Observation of topological transitions in interacting quantum circuits
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The discovery of topological phases in con-
densed matter systems has changed the modern
conception of phases of matter [1, 2]. The global
nature of topological ordering makes these phases
robust and hence promising for applications [3].
However, the non-locality of this ordering makes
direct experimental studies an outstanding chal-
lenge, even in the simplest model topological sys-
tems, and interactions among the constituent par-
ticles adds to this challenge. Here we demon-
strate a novel dynamical method[4] to explore
topological phases in both interacting and non-
interacting systems, by employing the exquisite
control afforded by state-of-the-art superconduct-
ing quantum circuits. We utilize this method to
experimentally explore the well-known Haldane
model of topological phase transitions[5] by di-
rectly measuring the topological invariants of the
system. We construct the topological phase dia-
gram of this model and visualize the microscopic
evolution of states across the phase transition,
tasks whose experimental realizations have re-
mained elusive [6, 7]. Furthermore, we developed
a new qubit architecture [8, 9] that allows simul-
taneous control over every term in a two-qubit
Hamiltonian, with which we extend our studies
to an interacting Hamiltonian and discover the
emergence of an interaction-induced topological
phase. Our implementation, involving the mea-
surement of both global and local textures of
quantum systems, is close to the original idea
of quantum simulation as envisioned by R. Feyn-
man [10], where a controllable quantum system is
used to investigate otherwise inaccessible quan-
tum phenomena. This approach demonstrates
the potential of superconducting qubits for quan-
tum simulation [11, 12] and establishes a power-
ful platform for the study of topological phases in
quantum systems.

Since the first observations of topological ordering in
quantum Hall systems in the 1980s[1, 2|, experimental
studies of topological phases have been primarily lim-
ited to indirect measurements. The non-local nature of
topological ordering renders local probes ineffective, and
when global probes, such as transport, are used, inter-
pretations [13] are required to infer topological properties
from the measurements. Topological phases are charac-
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Figure 1. Dynamical measurement of Berry curvature
and Ch. In this schematic drawing, brown arrows represent
the ground states (adiabatic limit) for given points on a closed
manifold S (green enclosure) in the parameter space, and the
blue arrows are the measured states during a non-adiabatic
passage. According to (2), the Berry curvature B can be
calculated from the deviation from adiabaticity. Integrating
B over S gives the Chern number C#, which corresponds to
the total number of degeneracies enclosed.

terized by topological invariants, such as the first Chern
number C#4, whose discrete jumps indicate transitions be-
tween different topologically ordered phases [14, 15]. For
a quantum system, C# is defined as the integral over a
closed manifold S in the parameter space of the Hamil-
tonian as

1
hr=— ¢ B-d 1
Chi= 5§ B-as. (1)

where B is the Berry curvature [16-18]. As illustrated in
Fig.1 and discussed in the supplement, B can be viewed
as an effective magnetic field with points of ground
state degeneracy acting as its sources, i.e. magnetic
monopoles [17, 19]. Using Gauss’s law for the Berry cur-
vature (magnetic field), C# simply counts the number of
degenerate energy eigenvalues (magnetic monopoles) en-
closed by the parameter manifold S. C#, which is invari-
ant under perturbations to the shape of S, is a topological
number that reflects a property of the manifold of states
as a whole and not a local property of parameter space.

In previous works, topological properties of highly
symmetric quantum systems have been measured [20-22].
However, since these earlier studies relied on interference
to evaluate the accumulated phase, these methods are
not readily generalizable. To circumvent this, Gritsev et



al. [4] proposed a general method to directly measure the
local Berry curvature. The underlying physics of their
idea is that motion in a curved space will be deflected
from a straight trajectory; in other words, curvature re-
veals itself as an effective force. For example, a charged
particle moving in a magnetic field experiences the well-
known Lorentz force. Similarly, Gritsev et al. showed
that in a region of the parameter space with Berry cur-
vature B, if we "move" a quantum system by changing a
parameter of its Hamiltonian with rate v, then the state
of the system feels a force F given by

F ocv x B+ O(v?). (2)

This force leads to deviations of the trajectory from the
adiabatic path which can be detected through measure-
ments of the observables in the quantum system (see
Fig.1 and [17]). Therefore, as long as the ramping of pa-
rameters is done slowly, but not necessarily adiabatically,
the deviation is directly proportional to B. As the adia-
batic limit is generally hard to achieve, this relation has
the important advantage of needing only a moderately
slow change of state and only requires that the linear
term in (2) dominates the dynamics.

This dynamical method suggests a way to directly
measure B, from which C# can be calculated using (1).
This provides an alternative means to study topologi-
cal phases, significantly different from conventional ap-
proaches. Admittedly, implementing this procedure re-
quires the ability to continually change the system Hamil-
tonian, which is difficult to do in most experimental situ-
ations. However, in a fully controllable quantum system,
this provides a powerful means to probe the topological
properties of the ground state manifold through dynami-
cal measurements. Here we demonstrate an implementa-
tion of this type of measurement using a quantum circuit
based on superconducting qubits[11, 12, 23].

We first demonstrate a basic implementation of the
dynamical method. The quantum state of a single su-
perconducting qubit [17, 24] is equivalent to a spin-1/2
particle in a magnetic field. Its Hamiltonian can be writ-
ten as

h
Hs = _§H ", (3)
where ¢ = (0%,0Y%,0%) are the Pauli matrices, and

H = (Hx, Hy,Hyz) is analogous to a control magnetic
field. Full control over the parameters of this Hamilto-
nian is achieved by microwave pulses that control Hx and
Hy, and an applied flux through the qubit’s SQUID loop
which controls Hyz. To illustrate the dynamical method,
we measure Ch for a spherical ground state manifold in
H-parameter space (Fig.2). We use 6 and ¢ as spherical
coordinates and consider the parameter trajectory start-
ing at the north pole at ¢ = 0 and ramps along the ¢ = 0
meridian (Hy = 0) with constant velocity vy = df/dt
until it reaches the south pole at ¢ = Ty. To realize
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Figure 2. Dynamical measurement of C4. a. A simul-
taneous microwave pulse Hx (t) = H, sin(nt/Tf) and detun-
ing pulse Hz(t) = H,cos(mt/Ty) are applied to construct
a parameter space trajectory. The pulse sequence results
in a parameter space motion along the ¢ = 0 meridian
(Hy = Oplane) on S. b. The state of the qubit during
this ramp (H, /27 = 10 MHz and Ty = 600ns) is determined
using tomography [17], and shown (blue dots) on the surface
of the Bloch sphere.

motion on a spherical manifold, the control sequences of
Hz; and Hx are chosen such that the control magnitude
|H| = H, is constant [17]. In the adiabatic limit, the
wavefunction would remain in the instantaneous ground
state of Hg, with the Bloch vector parallel to the direc-
tion of the control field, following the meridian. Instead,
for non-adiabatic ramps, a deviation from the meridian
is observed, as shown in Fig.2(b). Here the Bloch vec-
tor is measured at each point in time by interrupting
the ramp and performing state tomography. Note that
this deviation is not due to noise, but rather is the ex-
pected non-adiabatic response [17]. For this trajectory,
the force F takes the form fy = ZH, (o¥)sin6, where
(o¥) is the expectation value of o¥. Integrating over the
resulting deflection (shaded light red in Fig. 2(b)) gives
Ch = 1+ 0.05. Note that given the symmetry of the
Hamiltonian, a line integral is sufficient for measuring the
surface integral of Ch (see (1))[17, 25]. A value of unity
is expected, as the qubit ground state has a single degen-
eracy at H = 0, corresponding to an effective monopole,
the enclosing parameter sphere S should yield CA = 1. In
the supplement we demonstrate the robustness of CA by
deforming the surface manifold S and discuss the sources
of error,[26].

Using our controllable quantum circuit, we can explore
what is perhaps the simplest model of topological behav-
ior in condensed matter, the Haldane model [5, 17]. This
model serves as a foundation for other topological insu-
lator models [27 29], yet its experimental realization has
remained elusive[6, 7]. To show that the quantum Hall
effect could be achieved without a global magnetic field,
Haldane introduced a non-interacting Hamiltonian on a
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Figure 3. Dynamic measurement of the topological
phase diagram and adiabatic visualization of phases.
a. Dynamical determination of the phase diagram. first (o)
was measured during ramps similar to those in Fig 2(a), and
then CA was calculated. The dashed line is the expected phase
boundary at Hy = H,. b,c. With adiabatic state prepara-
tion, the state of the qubit was prepared and measured over a
grid on the surface of the parameter sphere and then mapped
to the hexagonal momentum-space plane. The ground states
are presented as Bloch vectors, whose colors indicate their
(c7) values. Ho/H, = 1.2 for b and Ho/H, = 0 for c. The
gray lines show the FBZ of the honeycomb lattice and high
symmetry points K and K’ are marked. d. The measured CA
from the adiabatic and dynamical (white arrow in a) methods
are plotted vs. Ho/H,.

honeycomb lattice [5] given by

He (kg ky) = hop(kyo® + kyo¥) + (mo —my)o®,  (4)

where vp is the Fermi velocity, mg is the effective mass,
and my corresponds to a second-neighbor hopping in a
local magnetic field. The key prediction of the Haldane
model is that if mg/m; > 1 the system is in a trivial insu-
lating phase, and otherwise in a topological phase, where

edge states and quantized conductance appear. Using a
confocal mapping[17] one can recast Eq. (4) into the
single-qubit Hamiltonian (3). If we consider spherical
manifolds S of radius H, displaced from the origin in
the z direction by Hy, then Hy/H, in the qubit system
plays the same role as mg/m; in the Haldane model. In
Fig. 3(a) we plot the results of this measurement, showing
Ch as a function of H, and H,, which shows plateaus at
values 0 and 1 separated by a phase transition boundary
line at H, = Hy. This transition can be easily under-
stood: when Hy < H, the degeneracy at H = 0 lies
within the sphere giving CA = 1, whereas for Hy > H, it
lies outside the sphere giving CA = 0.

The nature of the topological and trivial phases can
be further revealed by probing their microscopic struc-
ture with a conventional adiabatic method. According
to Haldane, each phase has its own signature spin tex-
ture in momentum space. We again consider spherical
surfaces S and adiabatically ramp the control parame-
ters to their final values on S. The resulting Bloch vec-
tors are then tomographically measured [17], and ideally
point in the same direction as the final H. With a con-
focal mapping (see[17]), S can be mapped to the first
Brillouin zone (FBZ) of the honeycomb lattice. There-
fore, the adiabatically measured ground state vectors on
S can be depicted in the FBZ. Fig.3(b) and (c) show
the results for two manifolds with Hy/H, = 1.2 and 0,
corresponding to trivial and topological phases, respec-
tively. By following the orientation of the state-vector
along any path starting at K and moving to K’ (cor-
ners of the FBZ) and back to K one can see that in the
topological case the state vector makes one full rotation,
while in the trivial case and only tilts away from vertical
and then returns, without completing a rotation. These
spin texture maps can be used to extract local Berry cur-
vature [17]. As shown in Fig.3(c), the resulting CA from
this adiabatic method shows good agreement with the
dynamical method of measurement.

Moving beyond the realm of non-interacting systems,
we now study the topological phase diagram for an in-
teracting Hamiltonian, obtained by measuring C# in a
coupled two-qubit system. The intriguing physics of the
topological properties of this kind of interacting system
has to date been mostly unexplored, due to experimental
challenges. One significant source of challenge is that one
needs full control over the entire parameter space, includ-
ing over any coupling terms in the Hamiltonian. Here we
achieve this kind of full control by using a new design for
our superconductong qubit, which includes the ability to
continuously vary the inter-qubit coupling strength g (we
term this new type of qubit the "gmon" [8, 9]).

The Hamiltonian of this system is given by

h
Hoq = —5[Hooi + Hi-01+Hz 02— g(oio3 +0]03)],

(5)
where 1 and 2 refer to qubit 1 (Q1) and qubit 2 (Q2)
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Figure 4. Topological phase diagram of an interacting system. a. The position of the monopoles in H-space for the
points A through F shown in panel ¢, with a spherical manifold of radius H, /27 = 10 MHz. b,c. The topological phase diagram

of Eq. (5).

In panel b, C# was measured for two fixed g/27 values of 0 and 4 MHz. In panel ¢, CA was measured for fixed

H, /27 =10 MHz. Dashed lines are topological transitions calculated analytically. d. The analytically calculated phase diagram
showing three distinct C4 volumes and the separatrix plane. The phase diagram cuts in b, c are indicated by colored slices.

respectively, and the biasing field H( is now only applied
to Q1.There are equivalent condensed matter systems to
which this system can be mapped, as with the Haldane
model, as discussed in [17].However, in the absence of any
experimental realization of these models, our experiment
is perhaps closer to Feynman’s original idea of quantum
simulation [10], where a controllable quantum system is
used to investigate otherwise inaccessible quantum phe-
nomena.

Using the tunable inter-qubit coupling, we can ac-
cess all regions of the 7-dimensional parameter space of
our Hamiltonian. Here we explore spherical manifolds
with fixed (Ho,|H1|,|Hz2|,g), analogous to the single
qubit experiment.We perform experiments where both
H; = H; = H, are ramped simultaneously with magni-
tude |H,| = H,, while Hy and g are zero except during
the time ¢ = 0 to T, as illustrated in the supplement [17].
The measured C# is shown in Fig. 4(b) and (c) for three
distinct cuts though this parameter space, as shown by
colored rectangles in Fig. 4(d). For g = 0 [panel (b)], the
two qubits behave independently and the physics is the
same as for the single qubit case. Since only Q1 is subject
to Hy, Ch changes by 1 through the transition Hy = H,.

A new phase with C# = 0 emerges when the coupling g
is large. In Fig.4(b) for g/2m = 4 MHz, the C# = 0 phase
(blue) is seen at small H, when H, < g. In Fig.4(c) this
phase also appears when g 2 H,., showing that the transi-
tion is interaction-driven and appears when the coupling
g becomes dominant. Because (5) is not SU(2) symmet-
ric, the results do not simply reflect the total spin of the
system. However, an intuitive understanding of these
phases and transitions can be attained in certain limits:
at large H,, the spins align paramagnetically with the
field and add up to give CA = 2. At large g, the spins
form an entangled singlet which does not respond to the
applied field, giving CA = 0. Away from these limiting
cases, these simple arguments are not, applicable, but CA
remains quantized.

Analytic solutions predicting the phase diagram can
be obtained by calculating when points with degenerate
ground states cross the spherical manifold [17]. These
phase boundaries are depicted in Fig. 4(d) and show three
distinct regions. As discussed above, the region where
g dominates (blue) has Ch = 0, while where H, domi-
nates (red) ChA = 2. There is a direct 0 to 2 transition
when Hy = 0, but at finite values the system first goes



through the green CA = 1 region. This latter behavior
is seen in Fig.4(c). The dashed lines in panels (b) and
(c) are from this analytic solution, which uses no free
parameters, and are in good agreement with the mea-
surements. The deviations are mainly systematic errors,
due to crosstalk between simultaneous control pulses. As
shown in Fig. 4(a), the points of ground state degeneracy
are located on the z-axis of the Hy-space [17]. Sub-figures
A, B and C correspond to the dots on Fig.4(c), where
g is small. In this limit, Hy affects the energy of only
one qubit, and increasing it moves only one monopole
past the surface (C). For D, E, and F where instead Hy
is small, increasing ¢ furthers the monopole separation,
eventually moving both monopoles outside the surface
An important benefit of working with a fully control-
lable Hamiltonian, as here, is that a number of differ-
ent condensed matter systems can be mapped onto this
model system. For our 2-qubit system, we show [17] that
the system can be mapped to either an interacting model,
or alternatively a 4-band non-interacting electron model
that is a non-trivial extension of the two-band Haldane
model. In general, with n qubits one can study topolog-
ical phases in non-interacting 2"-band models, an other-
wise daunting experimental task. Perhaps more interest-
ing will be to use qubit systems to study the topological
phases of interacting spin-1/2 systems, where tantalizing
evidence for fractionalization has been found [30].
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