we run on the optimizer.

In all three cases (SA, SQA, DW2) we observe, for suffi-
ciently large N , that the total time to solution scales with
exp(c

√
N), as reported previously for SA and SQA [25].

The origin of the
√
N exponent is well understood for

exact solvers as reflecting the treewidth of the Chimera
graph (see Methods and Ref. [34]), and a similar scaling
is observed here for the heuristic algorithms. While the
SA and SQA codes were run at an optimized annealing
time for each problem size N , the DW2 has a minimal
annealing time of ta = 20µs, which is longer than the
optimal time for all problem sizes (see Methods). There-
fore the observed slope of the DW2 data should only be
taken as a lower bound for the asymptotic scaling. Even
so, we observe similar scaling for the classical codes and
on DW2.

2. The ratio of quantiles

With algorithms such as SA or quantum annealing,
where the time to solution depends on the problem in-
stance, it is often not possible (and usually irrelevant) to
experimentally find the hardest problem instance. It is
preferable to decide instead for which fraction of prob-
lem instances one wishes to find the ground state, which
then defines the relevant quantile. If we target q% of
the instances then we should consider the qth percentile
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FIG. 3. Scaling of time to solution for the ranges r = 1 (panels A, C and E) and r = 7 (panels B, D and F). Shown
is the scaling of the time to find the ground state at least once with a probability p = 0.99 for various quantiles of hardness,
for A,B) simulated annealing (SA), C,D) simulated quantum annealing (SQA) and E,F) the DW2. The SA and SQA data is
obtained by running the simulations at an optimized annealing time for each problem size. The DW2 annealing time of 20µs is
the shortest possible. Note the different vertical axis scales, and that both the DW2 and SQA have trouble solving the hardest
instances for the large problem sizes, as indicated by the terminating lines for the highest quantiles. More than the maximum
number of of repetitions (10000 for SQA, at least 32000 for DW2) of the annealing we performed would be needed to find the
ground state in those cases.

in the scaling plots shown in Figure 3. The appropriate
speedup quantity is then the ratio of these quantiles. De-
noting a quantile q of a random variable X by [X]q we
can define this as

SRofQ
q (N) =

[TC(N)]q
[TDW(N)]q

∝ [TSA(N)]q
[TDW(N)]q

1

N
. (6)

Plotting this quantity for the DW2 vs SA in Figure 4
we find no evidence for a limited quantum speedup in

the interesting regime of large N . That is, while for all
quantiles, and for both ranges (with the exception of the
50th quantile and r = 1), the initial slope is positive,
when N becomes large enough we observe a turnaround
and eventually a negative slope, showing that SA outper-
forms the DW2.

Taking into account that (as discussed in Sec. IV A)
due to the fixed suboptimal annealing times the speedup
defined in Eq. (6) is an upper bound, we conclude that
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FIG. 4. Speedup for ratio of quantiles for the DW2
compared to SA. A) For instances with range r = 1. B)
For instances with range r = 7. Shown are curves from the
median (50th quantile) to the 99th quantile. 16 gauges were
used. In these plots we multiplied Eq. (6) by 512 so that
the speedup value at N = 512 directly compares one DW2
processor against one classical CPU.

the DW2 does not exhibit a speedup over SA for this
particular benchmark.

3. Wall-clock time

While not as interesting from a complexity theory
point of view, it is instructive to also compare wall-clock
times for the above benchmarks, as we do in Figure 5. We
observe that the DW2 performs similarly to SA run on a
single classical CPU, for sufficiently large problem sizes
and at high range values. Note that the large constant
programming overhead of the DW2 masks the exponen-
tial increase of time to solution that is obvious in the
plots of pure annealing time.
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FIG. 5. Comparing wall-clock times A comparison of the
wall-clock time to find the solution with probability p = 0.99
for SA running on a single CPU (dashed lines) compared to
the DW2 (solid lines) using 16 gauges. A) for range r = 1,
B) for range r = 7. Shown are curves from the median (50th
quantile) to the 99th quantile. The large constant program-
ming overhead of the DW2 masks the exponential increase of
time to solution that is obvious in the plots of pure annealing
time. Results for a single gauge are shown in the Supplemen-
tary Material.

D. Instance-by-instance comparison

1. Total time to solution

We now focus on the question of whether the DW2
exhibits a limited quantum speedup for some fraction of
the instances of our benchmark set. To this end we per-
form individual comparisons for each instance and show
in Figure 6A-B the ratios of time to solution between
the DW2 and SA, considering only the pure annealing
time. We find a wide scatter, which is not surprising
since we previously found that DW1 performs like a sim-
ulated quantum annealer, but correlates less well with a
simulated classical annealer [25]. We find that while the
DW2 is sometimes up to 10× faster in pure annealing
time, there are many cases where it is ≥ 100× slower.

Considering the wall-clock times, the advantage of the
DW2 seen in Figure 6A-B for some instances tends to
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FIG. 6. Instance-by-instance comparison of annealing times and wall-clock times. Shown is a scatter plot of the
pure annealing time for the DW2 compared to a simulated classical annealer (SA) using an average over 16 gauges on the DW2.
A) DW2 compared to SA for r = 1, B) DW2 compared to SA for r = 7. The color scale indicates the number of instances
in each square. Instances below the diagonal red line are faster on the DW2, those above are faster classically. Instances for
which the DW2 did not find the solution with 10000 repetitions per gauge are shown at the top of the frame (no such instances
were found for SA). Panels C) and D) show wall-clock times using a single gauge on the DW2. Panels E) and F) show the
wall-clock time for DW2 using 16 gauges. N = 503 in all cases.

disappear, since it is penalized by the need for program-
ming the device with multiple different gauge choices (see
Methods). Figure 6C-D shows that for one gauge choice
there are some instances, for r = 7, where the DW2 is
faster, but many instances where it never finds a solution.
Using 16 gauges the DW2 finds the solution in most cases,
but is always slower than the classical annealer on a clas-
sical CPU for r = 1, as can be seen in Figure 6E-F. For
r = 7 the DW2 is sometimes faster than a single classical
CPU. Overall, the performance of the DW2 is better for
r = 7 than for r = 1, and comparable to SA only when
just the pure annealing time is considered. The difference
to the results of Ref. [32] is due to the use of optimized
classical codes using a full CPU in our comparison, as
opposed to the use of generic optimization codes using
only a single CPU core in Ref. [32].

2. Quantiles of ratio

Comparisons of the absolute time to solution are of lim-
ited importance compared to the real question of scaling,

which can give insight into the behavior of future devices
that can solve larger problems. In Section V C we did not
find evidence for a limited quantum speedup when con-
sidering all instances. Now we consider instead whether
there is such a speedup for a subset of problem instances.
To this end we study the scaling of the ratios of the time
to solution for individual instances, and display in Fig-
ure 7 the scaling of various quantiles of the ratio

SQofR
q (N) =

[
TC(N)

TDW(N)

]
q

∝
[
TSA(N)

TDW(N)

1

N

]
q

. (7)

For r = 7 all the quantiles bend down for sufficiently
large N , so that there is no evidence of a limited quan-
tum speedup. Yet, now there seems to be an indication
of such a speedup compared to SA in the high quan-
tiles for r = 1. However, for the reasons discussed in
Sec. IV A, one must be careful not to overinterpret this
as solid evidence for a speedup since the instances con-
tributing here are not run at the optimal annealing time.
Moreover, as discussed in the Supplementary Material,
we find no evidence of a limited quantum speedup for
r = 3. Thus, while perhaps encouraging from the per-
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FIG. 7. Speedup for quantiles of the ratio of the DW2
compared to SA, for A) r = 1, B) r = 7. No asymptotic
speedup is visible for any of the quantiles at r = 7, while some
evidence of a limited quantum speedup (relative to SA) is seen
for quantiles higher than the median at r = 1. As in Figure 4
we multiplied Eq. (7) by 512 so that the speedup value at
N = 512 directly compares one DW2 processor against one
classical CPU.

spective of a search for a (limited) quantum speedup,
more work is needed to establish that the r = 1 result
persists for those instances for which one can be sure that
the annealing time is optimal.

E. Arguments for and against a speedup on the
DW2

Let us consider in some more detail the speedup re-
sults discussed above. We have argued that the apparent
limited quantum speedup seen in the r = 1 results of Fig-
ure 7 must be treated with care due to the suboptimal
annealing time. It might then be tempting to argue that,
strictly speaking, the comparison with suboptimal-time
instances cannot be used for claiming a slowdown either,
i.e., that we simply cannot infer how the DW2 will be-
have for optimal-time instances by basing the analysis on
suboptimal times only.

However, let us make the assumption that, along with
the total time, the optimal annealing time topta (N) also
grows with problem size N . This assumption is sup-

ported by the SA and SQA data shown in Figure 1, and is
plausible as long as the growing annealing time does not
become counterproductive due to coupling to the thermal
bath [35]. By definition, TDW(N, topta (N)) ≤ TDW(N, ta),
where we have added the explicit dependence on the an-
nealing time, and ta is a fixed annealing time. Thus

S(N) =
TC(N)

TDW(N, ta)

1

N
(8)

≤ TC(N)

TDW(N, topta (N))

1

N
= Sopt(N).

Under our assumption, topta (N) < ta for small N , but for
sufficiently large N the optimal annealing time grows so
that topta (N) ≥ ta. Thus there must be a problem size N∗

at which topta (N∗) = ta, and hence at this special prob-
lem size we also have S(N∗) = Sopt(N∗). However, as
mentioned in Section V C 1, the minimal annealing time
of 20µs is longer than the optimal time for all problem
sizes (see Supplementary Material), i.e., N∗ > 503 in our
case. Therefore, if S(N) is a decreasing function of N for
sufficiently large N , as we indeed observe in all our “R of
Q” results (recall Figure 4), then since Sopt(N) ≥ S(N)
and S(N∗) = Sopt(N∗), it follows that Sopt(N) too must
be a decreasing function for a range of N values, at least
until N∗. This shows that the slowdown conclusion holds
also for the case of optimal annealing times.

For the instance-by-instance comparison (“Q of R”),
no such conclusion can be drawn for the subset of in-
stances (at r = 1) corresponding to the high quantiles
where SQofR

q (N) is an increasing function of N . This lim-
ited quantum speedup may or may not persist for larger
problem sizes or if optimal annealing times are used.

VI. DISCUSSION

In this work we have discussed challenges in prop-
erly defining and assessing quantum speedup, and used
comparisons between a DW2 and simulated classical and
quantum annealing to illustrate these challenges. Strong
or provable quantum speedup, implying speedup of a
quantum algorithm or device over any classical algo-
rithm, is an elusive goal in most cases and one thus usu-
ally defines quantum speedup as a speedup compared to
the best available classical algorithm. We have intro-
duced the notion of limited quantum speedup, referring
to a more restricted comparison to “corresponding” clas-
sical algorithms solving the same task, such as a quantum
annealer compared to a classical annealing algorithm.

Quantum speedup is most easily defined and detected
in the case of an exponential speedup, where the de-
tails of the quantum or classical hardware do not matter
since they only contribute subdominant polynomial fac-
tors. In the case of an unknown or a polynomial quantum
speedup one must be careful to fairly compare the clas-
sical and quantum devices, and, in particular, to scale
hardware resources in the same manner. Otherwise par-
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allel speedup might be mistaken for (or hide) quantum
speedup.

An experimental determination of quantum speedup
suffers from the problem that all measurements are lim-
ited to finite problem sizes N , while we are most inter-
ested in the asymptotic behavior for large N . To arrive
at a reliable extrapolation it is advantageous to focus the
scaling analysis on the part of the execution time that be-
comes dominant for large problem sizes N , which in our
example is the pure annealing time, and not the total
wall-clock time. For each problem size we furthermore
need to ensure that neither the quantum device nor the
classical algorithm are run suboptimally, since this might
hide or fake quantum speedup.

If the time to solution depends not only on the prob-
lem size N but also on the specific problem instance,
then one needs to carefully choose the relevant quantity
to benchmark. We argued that in order to judge the
performance over many possible inputs of a randomized
benchmark test, one needs to study the high quantiles,
and define speedup by considering the ratio of the quan-
tiles of time to solution. If, on the other hand, one is
interested in finding out whether there is a speedup for
some subset of problem instances, then one can instead
perform an instance-by-instance comparison by focusing
on the quantiles of the ratio of time to solution.

We note that it is not yet known whether a quantum
annealer or even a perfectly coherent adiabatic quantum
optimizer can exhibit (limited) quantum speedup at all
[36], although there are promising indications from sim-
ulation [20] and experiments on spin glass materials [37].
Experimental tests will thus be important. We chose to
focus here on the benchmark problem of random zero-
field Ising problems parametrized by the range of cou-
plings. We did not find evidence of limited quantum
speedup for the DW2 relative to simulated annealing in
our particular benchmark set when we considered the ra-
tio of quantiles of time to solution, which is the relevant
quantity for the performance of a device as an optimizer.
We note that random spin glass problems, while an in-
teresting and important physics problem, may not be the
most relevant benchmark for practical applications, for
which other benchmarks may have to be studied.

When we focus on subsets of problem instances in an
instance-by-instance comparison, we observe a possibil-
ity for a limited quantum speedup for a fraction of the
instances [38]. However, since the DW2 runs at a subop-
timal annealing time for most of the corresponding prob-
lem instances, the observed speedup may be an artifact
of attempting to solve the smaller problem sizes using
an excessively long annealing time. This difficulty can
only be overcome by fixing the issue of suboptimal an-
nealing times, e.g., by finding problem classes for which
the annealing time is demonstrably already optimal.

There are several candidate explanations for the ab-
sence of a clear quantum speedup in our tests. Perhaps
quantum annealing simply does not provide any advan-
tages over simulated (quantum) annealing or other clas-

sical algorithms for the problem class we have studied
[17]; or, perhaps, the noisy implementation in the DW2
cannot realize quantum speedup and is thus not better
than classical devices. Alternatively, a speedup might be
masked by calibration errors, improvements might arise
from error correction [29], or other problem classes might
exhibit a speedup [39]. Future studies will probe these
alternatives and aim to determine whether one can find
a class of problem instances for which an unambiguous
speedup over classical hardware can be observed.

METHODS

Simulated annealing. Simulated annealing [18] per-
forms a Monte Carlo simulation on the model of Eq. (2),
starting from a random initial state at high temperature.
During the course of the simulation the temperature is
lowered towards zero. At the end of the annealing schedule,
at low temperature, the spin configuration of the system
ends up in in a local minimum. By repeating the simulation
many times one may hope to find the global minimum. More
specifically, SA is performed by sequentially iterating through
all spins and proposing to flip them based on a Metropolis
algorithm using the Boltzmann weight of the configuration
at finite temperature. During the annealing schedule we
linearly increase the inverse temperature over time from an
initial value of β = 0.1 to a final value of β = 3r.

For the case of ±1 couplings (r = 1), and for r = 3 we
use a highly optimized multispin-coded algorithm based on
Refs. [40, 41]. This algorithm performs updates on 64 copies
in parallel, updating all at once. For the r = 7 simulations
we use a code optimized for bipartite lattices [42]. Imple-
mentations of the simulated annealing codes are available in
Ref. [42]. We used the code an ms r1 nf for r = 1, the code
an ms r3 nf for r = 3 and the code an ss ge nf bp for r = 7.

Quantum annealing. To perform quantum annealing one
maps the Ising variables σz

i to Pauli z-matrices and adds a
transverse magnetic field in the x-direction to induce quan-
tum fluctuations, thus obtaining the time-dependent quantum
Hamiltonian

H(t) = −A(t)
∑
i

σx
i +B(t)HIsing , t ∈ [0, ta] . (9)

The annealing schedule starts at time t = 0 with just the
transverse field term (i.e., B(0) = 0) and A(0)� kBT , where
T is the temperature, which is kept constant. The system is
then in a simple quantum state with (to an excellent approx-
imation) all spins aligned in the x direction, corresponding
to a uniform superposition over all 2N computational basis
states (products of eigenstates of the σz

i ). During the
annealing process the problem Hamiltonian magnitude
B(t) is increased and the transverse field A(t) is decreased,
ending with A(ta) = 0, and couplings much larger than
the temperature: B(ta) max(maxij |Jij |,maxi |hi|) � kBT .
At this point the system will again be trapped in a local
minimum, and by repeating the process one may hope to
find the global minimum. Quantum annealing can be viewed
as a finite-temperature variant of the adiabatic quantum
algorithm [8].
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Simulated quantum annealing. Simulated quantum
annealing (SQA) [19, 20] is an annealing algorithm based
on discrete-time path-integral quantum Monte Carlo simula-
tions of the transverse field Ising model, following the above
annealing schedule at a constant low temperature, but using
Monte Carlo dynamics instead of the open system evolution
of a quantum system. This amounts to sampling the world
line configurations of the quantum Hamiltonian (9) while
slowly changing the couplings. The algorithm we used is
similar to that of Ref. [43], but uses cluster updates along
the imaginary time direction, typically with 64 time slices.
Our annealing schedule is linear, as shown in Figure 9B): the
Ising couplings are ramped up linearly while the transverse
field is ramped down linearly over time.

The layout of the D-Wave Two Vesuvius chip. The
Chimera graph of the DW2 used in our tests is shown in
Figure 8. Each unit cell is a balanced K4,4 bipartite graph.
In the ideal Chimera graph (of 512 qubits) the degree of
each vertex is 6. For the scaling analysis we considered
L × L′ rectangular sub-lattices of the Chimera graph, and
restricted our simulations and tests on the DW2 to the
subset of functional qubits within these subgraphs. More
generally the N = 2cL2-vertex Chimera graph comprises an
L × L grid of Kc,c unit cells, and the (so-called TRIAD)
construction of Ref. [34] can be used to embed the complete
L-vertex graph KL, where L = 4c. The treewidth of the
N = 2cL2-vertex Chimera graph comprising an L×L grid of
Kc,c unit cells is cL+ 1 ∼ O(

√
N) [34]. The treewidth of the

512-vertex Chimera graph shown in Figure 8 is 33. Dynamic
programming can always find the true ground state of the
corresponding Ising model in a time that is exponential in
the treewidth, i.e., that scales as exp(c

√
N).

Annealing schedule of the D-Wave Two device. Nomi-
nally, the DW2 performs annealing by implementing the time-
dependent Hamiltonian H(t) = −A(t)

∑
i σ

x
i + B(t)HIsing,

where t ∈ [0, ta]. However, in reality the transverse field
varies somewhat and the actual Hamiltonian realized is de-
scribed more accurately as

H(t) = −
∑
i

Ai(t)σ
x
i +B(t)HIsing (10)

The annealing schedules Ai(t) and B(t) used in the device are
shown in figure 9A). We used the minimal annealing time of
ta = 20µs provided by the device since this always gave us
the shortest total time to solution (see below). The source
of this minimal annealing time is engineering restrictions in
the DW2. There are four annealing lines, and their synchro-
nization becomes harder for faster annealers. The filtering of
the input control lines introduces some additional distortion
in the annealing control.

The DW2 is programmed by providing the sets of couplings
Jij and local longitudinal fields hi (which together define
a problem instance by specifying HIsing), the number of
repetitions R of the annealing to be performed, the annealing
time ta, and a number of other parameters which were
included in our wall-clock results and which are described
below.

Gauge averaging on the D-Wave device. Calibration
inaccuracies cause the couplings Jij and hi that are realized
in the DW2 to be slightly different from the intended and
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FIG. 8. Qubits and couplers in the D-Wave Two de-
vice. The DW2 “Vesuvius” chip consists of an 8 × 8 two-
dimensional square lattice of eight-qubit unit cells, with open
boundary conditions. The qubits are each denoted by circles,
connected by programmable inductive couplers as shown by
the lines between the qubits. Of the 512 qubits of the de-
vice located at the University of Southern California used in
this work, the 503 qubits marked in green and the couplers
connecting them are functional.

programmed values (∼ 5% variation). These calibration er-
rors can sometimes lead to the ground states of the model
realized in the device being different from the perfect model.
To overcome these problems it is advantageous to perform
annealing on the device with multiple encodings of a prob-
lem instance into the couplers of the device [25]. To realize
these different encodings we use a gauge freedom in realiz-
ing the Ising spin glass: for each qubit we can freely define
which of the two qubits states corresponds to σi = +1 and
σi = −1. More formally this corresponds to a gauge trans-
formation that changes spins σz

i → aiσ
z
i , with ai = ±1 and

the couplings as Jij → aiajJij and hi → aihi. The simu-
lations are invariant under such a gauge transformation, but
(due to calibration errors which break the gauge symmetry)
the results returned by the DW2 are not.

If the success probability of one annealing run is denoted
by s, then the probability of failing to find the ground state
after R independent repetitions (annealing runs) each having
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FIG. 9. Annealing schedules. A) The amplitude of the
median transverse field A(t) (decreasing, blue) and the longi-
tudinal couplings B(t) (increasing, red) as a function of time.
The device temperature of T = 18mK is indicated by the
black horizontal dashed line. B) The linear annealing sched-
ule used in simulated quantum annealing.

success probability s is (1− s)R, and the total success proba-
bility of finding the ground state at least once in R repetitions
is

P = 1− (1− s)R. (11)

Thus the number of repetitions needed to find the ground
state at least once with probability p is found by solving p =
1− (1− s)R, i.e., Eq. (3).

Following [25], after splitting these repetitions into R/G
repetitions for each of G gauge choices with success probabil-
ities sg, the total success probability becomes

P (G) = 1−
G∏

g=1

(1− sg)R/G. (12)

If we denote by s the geometric mean of the success probabil-
ities of the individual gauges

s = 1−
G∏

g=1

(1− sg)1/G, (13)

then Eq. (12) can be written in the same form as Eq. (11):

P (G) = 1− (1− s)R. (14)

N tp [ms] tr [µs]

8 14.7± 0.3 51.0± 0.2

16 14.8± 0.3 53.0± 0.2

31 14.8± 0.3 57.9± 0.2

47 14.9± 0.4 60.6± 0.2

70 15.0± 0.4 64.5± 0.2

94 15.2± 0.3 68.3± 0.2

126 15.6± 0.2 73.1± 0.2

158 15.5± 0.2 78.0± 0.2

198 15.5± 0.2 80.8± 0.2

238 15.7± 0.2 83.5± 0.2

284 15.8± 0.2 83.6± 0.1

332 16.0± 0.3 87.1± 0.2

385 16.6± 1.0 87.1± 0.6

439 16.6± 0.1 90.4± 0.1

503 16.6± 0.2 90.5± 0.1

TABLE I. Wallclock times on the DW2. Listed are mea-
sured programming times tp and annealing plus readout times
tr (for a pure annealing time of 20µs) on the DW2 for various
problem sizes.

N ≤ 238 N = 284, 332 N = 385, 439 N = 503

1000 2000 5000 10000

TABLE II. Repetitions of annealing runs used on the
DW2. This table summarizes the total number of repetitions
used to estimate the success probabilities on the DW2 for
various system sizes.

We thus use the geometric mean s in our scaling analysis.

Wall-clock and annealing times. We show results mainly
for pure annealing times, but also for wall clock times. The
pure annealing time for R repetitions is straightforwardly de-
fined as

tanneal = Rta. (15)

Wall clock times include the time for programming, cooling,
annealing, readout and communication. We have performed
tests on the DW2 with varying numbers of repetitions R and
performed a linear regression analysis to fit the total wall clock
time for each problem size to the form tp(N)+Rtr(N), where
tp(N) is the total preprocessing time and tr(N) is the total
run time per repetition for an N -spin problem. The values
of tp and tr are summarized in Table I. With these numbers
we obtain the total wall clock time for R annealing runs split
over G gauges (with R/G annealing runs each) as

ttotal(N) = Gtp(N) +Rtr(N). (16)

To calculate pure annealing times for the simulated an-
nealer we determine the total effort in units of of Monte Carlo
updates (attempted spin flips), and then convert to time by
dividing by the number of updates that the codes can perform
per second [42]. Our classical reference CPU is an 8-core Intel
Xeon E5-2670 CPU, which was introduced around the same
time as the DW2.

To obtain wall-clock times we measure the actual time
needed to perform a simulation on the same Intel Xeon
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FIG. 10. Optimal annealing times for the simulated annealer and for the D-Wave device. Shown is the total
effort R(ta)ta as a function of annealing time ta for various quantiles of problems with r = 1 and r = 7 (see Supplementary
Information for r = 3). A) and B) SA, where the minimum of the total effort determines the optimal annealing time topta . C)
and D) DW2, where we find a monotonically increasing total effort, meaning that the optimal time topta is always shorter than
the minimal annealing time of 20µs.

E5-2670 CPU. Since the multi-spin codes perform at 64
repetitions in parallel, we always make at least 1024 rep-
etitions when running 16 threads on 8 cores. This causes
the initially flatter scaling in wall-clock times as compared
to pure annealing times. The measured initialization time
includes all preparations needed for the algorithm to run,
and the spin flip rate was computed for the 99% quantile
for 503 qubits. For smaller system sizes or lower quan-
tiles, the spin flip rate is lower since the problems are not
hard enough to benefit from parallelization over several cores.

Optimal annealing times. As discussed in the main text
we need to determine the optimal annealing time topta for every
problem size N in order to make meaningful extrapolations
of the time to find a solution. To determine topta we perform
annealing runs at different annealing times ta, determine the
success probabilities s(ta) of 1000 instances, and from them
the required number of repetitions R(ta) to find the ground
state with a probability of 99%. The total effort R(ta)ta di-
verges for ta → 0 and ta → ∞ and has a minimum at an
optimal annealing time topta . The reason is that for short ta
the success probability goes to zero, which leads to a diverg-
ing total effort, while for large ta the time also grows since
one always needs to perform at least one annealing run and
the total effort is thus bounded from below by ta.

In Figure 10 (left) we plot various quantiles of the total
effort R(ta)ta for the simulated annealer as a function of

ta to determine the optimal annealing time topta . For the
DW2 we find, as shown in Figure 10 (right) that the minimal
annealing time of 20µs is always longer than the optimal
time and we thus always use the device in a suboptimal
mode. As a consequence the scaling of time to solution is
underestimated, as explained in detail in the main text.

Alternative consideration of parallel versus quantum
speedup. In the consideration of how to disentangle paral-
lel and quantum speedup it may seem more natural to as-
sume fixed computational resources of a given device. We
will show that this leads to the same scaling as Eq. (5).
We might be tempted to define the speedup in this case as
S(N) = TSA(N)/TDW(N). However, in this manner only a
fraction N/512 of the qubits are used while the classical code
uses the available CPU fully, independently of problem size.
This suboptimal use of the DW2 may again be incorrectly
interpreted as speedup. The same issue would appear when
comparing a classical analog annealer against a classical sim-
ulated annealer.

As in the discussion of optimal annealing times above, we
need to ensure an optimal implementation to correctly assess
speedup. For the DW2 (or a similarly constructed classical
analog annealer) this means that one should always attempt
to make use of the entire device: we should perform as many
annealing runs in parallel as possible. Let us denote the ma-
chine size by M (e.g., M = 512 in the DW2 case). With this
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we define a new, optimized, annealing time

T opt
DW(N) = TDW(N)

1

bM/Nc , (17)

and the correct speedup in our case is then

S(N) =
TSA(N)

T opt
DW(N)

=
TSA(N)

TDW(N)

⌊
M

N

⌋
. (18)

Omitting the floor function (b c), which only gives subdom-
inant corrections in the limit M →∞ we recover Eq. (5).

The conclusion that the speedup function includes a fac-
tor proportional to 1/N is validated from yet another per-
spective, that focuses on the annealing time. Instead of em-
bedding C ≡ bM/Nc different instances in parallel, we can
embed C replicas of a given instance. Each replica r (where
r ∈ {1, . . . , C}) results in a guess Er,i of the ground state
energy for the ith run, and we can take Ei = minr Er,i as the
proposed solution for that run. If the replicas are indepen-
dent and each has equal probability s of finding the ground
state, then using C replicas the probability that at least one
will find the ground state is s′ = 1 − (1 − s)C , which is also
the probability that Ei is the ground state energy for the ith

run. Repeating the argument leading to Eq. (3), the number
of repetitions required to find the ground state at least once
with probability p is then:

R′ =

⌈
log(1− p)
log(1− s′)

⌉
=

⌈
log(1− p)
C log(1− s)

⌉
=
R

C
. (19)

Focusing on the pure annealing time we have T opt
DW(N) = taR

′

and TDW(N) = taR, which yields Eq. (17).
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