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We measure the state dynamics of a tunable anharmonic quantum system, the Josephson phase circuit,

under the excitation of a frequency-chirped drive. At small anharmonicity, the state evolves like a wave

packet—a characteristic response in classical oscillators; in this regime, we report exponentially enhanced

lifetimes of highly excited states, held by the drive. At large anharmonicity, we observe sharp steps,

corresponding to the excitation of discrete energy levels. The continuous transition between the two

regimes is mapped by measuring the threshold of these two effects.
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Ever since the laws of quantum mechanics were
formulated, there has been an ongoing effort to explain
the emergence of classical laws in experimental systems.
The first explanation by Bohr states that these systems
operate in the limit of large quantum numbers [1], in which
case they may be described by a wave packet that on the
average follows the classical equations of motion [2]. In
addition, coupling to uncontrolled, external degrees of
freedom (decoherence) is often related to the emergence
of classicality [3]. Recent experiments and calculations
have demonstrated the quantum to classical transition in
oscillators, via noise saturation at low temperature due to
zero point fluctuations [4,5], and harmonic behavior at high
temperatures in a cavity-QED system [6].

In a classical anharmonic oscillator, such as a pendulum,
the energy expectation can be deterministically increased
to large values if the driving force is frequency-chirped and
its amplitude is sufficiently large. This phenomenon is
commonly known as autoresonance [7]. The physical
mechanism behind this effect is adiabatic, nonlinear phase
locking between the system and the drive, yielding a con-
trollable excitation as the system’s resonance frequency
follows the drive frequency as a function of time. This
effect is utilized in a wide variety of systems [8,9] and
recently in Josephson-based oscillators [5,10]. In a quan-
tum anharmonic oscillator, the expected time evolution
under a similar drive is sequential excitation of single
energy levels of the system, or ‘‘quantum ladder climbing’’
[11]. In practice, for a given anharmonicity the drive itself
introduces some mixing between the energy levels due to
power broadening and finite bandwidth, which may wash
out ladder climbing and lead to a classical behavior in a
quantum system [12,13]. In this Letter, we measure the
dynamics in these two distinct regimes in the same system
by varying the drive parameters and the system’s
anharmonicity.

Our system, the Josephson phase circuit (JPC) [see
Fig. 1(a)], is a superconducting oscillator with a nonlinear
inductor formed by a Josephson junction. It can be

described energetically by a double-well potential that
depends on the phase difference � across the junction.
We tune the potential by means of an external magnetic
flux bias [14] to vary the anharmonicity and measure the
state. Traditionally, the circuit is operated as a two-level
system (qubit) [14,15], or a d-level system (qudit) [16], by
localizing the phase � in a shallow well where there are
only a few energy levels. The quantum state of these levels
is then controlled by applying nearly resonant current
pulses. Because of the finite coherence time of the system,
this generally requires the anharmonicity inside the well
�r ¼ ðf01 � f12Þ=f01 (where fij is the transition fre-

quency from level i to level j) to be sufficiently large

FIG. 1 (color online). Operation and measurement of the
Josephson phase circuit. (a) Schematics of the circuit and the
potential energy at different operating biases. The potential
shape and anharmonicity �r are set by the current source Ib,
and the state inside the well is controlled by the microwave drive
I�w. (b) State measurement. A short pulse Imeas is applied in the

flux bias to selectively tunnel excited levels n > k. The average
phase � is then measured with an on-chip SQUID to detect
tunneling events. To determine the occupation probabilities of all
the N levels, this process is repeated with a series of different
Imeas amplitudes [18]. (c) Time sequence of the chirp experi-
ment. The drive amplitude � is expressed in units of the Rabi
frequency, measured on the first transition.
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[17]. In this work, we vary the anharmonicity over a large
range (0:002<�r < 0:03) in order to tune the system
between the autoresonance and ladder-climbing regimes.
The occupation probabilities are determined by measuring
the amount of tunneling out of the well due to a short pulse
in the flux bias that adiabatically reduces the potential
barrier [see Fig. 1(b)]; because of the exponential depen-
dence of the tunneling rate on the barrier height, we get a
high tunneling contrast between the states [16,18].
Tunneling events are detected by using an on-chip
superconducting quantum interference device (SQUID)
[19]. The experiment is repeated �103 times to yield the
occupation probability.

The time sequence of the experiment is sketched in
Fig. 1(c). Our system has negative anharmonicity (f12 <
f01). Therefore, we decrease the drive frequency at a
constant rate � ¼ 2�df=dt, starting higher than the
first resonance (f01), in accordance with the phase-locking
condition. The chirp is followed by a measurement pulse in
the flux bias Imeas, and the escape probability is measured.
This process is repeated for different measurement ampli-
tudes in order to extract the state occupation probabilities
Pn [18]. We start measuring the dynamics at a large anhar-
monicity �r ¼ 0:023. The time evolution is easily under-
stood by looking at the dressed energies of the system in the
rotating frame [20] [see Fig. 2(a)]. We start the chirp in the
positive detuned side (f > f01), with the system initialized
at the ground state. As the chirp progresses (decreasing
detuning), it reaches an avoided-level crossing, associated
with the first transition, at the frequency f ¼ f01. If the
chirp rate � is small relative to the square of the splitting
introduced by the drive, an adiabatic transition [21]
(Landau-Zener transition) to the first excited level occurs.
As the chirp continues, the probability of staying on the
adiabatic branch (ladder climbing) is higher than in the
previous transition due to the increased energy splitting at
higher transitions (f ¼ fi;iþ1). Figure 2(b) shows the pro-

cessed data of Pn vs time along the chirp for the relevant
states n. We clearly observe steps in the occupation, corre-
sponding to the ladder-climbing effect. In phase space [see
the insets in Fig. 2(b) for Wigner distribution calculated
from simulation], the phase is delocalized during each step,
as expected from a Fock-type state (jc i ¼ jni). In between
the steps, there is a partial localization of the phase due to
the interference of two such states. The fidelity of each step
in the experiment (the degree of correspondence with a
Fock-type state) decreases as the state number n is in-
creased, as a result of the chirp time being comparable to
the energy decay time (T1) of the first excited state.

Next, wemeasure the evolution during a similar chirp but
at a much smaller anharmonicity—�r ¼ 0:002. Lowering
the anharmonicity brings about more mixing between the
levels for a given drive and may therefore result in the
simultaneous excitation of many levels. Figure 2(c) shows
themeasured time evolution under these conditions. Instead

of sharp steps, we notice a broad excitation during the chirp,
consisting of up to 6 levels. On top of that, we observe
large amplitude oscillations, as expected from autoresonant
wave packet dynamics [22]. The oscillations are also seen in
the phase space simulation [see the inset in Fig. 2(c)], where
the phase of the localized distribution (crescent shape)
oscillates during the chirp. A detailed comparison between
the data and simulation, made without adjustable parame-
ters, is shown in Ref. [18].
To check the stability of the generated wave packet at

small anharmonicity, we fix the amplitude and frequency
of the drive at the end of the chirp to their final values
[illustrated in Fig. 3(a), in the case�hold ¼ �, where�hold

FIG. 2 (color online). State dynamics during the chirp.
(a) Dressed energies of the lowest levels in the rotating frame
as a function of the drive frequency detuning � from the first
transition f01. As the chirp progresses (decreasing �), for a
sufficiently small chirp rate the state remains on the adiabatic
branch (solid black line). (b) Measured occupation probability
(color scale) as a function of time and level number in the ladder-
climbing regime (�r ¼ 0:023, �=2� ¼ 2 MHz=ns, �=2� ¼
27 MHz) and (c) autoresonance regime (�r ¼ 0:002, �=2� ¼
10 MHz=ns, �=2� ¼ 190 MHz). The detuning scale in (a) and
the time scale in (b) are bound by the start and the end of the
chirp. Insets: Simulated Wigner distribution at different times
along the chirp.
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is the drive amplitude after the chirp]. Figure 3(b) shows
the resulting time evolution after the chirp. The phase-
locked wave packet is centered around n � 18 and is
remarkably long-lived, despite the short decay time at
these highly excited levels. We define the locking
probability Plocked as the probability to be in the phase-
locked state, taken for this measurement as the integrated

probability for levels n > 10 [13,18]. The locking
probability decays nonexponentially with a time constant
Tlocked ¼ 1:4 �s, where Tlocked is defined as the time it
takes for the locking probability to decay to half of its
initial value. The results of this experiment should be
contrasted with the measurement shown in Fig. 3(c), where
�hold¼0. In this measurement, the energy expectation
(proportional to the average level number) decays expo-
nentially at roughly T1 � 300 ns, consistent with the ex-
pected decay of a wave packet in a nearly harmonic
oscillator [23]. In phase space [the insets in Fig. 3(c)],
there is a quick (5 ns) delocalization into a pattern of
circular fringes due to the non-negligible anharmonicity.
The short lifetime-limited dephasing at hni ¼ 18 smears
out this pattern into a ring (30 ns) [24], shrinking at a
constant rate �1 ¼ 1=T1, as expected. When �hold ¼ �
[see the insets in Fig. 3(b)], the locked population (crescent
shape) remains localized but slowly leaks out through the
edge to the unlocked state, which freely decays as in
Fig. 3(c).
The results are explained within an effective barrier

model [25,26], where the drive at the end of the chirp
and the system’s anharmonicity form an effective potential
barrier for the population that is locked by the chirp. In this
picture, the size of the potential barrier scales as the
amplitude of the drive. We find from this theory that the
resulting lifetime of the locked population is given by
Tlocked / expð��hold=2�Þ [18,25], where the parameter �
depends on the system and drive frequencies [18]. To
check this model experimentally, we measure the locking
probability as a function of time after the chirp and of drive
amplitude. In this measurement [see Fig. 3(d)], the chirp
parameters are fixed, but the drive amplitude at the end of
the chirp is varied [27]. We find that Tlocked scales expo-
nentially with �hold, supporting the effective barrier pic-
ture. The holding lifetime increases by nearly 2 orders of
magnitude to more than 10 �s. The factor � we extract
from these data (� � 26 ns) is in agreement with the
theoretical prediction (� � 30 ns) and simulation (� �
24 ns) [18]. Note that, in this experiment, the chirp is
used to prepare the initial locked state only.
The locking probability is directly measured by using a

calibrated measurement pulse. In Fig. 3(e), as the drive
amplitude is increased near the threshold (�th=2� �
30 MHz), the highly excited (phase-locked) levels become
more populated, as indicated by the increased escape proba-
bility at smaller measurement amplitudes. To measure the
locking probability Plocked, we use a measurement ampli-
tude that causes only the population in the upper levels to
tunnel out (dashed line).
Although the state dynamics during the chirp is funda-

mentally different at large and small anharmonicities, it has
common features in both regimes. In addition to the no-
table increase of the system’s energy at relatively small
drive amplitudes, both autoresonance and ladder climbing

FIG. 3 (color online). Decay of a wave packet. (a) Time se-
quence of the decay measurement after the chirp. (b) Measured
occupation probability (color scale) as a function of level num-
ber and time after the chirp shown in Fig. 2(c), with�hold=2� ¼
190 MHz and (c) �hold ¼ 0. The insets in (b) and (c) show the
simulated Wigner plot at different times along the decay.
(d) Measured locking probability (color scale) as a function of
time and amplitude of the drive after the chirp, with contours
corresponding to Plockedðthold;�holdÞ ¼ 0:5, obtained from data,
theory, and simulation. (e) Escape probability (color scale) as a
function of measurement amplitude Imeas and drive amplitude �
after a chirp, with �=2� ¼ 10 MHz=ns and �r ¼ 0:0046. To
measure the locking probability, an intermediate Imeas is used
(dashed line) at the end of the chirp.
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have a threshold in amplitude for phase locking. While in

autoresonance the threshold amplitude �th scales as �
3=4,

in the ladder-climbing regime �th / �1=2. The change
in scaling indicates a transition between the two regimes
[12]. To map the transition, we measure the locking proba-
bility as a function of chirp rate, drive amplitude, and
anharmonicity.

Following Marcus, Friedland, and Zigler [12], we plot
the results [see Fig. 4(a)] in the dimensionless parameter
space: �=

ffiffiffiffi

�
p

and �=
ffiffiffiffi

�
p

, where � ¼ 2��rf01 is the
absolute anharmonicity [28]. The measured threshold, de-
fined by Plockedð�=

ffiffiffiffi

�
p

; �=
ffiffiffiffi

�
p Þ ¼ 0:5, changes scaling

(the dependence of the threshold amplitude on the chirp
rate) at thresholds where� � � (blue line). This condition
is met when the broadening of the first transition (caused
by the drive amplitude) is comparable to the frequency
difference between neighboring transitions. This marks the
transition between the classical and quantum regimes,
where the energy levels are mixed or resolved [12,13].
For comparison, the theoretical threshold lines of autore-
sonance and ladder climbing are shown on the same axes
in red and black, respectively. Our data converge to the
theoretical scaling at the classical limit. At the quantum
limit, the threshold shows slow oscillations as a function of
�=

ffiffiffiffi

�
p

, centered on the theoretical ladder-climbing

threshold line with superimposed fast oscillations [18].
The slow oscillations are reproduced by numerical simu-
lation [see Fig. 4(b)] and are the result of multilevel
Landau-Zener tunneling effects [13]. In the simulation,
the amplitude of these oscillations decreases at larger
�=

ffiffiffiffi

�
p

values, converging to the theoretical ladder-
climbing threshold scaling [13].
In conclusion, the ability to measure the system’s

dynamics in different regimes relies on the wide-range
tunability of the Josephson phase circuit. This tunability
opens the possibility of measuring the full state (state
tomography) of wave packets in more coherent devices
in the future. Using chirps, one can then generate and
measure ‘‘cat states’’ [3] within this macroscopic system.
In the ladder-climbing regime, one can use the chirp to
generate high fidelity jni states in lifetime-improved
devices, without the long calibration process that is com-
monly required. This demonstrates the usefulness of the
chirped drive in creating and manipulating quantum states
in the tunable Josephson phase circuit, with applications in
rapid state preparation and measurement.
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