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Many superconducting qubit systems use the dispersive interaction between the qubit and a
coupled harmonic resonator to perform quantum state measurement. Previous works have found
that such measurements can induce state transitions in the qubit if the number of photons in the
resonator is too high. We investigate these transitions and find that they can push the qubit out
of the two-level subspace. Furthermore, these transitions show resonant behavior as a function
of photon number. We develop a theory for these observations based on level crossings within
the Jaynes-Cummings ladder, with transitions mediated by terms in the Hamiltonian which are
typically ignored by the rotating wave approximation. We confirm the theory by measuring the
photon occupation of the resonator when transitions occur while varying the detuning between the
qubit and resonator.

Measurement of the state of a quantum two-level sys-
tem (qubit) is essential to experiments with engineered
quantum systems. Many protocols for quantum compu-
tation and simulation require high measurement accu-
racy; for example, the surface code has a fidelity thresh-
old of 99% [1]. Additionally, repetitive protocols [2–6]
require that the qubit remain in a known state within
the qubit subspace after the measurement is complete,
and that the measurement process be short enough to
maintain coherence in the rest of the system.

In superconducting qubits, high fidelity measurement
is achieved using the dispersive interaction between the
qubit and a harmonic resonator. Each qubit state in-
duces a different frequency shift on the resonator, and
the qubit state is inferred by measuring the resonator’s
response to a probe pulse [7–9]. For a pulse of fixed du-
ration, the measurement signal to noise ratio (SNR) is
proportional to the mean number of resonator photons
n̄ induced by the pulse, as each dispersed photon carries
partial information on the qubit state.

However, several experiments with superconducting
qubits have found that as n̄ is increased past a cer-
tain point, the qubit suffers anomalous state transitions.
As these transitions are not predicted by the standard
dispersive interaction Hamiltonian, their origin has re-
mained a mystery. Even more puzzling, the transition
probability is observed to be non-monotonic with in-
creasing photon number [10, 11]. These transitions limit
the speed and lower the fidelity of qubit measurement
[10, 12], so understanding and eliminating them is crit-
ical for implementing high fidelity quantum algorithms
and error correction.

In this Letter, we investigate the cause of these
anomalous qubit transitions in a superconducting qubit-

resonator system. We characterize the transitions by
measuring the state of the qubit after driving the res-
onator with variable power, and find that the qubit jumps
outside the two-level subspace. Moreover, these transi-
tions show a resonant behavior as a function of drive
power. By re-examining the assumptions which go into
the dispersive interaction Hamiltonian, particularly the
rotating wave approximation (RWA), we develop a theory
based on level crossings with other states of the qubit-
resonator system, and find that the theory matches ex-
perimental observations with no free parameters.

Our experiment used a superconducting transmon
qubit [9, 14] capacitively coupled to the fundamental
mode of a quarter wave coplanar waveguide (CPW) res-
onator with coupling strength g/2π ≈ 87 MHz [15], as il-
lustrated in Fig. 1a. The transmon’s weakly anharmonic
potential supports a ladder of energy levels, the bottom
two of which are normally used as a qubit. By biasing
the transmon’s dc SQUID loop with an external magnetic
flux, we can tune the transmon’s |0〉 → |1〉 transition fre-
quency ω10. In the absence of bias flux, the transmon has
its maximum frequency ω10/2π = 5.4 GHz, and the an-
harmonicity is η/2π ≡ (ω21−ω10)/2π = −221 MHz. The
fundamental mode of the CPW resonator is a quantum
harmonic oscillator with frequency ωr/2π ≈ 6.78 GHz
and is coupled with an energy decay rate of κ ≈ 1/(37 ns)
through a bandpass Purcell filter [12, 16] to a 50 Ω output
line and amplifiers.

Each of the transmon levels |i〉 induces a different fre-
quency shift on the resonator, yielding a set of distinct
resonator frequencies ωr,|i〉. To measure the transmon
state, we drive the system through the Purcell filter at
a frequency between ωr,|1〉 and ωr,|2〉 [17], populating the
resonator with photons which are dispersed and leak out
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FIG. 1. The transmon-resonator system. (a) Circuit dia-
gram of the system. The transmon (violet) is capacitively
coupled to the resonator (orange). The resonator is induc-
tively coupled to a bandpass Purcell filter with Q ≈ 30 [12].
The resonator is driven by an arbitrary waveform generator
(AWG) connected to the filter, and the dispersed photons are
measured by a low noise, impedance matched parametric am-
plifier (IMPA) [13] also connected to the filter. (b) Energy
levels of the transmon and resonator. (c) Pulse sequence used
to prepare the first four states of the transmon. (d) In-phase
and quadrature (IQ) components of the dispersed signal mea-
sured with the transmon prepared in the first four states.

from the resonator, through the filter, and into the am-
plifier circuit. The amplitude and phase of the resulting
signal depend on the resonator frequency, and thus the
transmon state. We digitize this signal and extract the
amplitude and phase as a point in the quadrature (IQ)
plane. In Fig. 1d, we plot the IQ response of the resonator
with the transmon prepared in various states, which acts
as our calibration for distinguishing the state of the trans-
mon in subsequent measurements. When the magnitude
of the resonator-transmon detuning ∆ ≡ ω10 − ωr is less
than 1.4 GHz, the resulting IQ points resolve the first
four transmon states, while at larger |∆| we can resolve
the first three states.

To investigate the effect of resonator photons on the
transmon state, we use the pulse sequence illustrated in
Fig. 2a. The transmon is initialized to |0〉 by idling for
several times its energy decay lifetime. We first drive the
resonator with a 2µs long, variable power pulse. This
“stimulation pulse” injects a number of photons into the
resonator which, when large enough, induces transitions
in the transmon state. We then wait 500 ns (13 decay
time constants) for the resonator to ring down [19]. Fi-
nally, we drive the resonator again with a weak, fixed
power pulse to measure the transmon without inducing
further transitions, and record the IQ response of the
resonator. Based on the calibration shown in Fig 1d, we
identify each IQ point as one of the transmon states, or
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FIG. 2. (a) Control sequence for probing the effect of res-
onator photons on the transmon, including the variable power
resonator stimulation pulse and weak, fixed amplitude mea-
surement pulse. The pulse on the qubit is included only in
the ac Stark measurement described below. (b) IQ data
for drive powers 0.02, 0.2, and 0.8 (arbitrary units), with
ω10 = 5.38 GHz. The circles represent 3σ for the four re-
solvable transmon states as calibrated in Fig. 1d. At high
power, the transmon is clearly driven to states higher than |3〉.
(c) Transmon state probabilities versus stimulation power.
In addition to the four calibrated transmon states, we show
the probability that the measurement was > 3σ from any
of the resolved states, labelled “outliers”. Note the two large
resonance-like peaks labeled A and B. (d) Stark shifted trans-
mon frequency ω10 versus stimulation pulse power. We con-
vert the shifted ω10 to n̄ using a numerical theory (right ver-
tical axis) [18].

if the point is more than three standard deviations from
any of the calibrated distributions, we label it as an “out-
lier”.

The results are striking in two ways. First, as the stim-
ulation pulse power is raised, the transmon jumps from
|0〉 not only to |1〉 but also to |2〉, |3〉 and even higher
states, as shown in Fig. 2b. Although we can resolve
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only up to |3〉, the characteristic arc of the IQ points
with increasing state index appears to continue to what
we estimate to be |5〉 or higher. Second, the probabil-
ity of transitions is highly non-monotonic with power,
as was previously seen in Refs. [10, 11]. In particular,
the shape of the features in probability versus power re-
semble resonance peaks, with large peaks in the outlier
probability at drive powers 0.7 (feature A) and 0.2 (fea-
ture B), a small peak in |1〉 near 0.15, another small peak
in |2〉 near 0.05, and various other peaks at other powers.
The peaked structure rules out any process which would
have monotonically increasing transitions with increasing
drive power, such as chip heating or dressed dephasing
[20], as the dominant mechanism.

In order to connect our results to theoretical models,
we next convert stimulation pulse power to photon num-
ber n̄. We cannot measure n̄ directly, but resonator pho-
tons cause the qubit frequency to shift downward in what
is called the ac Stark effect [21]. We generate a map from
drive power to n̄ by measuring the ac Stark shifted qubit
frequency for each resonator drive power and converting
that frequency to n̄ using a numerical model based on
separately measured parameters g and ∆ [18]. To mea-
sure the ac Stark shift, we repeat the previous experiment
with the addition of a spectroscopic microwave pulse on
the transmon after the driven resonator has reached the
steady state. For each drive power we vary the frequency
of the transmon pulse; the |1〉 probability is maximized
when the pulse is on resonance with the shifted transmon
frequency.

We show the results of the ac Stark shift measurement
along with the computed photon numbers in Fig. 2d for
the same drive powers as in Fig. 2c. Note that feature B,
(black dashed line) occurs at 170 . n̄ . 250, which is, in-
terestingly, considerably larger than the “critical photon
number” nc ≡ (∆/g)2/4 ≈ 60 introduced in Ref. [7].

The peaks in Fig. 2c are thus seen to indicate partic-
ular values of n̄ at which the qubit-resonator system is
especially susceptible to transitions. The association of n̄
with qubit frequency shift further suggests that the peaks
are due to some form of frequency resonance. With the
observation of resonant transitions to higher transmon
levels, we now consider the Hamiltonian of the transmon-
resonator system and look for terms, possibly neglected
in the dispersive or rotating wave approximations, which
explain these observations. We start with the bare
Hamiltonian

Hb =
∑

k

Ek|k〉〈k|+ ~ωra
†a , (1)

where Ek is the energy of transmon level k and ωr is the
frequency of the resonator. This Hamiltonian produces
the Jaynes-Cummings (JC) ladder as shown by the solid
lines in Fig. 3.

Next we add the interaction term HI due to the ca-

pacitive coupling:

HI =
∑

k,k′,n

~gk′,k
√
n |k, n− 1〉〈k′, n|+ H.c. , (2)

where the states are labeled |qubit, resonator〉, gk′,k =
g 〈k|Q|k′〉/〈0|Q|1〉, and 〈k|Q|k′〉 are the transmon charge
matrix elements. This interaction imparts an n-
dependent shift on the bare levels producing eigenstates,
two of which are shown as dashed lines in Fig. 3. As indi-
cated by the long horizontal arrow, at certain n the lad-
der contains resonances between states where the qubit
goes from |0〉 to higher levels such as |6〉. This critical
observation could explain both the resonance structure
and the transitions to higher transmon levels observed in
the data. However, it remains to see how HI couples the
resonant levels.

The full interaction HI is typically simplified by the
RWA to contain only those terms which preserve excita-
tion number,

HRWA ≡
∑

k,n

~gk,k+1

√
n |k + 1, n− 1〉〈k, n|+ H.c. . (3)

These terms (curved arrows in Fig. 3) divide the JC lad-
der into excitation preserving subspaces which we call
“RWA strips”. Under the action of HRWA, the system
moves only within an RWA strip, even with arbitrarily
large n [22]. Therefore, HRWA does not allow transitions
between resonant levels.

The critical part of the Hamiltonian is Hnon-RWA, con-
taining terms in HI which do not conserve excitation
number [18]. These terms can be as large as the RWA
terms, but are usually neglected on the grounds that they
are more off-resonant than the RWA terms. For example,
in our system the RWA terms are typically off resonance
by ∼ 1 GHz while the non-RWA terms are off resonance
by ∼ 13 GHz. However, keeping these terms reveals the
essential reason for the unwanted state transitions. The
non-RWA terms couple next-nearest neighboring RWA
strips (i.e. those differing by 2 in total excitation num-
ber) together, as shown in Fig. 3. Combined with the
intra-strip coupling provided by HRWA, the non-RWA
coupling allows multi-step (i.e. higher order) processes
to connect the resonant levels. For example, Hnon-RWA

carries the system from |0, n〉 to |1, n+1〉 in another RWA
strip, and then HRWA carries the system within the strip
to |6, n−4〉. Note that although the full process conserves
energy, neither of the individual steps do.

To find the condition under which the resonances oc-
cur, we numerically compute the frequencies ωk(n) ≡
E|k,n−k〉/~ − nωr (overline indicates eigenstate) of the

levels within each RWA strip, as functions of n. As n in-
creases, energy levels within each strip repel each other
more strongly and fan out, as illustrated by the solid
lines in the “fan diagram” in Fig. 4a. By superimpos-
ing fan diagrams of two next-nearest neighboring RWA
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FIG. 3. JC ladder for large values of n. Bare states are
shown as solid lines and two of the eigenstates are shown as
dashed lines. Dark curved arrows indicate coupling within
an RWA strip with corresponding RWA coupling strengths
shown below. The ladder has an energy resonance between
|0, n〉 and |6, n − 4〉 (long black arrow). Non-RWA couplings
(short straight arrows) allow for inter-strip transitions. The
couplings to |1, n+1〉 (red) and |3, n−1〉 (yellow), along with
those within the RWA strip, mediate the transition between
the resonant levels. The coupling to |2, n− 1〉 (green), which
mediates additional resonant transitions, requires a Hamilto-
nian term coupling transmon states of equal parity; this is
forbidden if the transmon potential is symmetric. Note the
energy spacing between states |k, n〉 and |k+ 1, n− 1〉 is ∆ as
indicated in the top left.

strips, as shown by the dashed lines, we see that they
have multiple intersections, meaning that the JC ladder
contains multiple resonances. For example the left red
dot in Fig. 4a shows that the transmon-resonator state
|0, n〉 can be brought on resonance with |6, n − 4〉. The
presence of crossings with higher transmon states agrees
with the experimental observation of transitions to states
higher than |3〉.

Next, we compute the n at which various intersections
occur as a function of the qubit-resonator detuning ∆,
yielding the lines in Fig. 4b. As |∆| increases, the spacing
between levels within an RWA strip also increases, see
Fig. 3. However, the spacing between strips is fixed at
ωr, so with increased |∆| fewer photons are required to
bring |0, n〉 on resonance with states in higher strips and
so the transitions occur at lower n̄. Note that while we
use n in the theory, the experiment drives the resonator
into a coherent state with mean photon number n̄ and
fluctuations

√
n < 0.1n. In addition, although the n

at which the energy resonance occurs is not related to
nc, the effective couplings between resonant levels are
large enough to yield the experimental features only when
n & nc.

To confirm the theoretical prediction, we repeat the
experiment shown in Fig. 2 for several values of ω10 by
biasing the transmon’s SQUID with magnetic flux. At
each ω10, we find the values of n̄ of features A and B

(as shown in Fig. 2d) and plot these points in Fig. 4b.
The experimental points for feature A (black circles) and
feature B (blue squares) are well fit by numerically com-
puted curves for the transitions from |0, n〉 to |6, n − 4〉
and |3, n−2〉, respectively. Note that the theory lines are
calculated using only the measured ωr, ω10, and g, with
no free parameters fitted to the data.

However, the transition from |0, n〉 to |3, n−2〉 is actu-
ally unexpected. If the transmon potential is symmetric,
as is usually assumed [9], then gi,j is only nonzero when
j − i is odd. Therefore, HI should only couple RWA
strips where the difference in total excitation number is
even, so the transition to |3, n− 2〉 should be forbidden.
Nevertheless, the theory line for the |3, n− 2〉 transition
fits the data well, indicating a possible asymmetry in the
transmon potential. We confirmed this asymmetry by
observing |0〉 → |2〉 Rabi oscillations when driving the
transmon at ω01 + ω12 [18]. Through comparison with
Rabi oscillations on the |0〉 → |1〉 transition, we exper-
imentally estimate |〈0|Q|2〉/〈0|Q|1〉| ≈ 10−2 [18]. This
matrix element is large enough to explain the transitions
to |3, n− 2〉, and so the level crossing theory appears to
correctly predict both of the largest resonance features
observed in the data.

It is worth mentioning that any spurious two level sys-
tems (TLS) coupled to transmon-resonator system can
also participate in level crossings, and can lead to simi-
lar features (possibly the small peaks in Fig. 2c), even at
lower photon numbers [18].

In conclusion, we find that strong dispersive measure-
ment of a transmon induces transitions to states above
|3〉. These transitions occur when the number of photons
in the measurement resonator take on certain specific
values, as inferred from the transmon’s ac Stark shift,
and are caused by energy resonances within the qubit-
resonator system. Coupling between the resonant levels
is mediated by Hamiltonian terms usually dropped in
the rotating wave approximation. An interesting conse-
quence of these results is that a system with smaller |∆|
should allow larger photon numbers before resonant tran-
sitions occur. This observation could be critical to im-
proving measurement accuracy in dispersively measured
systems, and may explain the large photon numbers used
in Ref. [23]. This work suggests several further avenues
of research, such as investigating level crossings when the
qubit is initialized in |1〉 and determining the mechanism
for the broken symmetry in the transmon potential.
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FIG. 4. (a) Fan (energy) diagram of the levels within an
RWA strip. Solid: Frequencies ωk(n) ≡ E|k,n−k〉/~ − nωr

versus photon number n for |∆| = 1.4 GHz. As n increases,
the levels repel more strongly and fan out. Dashed: Same
frequencies shifted by 2ωr, which represent the next-nearest
neighboring RWA strip. The red dots show energy resonances
with the qubit state |0〉 occurring at specific values of n. The
left dot corresponds to the resonance shown in Fig 3. (b) Pho-
ton number at level crossing versus ω10, compared between
experiment and theory. Black circles and blue squares show
experimental features A and B from Fig. 2 respectively, and
the error bars represent the apparent widths of the features.
Solid red line is the theory prediction for level crossing be-
tween eigenlevels of |0, n〉 and |6, n − 4〉. Dashed blue line is
the theory prediction for an asymmetric transmon that breaks
the selection rule by at least 1%, yielding level crossings be-
tween eigenlevels of |0, n〉 and |3, n− 2〉.
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HAMILTONIAN

The Hamiltonian of the coupled qubit-resonator sys-
tem can be written as

H = Hb +HI (1)

where Hb is the “bare” Hamiltonian of the qubit and
resonator, while HI describes their capacitive coupling.
With the ket convention |qubit, resonator〉, the bare
Hamiltonian has the form

Hb =
∑

k,n

(Ek + n~ωr) |k, n〉〈k, n| (2)

where ωr is the (bare) resonator frequency, and Ek is the
transmon energy of level k, calculated numerically us-
ing Mathieu characteristic functions [1]. The transmon
transition frequencies are ωkl ≡ (Ek − El)/~ and its an-
harmonicity is η ≡ ω21−ω10. This bare Hamiltonian pro-
duces the Jaynes-Cummings (JC) ladder of energy levels,
shown in Fig. 3 in the main text.

The interaction Hamiltonian HI , given by Eq. (2) in
the main text, is due to charge-charge coupling between
the resonator and transmon. It can be divided into two
parts,

HI = HRWA +Hnon-RWA , (3)

where HRWA contains only terms conserving total exci-
tation number, while Hnon-RWA contains the rest of the
terms. HRWA has the form

HRWA =
∑

k,n

~gk,k+1

√
n |k + 1, n− 1〉〈k, n|+ H.c. , (4)

where gk,k′ ≡ g〈k′|Q|k〉/〈0|Q|1〉 are the normalized ma-
trix elements of the transmon charge operator Q. These
matrix elements are calculated numerically using Math-
ieu functions. In the case k′ = k+1, the matrix elements
are approximately (for not very large values of k)

gk,k+1 ≈ g
√
k + 1

(
1 +

η

2ω10
k

)
. (5)
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FIG. 1. Ac Stark shift of the transmon frequency as a function
of the number of resonator photons n, for parameters of Fig.
2 in the main text (nc ≈ 60). The solid line shows the value
computed numerically from HRWA, and the dashed line shows
the conventional linear approximation δω10 = −2 |χ|n. As n
becomes large, the relation between ac Stark shift and photon
number becomes somewhat nonlinear.

By diagonalizing Hb + HRWA, we find the eigenstates
|k, n〉 and eigenenergies E|k,n〉, which we use to numeri-

cally compute the frequencies ωk(n) = E|k,n−k〉/~− nωr

within each RWA strip (see the fan energy diagram in
Fig. 4a in the main text).

From Hb + HRWA we also numerically compute
the photon number dependent ac Stark shift δω10 ≡(
E|1,n〉 − E|0,n〉

)
/~ − ω10, as illustrated in Fig. 1. This

map between resonator photon number and transmon
ac Stark shift, which provides the calibration between
drive power and photon number discussed in the main
text, was the critical link between theory and experiment.
Notice that Eq. (4) goes beyond the usual dispersive ap-
proximation [2]. In particular, the numerically computed
curve deviates noticeably from the usual linear relation
δω10 = −2 |χ|n.

The rest of the charge-charge interaction terms do not
preserve excitation number, and are called here “non-
RWA” terms. Although some of these terms are as large
as RWA terms, they are usually neglected since they
are more off-resonant than RWA terms. However, these
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terms connect RWA strips and therefore enable resonant
transitions in the JC ladder, as explained in the main
text. In general, there are many types of non-RWA terms,
which differ in coupling strength and in how close they
are to resonantly connecting two JC ladder levels. We
only consider terms involving gk,k+1 and gk,k+3, as they
are the largest and least off-resonant,

H
(1)
non-RWA =

∑

k,n

~ gk,k+1

√
n+ 1 |k + 1, n+ 1〉〈k, n|+ H.c.

+
∑

k,n

~ gk,k+3

√
n |k + 3, n− 1〉〈k, n|+ H.c. .

(6)

The couplings gk,k+3 are calculated numerically; they are
much smaller than gk,k+1, as seen from the approximate
formula

gk,k+3 ≈ g
√

(k + 1)(k + 2)(k + 3)
−η

4ω10
. (7)

In spite of being relatively small, these couplings are nu-
merically more important in our problem than couplings
gk,k+1. We note that Hnon-RWA induces slight changes in
the eigenenergies E|k,n〉, but the effect is small enough

that we neglect it.
Equation (6) does not have any terms of the form

gk,k+2, and therefore only connects RWA strips differing
in total excitation number by 2, which we call “next-
nearest neighbors” (see Fig. 3 in the main text). The ab-
sence of gk,k+2 terms is due to the symmetry of the trans-
mon potential (in the phase basis). However, the real
system violates this selection rule (see Fig. 2b discussed
later and also the discussion in the main text). Account-
ing for the broken symmetry adds terms to Hnon-RWA,

H
(2)
non-RWA =

∑

k,n

~ gk,k+2

√
n |k + 2, n− 1〉〈k, n|+ H.c. .

(8)
The non-RWA terms of Eq. (8) connect RWA strips differ-
ing in total excitation number by 1, which we call “near-
est neighbors” (see Fig. 3 in the main text), leading to ad-
ditional resonance processes, such as |0, n〉 → |3, n− 2〉.

EFFECTIVE COUPLING

When a resonance occurs between the initial state
|0, n〉 and, e.g., |6, n− 4〉, the system can make a res-
onant transition. In the perturbative language, in mak-
ing this transition the system goes through several in-
termediate off-resonant states (see Fig. 3 in the main
text); many different paths are available (i.e. differ-
ent virtual processes). As an example, one path is
|0, n〉 → |1, n− 1〉 → |4, n− 2〉 → |5, n− 3〉 → |6, n− 4〉,
which involves the matrix element g1,4. The condition of
resonance is necessary but not sufficient to give these pro-
cesses a measurably large probability; the process must

also have large enough effective coupling between initial
and final states. We define the effective coherent coupling
gcoh

eff as

gcoh
eff = 〈kf , nf |Hnon-RWA|ki, ni〉 , (9)

where |ki, ni〉 and |kf , nf 〉 are the initial and final eigen-
states, respectively. To find gcoh

eff , we expand the (RWA)
eigenstates in the bare state basis,

|k, n〉 =

kmax∑

l=0

c
(k,n)
l |l, n+ k − l〉, (10)

where kmax ' 9 is the highest transmon level taken into
account. This expansion is then substituted into Eq. (9).
In particular, for the transition |0, n〉 → |k, n− k + 2〉
(to the next-nearest neighboring RWA strip) the effective
coupling is

gcoh
eff =

∑
l
c
(0,n)
l ~gl,l+1

√
n− l + 1

[
c
(k,n−k+2)
l+1

]∗

+
∑

l
c
(0,n)
l ~gl,l+3

√
n− l

[
c
(k,n−k+2)
l+3

]∗
. (11)

Each term in Eq. (11) corresponds to a particular path
in the picture of virtual processes. The paths in the first
line are |0, n〉 → |l, n−l〉 → |l+1, n−l+1〉 → |k, n−k+2〉,
where the first and last arrows describe subpaths within
the RWA strips. Similarly, the terms in the second line
correspond to paths |0, n〉 → |l, n−l〉 → |l+3, n−l−1〉 →
|k, n− k + 2〉.

The solid red line in Fig. 2a shows gcoh
eff for the |0, n〉 →

|6, n− 4〉 transition (so that n corresponds to the res-
onance condition E|0,n〉 ≈ E|6,n−4〉), calculated using

Eq. (9) or, equivalently, Eq. (11). Note that the terms
in Eq. (11) are large at n > nc because gl,l+1

√
n ≈

|∆|
√
l + 1

√
n/4nc (typically a few GHz) and the ampli-

tudes cl are significant for several states within the RWA
strip. Nevertheless, the result for gcoh

eff shown by the solid
red line in Fig. 2a is smaller than even one such term.
The reason is an almost perfect cancellation of the terms
in Eq. (11). This can be understood as because the co-

efficients c
(k,n−k+2)
l alternate in sign with changing l at

l < k (as follows from the sequential perturbation the-
ory with increasing energy compared to the initial energy

E|k,n−k+2〉), while the coefficients c
(0,n)
l are all positive

(as follows from the perturbation theory with decreas-
ing energy of coupled states). Therefore, the terms in
Eq. (11) have alternating signs and efficiently cancel each
other.

This cancellation is probably not so efficient in the
real physical system. When the transmon is in an up-
per state, it is more sensitive to noise sources (such as
charge noise) and therefore experiences increased dephas-
ing. This and the relatively low coherence of the res-
onator (1/κr ≈ 37 ns) may suppress coherence between
the different paths contributing to Eq. (11). While it is
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FIG. 2. (a) Effective coupling between crossing levels for dif-
ferent qubit frequencies. Solid and dashed lines show coherent
and incoherent effective couplings respectively. The blue line
assumes g0,2/g = 10−2. (b) Experimental observation of Rabi
oscillation between transmon levels |0〉 and |2〉.

difficult to accurately calculate the effective coupling geff

while accounting for decoherence, we can estimate the
upper bound of the resulting geff as the fully incoherent
sum of the terms in Eq. (11),

gincoh
eff =

(∑
l

∣∣∣c(0,n)
l ~gl,l+1

√
n− l + 1

[
c
(k,n−k+2)
l+1

]∗∣∣∣
2

+
∑

l

∣∣∣c(0,n)
l ~gl,l+3

√
n− l

[
c
(k,n−k+2)
l+3

]∗∣∣∣
2
)1/2

.

(12)

The red dashed line in Fig. 2a shows gincoh
eff for the

|0, n〉 → |6, n− 4〉 transition. We expect that the ef-
fective couplings in real system are between the results
for fully coherent and fully incoherent cases (solid and
dashed lines). The experimental feature B (which corre-
sponds to the transition |0, n〉 → |6, n− 4〉) can be well
explained by effective coupling on the order of 1 MHz,
which is in agreement with these theoretical values (note
that g/2π ≈ 87 MHz).

As discussed in the main text, the experimental fea-
ture A can be explained only if the state can transition

between neighboring RWA strips (differing in total exci-
tation number by 1). However, if the transmon poten-
tial were exactly left/right symmetric, as is usually as-
sumed, then gk,k+2 = 0, and this transition is forbidden.
Therefore, to explain the feature A, we must assume that
the transmon’s symmetry is broken, leading to the addi-
tional non-RWA terms given in Eq. (8). We calculated
the effective coupling at the |0, n〉 → |3, n− 2〉 resonance,
hypothesizing that gk,k+2 = 0.01 g

√
(k + 1)(k + 2) (i.e.,

1% violation of the selection rule). The coupling for a
coherent process is calculated via Eq. (9), which for the
transitions |0, n〉 → |k, n− k + 1〉 between the nearest-
neighbor RWA strips produces

gcoh
eff =

∑
l
c
(0,n)
l ~gl,l+2

√
n− l

[
c
(k,n−k+1)
l+2

]∗
. (13)

The numerical result, indicated by the solid blue line in
Fig. 2a, shows that this 1% violation of the selection rule
yields an effective coupling of a few MHz, which is large
enough to explain the experimental feature A. The cou-
pling becomes a few times larger if we assume the fully
incoherent sum of the contributions from the paths in Eq.
(13) (constructed similarly as Eq. (12))– see the dashed
blue line in Fig. 2a. However, since the qubit state |3〉
is not supposed to experience a significant decoherence,
we believe that the solid blue line is more relevant to the
experimental situation than the dashed blue line. It is in-
teresting to note that the difference between the dashed
and solid blue lines is much smaller than between the
dashed and solid red lines, indicating that the cancella-
tion of terms in Eq. (13) is not as efficient as in Eq. (11).
This is because for the transition |0, n〉 → |3, n− 2〉 there
are only two main terms in Eq. (13): those involving g0,2

and g1,3.

We experimentally looked for and actually observed
the selection rule violation for g0,2 by directly driving
Rabi oscillations between transmon levels |0〉 and |2〉, as
shown in Fig. 2b. By comparing the |0〉 → |2〉 Rabi
oscillation period against the |0〉 ↔ |1〉 Rabi oscillation
period, and correcting for the differing microwave am-
plitude needed to drive those two transitions, we found
experimentally that g0,2/g ' 10−2, surprisingly in good
agreement with the guessed value. We emphasize that
the experimental value of 10−2 should be considered only
as an order of magnitude estimate.

We can offer only speculations about the possible phys-
ical mechanism behind the broken symmetry in the trans-
mon. For example, it could result from SQUID asym-
metry under external flux [3] or from a gradient of the
magnetic field which couples to oscillating current in the
circuit. However, these mechanisms are not investigated
here and will be the subject of further studies.
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FIG. 3. Example of a resonance between transmon and a
TLS. For a TLS with frequency 10 GHz, the level crossing
occurs between |0, n〉|0〉TLS and |2, n− 3〉|1〉TLS.

TLS-ASSISTED TRANSITIONS

It is well known that microscopic defects in the mate-
rials comprising the transmon circuit can act as two level
systems (TLS) and lead to qubit relaxation [4]. This re-
laxation can depend on the number of photons n in the
resonator because of the ac Stark shift. Since ac Stark
shift is approximately δω10 = −2 |χ|n ' −(|η| /2)(n/nc),
the change of the qubit frequency is quite significant
(∼ η ≈ −200 MHz) when n is comparable to nc. There-
fore, even if the bare qubit frequency is chosen away from
the TLS frequencies, it is possible that the qubit fre-
quency will cross a TLS during measurement with a mod-
erate value of n/nc. In fact, we have experimentally ob-
served this effect by comparing the transmon relaxation
rate as a function of ω10 with n = 0 against that same re-
laxation rate during dispersive measurement. We found
that the ac Stark shift induced by the resonator photons
during dispersive measurement pushes the transmon into
resonance with TLS’s and therefore increases the relax-
ation rate (data not shown). Of course, increased relax-
ation degrades the fidelity of the quantum state measure-
ment, so these crossings should be avoided.

Interestingly, coupling between the transmon and
TLS’s may also lead to transitions of the transmon to
higher levels, similar to the effect of the non-RWA cou-
plings associated with resonator. The level crossings as-
sociated with TLS’s produce features similar to those
produced by the non-RWA processes, such as dependence
on ∆.

For example, the transmon can be excited from |0〉
to |2〉 via the following virtual process: |0, n〉|0〉TLS →

|1, n − 1〉|0〉TLS → |2, n − 2〉|0〉TLS → |3, n − 3〉|0〉TLS →
|2, n−3〉|1〉TLS. This process requires ωTLS ≈ ωr+2 |∆|+
|η| (the exact value is a little larger because of the level
repulsion – see Fig. 3). The effective coupling for these
resonances can be large enough to yield noticeable pop-
ulation transfer at lower photon numbers than for the
non-RWA resonances. The example shown in Fig. 3 has
a TLS with a frequency of 10 GHz and the resonance for
the process described above occurs at n/nc ≈ 1. This
value is sufficient for a noticeable amplitude of the bare

state |3, n− 3〉 (c
(0,n)
3 ≈ 0.03) and therefore a noticeable

effective coupling for the process.
A TLS-assisted qubit transition from |0〉 to |1〉 requires

only population of the bare state |2, n − 2〉, and there-
fore the effective coupling becomes significant at values
of n/nc smaller than for the transition |0〉 → |2〉. For
example, for the parameters, corresponding to the peak
in the |1〉 probability (red line) in Fig. 2c of the main text
(n/nc ≈ 1.7), the amplitude of the |2〉 component is quite

significant, c
(0,n)
2 ≈ 0.2. Therefore, even a weak cou-

pling between the transmon and a TLS with frequency
ωTLS/2π ≈ 8.4 GHz can explain this experimental peak.
Note that when the TLS is sufficiently incoherent (e.g.,
because of fast energy relaxation), then the resonance
condition could transform into a threshold-like condition,
i.e., it should be enough energy to excite the TLS, also
exciting the qubit, by transferring two photons from the
resonator into the qubit-TLS system.

With increasing n/nc and therefore increasing popu-
lation of bare states |k, n − k〉, the number of possible
TLS-assisted processes becomes larger (involving more
final states), which increases the possibility of a transi-
tion away from the initial qubit state. We guess that the
TLS-assisted processes may be responsible for the usual
deterioration of qubit measurement fidelity in many ex-
periments when increasing n becomes comparable to nc
(causing either excitation or relaxation of the transmon
state).
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